Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Section 4.7
                   Antiderivatives

                V63.0121.002.2010Su, Calculus I

                        New York University


                         June 16, 2010



Announcements

   Quiz 4 Thursday on 4.1–4.4


                                              .   .   .   .   .   .
Announcements




           Quiz 4 Thursday on
           4.1–4.4




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       2 / 33
Objectives



           Given a ”simple“
           elementary function, find a
           function whose derivative
           is that function.
           Remember that a function
           whose derivative is zero
           along an interval must be
           zero along that interval.
           Solve problems involving
           rectilinear motion.



                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       3 / 33
Outline


 What is an antiderivative?

 Tabulating Antiderivatives
    Power functions
    Combinations
    Exponential functions
    Trigonometric functions

 Finding Antiderivatives Graphically

 Rectilinear motion


                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       4 / 33
What is an antiderivative?




 Definition
 Let f be a function. An antiderivative for f is a function F such that
 F′ = f.




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       5 / 33
Hard problem, easy check

 Example
 Find an antiderivative for f(x) = ln x.




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       6 / 33
Hard problem, easy check

 Example
 Find an antiderivative for f(x) = ln x.

 Solution
 ???




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       6 / 33
Hard problem, easy check

 Example
 Find an antiderivative for f(x) = ln x.

 Solution
 ???

 Example
 is F(x) = x ln x − x an antiderivative for f(x) = ln x?




                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       6 / 33
Hard problem, easy check

 Example
 Find an antiderivative for f(x) = ln x.

 Solution
 ???

 Example
 is F(x) = x ln x − x an antiderivative for f(x) = ln x?

 Solution

                        d
                           (x ln x − x)
                        dx

                                                                        .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)     Section 4.7 Antiderivatives               June 16, 2010       6 / 33
Hard problem, easy check

 Example
 Find an antiderivative for f(x) = ln x.

 Solution
 ???

 Example
 is F(x) = x ln x − x an antiderivative for f(x) = ln x?

 Solution

                        d                               1
                           (x ln x − x) = 1 · ln x + x · − 1
                        dx                              x

                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       6 / 33
Hard problem, easy check

 Example
 Find an antiderivative for f(x) = ln x.

 Solution
 ???

 Example
 is F(x) = x ln x − x an antiderivative for f(x) = ln x?

 Solution

                        d                               1
                           (x ln x − x) = 1 · ln x + x · − 1 = ln x
                        dx                              x

                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       6 / 33
Hard problem, easy check

 Example
 Find an antiderivative for f(x) = ln x.

 Solution
 ???

 Example
 is F(x) = x ln x − x an antiderivative for f(x) = ln x?

 Solution

                        d
                        dx
                                                        1
                           (x ln x − x) = 1 · ln x + x · − 1 = ln x
                                                        x
                                                                              
                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       6 / 33
Why the MVT is the MITC
Most Important Theorem In Calculus!



 Theorem
 Let f′ = 0 on an interval (a, b). Then f is constant on (a, b).

 Proof.
 Pick any points x and y in (a, b) with x  y. Then f is continuous on
 [x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y)
 such that
                     f(y) − f(x)
                                 = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x)
                        y−x

 But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b),
 then f is constant.

                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       7 / 33
When two functions have the same derivative


 Theorem
 Suppose f and g are two differentiable functions on (a, b) with f′ = g′ .
 Then f and g differ by a constant. That is, there exists a constant C
 such that f(x) = g(x) + C.

 Proof.

         Let h(x) = f(x) − g(x)
         Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b)
         So h(x) = C, a constant
         This means f(x) − g(x) = C on (a, b)



                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       8 / 33
Outline


 What is an antiderivative?

 Tabulating Antiderivatives
    Power functions
    Combinations
    Exponential functions
    Trigonometric functions

 Finding Antiderivatives Graphically

 Rectilinear motion


                                                                      .   .   .     .      .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010       9 / 33
Antiderivatives of power functions


                                                                      y
                                                                      .
                                                                                        .(x) = x2
                                                                                        f
   Recall that the derivative of a
   power function is a power
   function.
   Fact (The Power Rule)
   If f(x) = xr , then f′ (x) = rxr−1 .

                                                                          .
                                                                                        x
                                                                                        .




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                   June 16, 2010   10 / 33
Antiderivatives of power functions

                                                                         ′
                                                                      y f
                                                                      . . (x) = 2x
                                                                                      .(x) = x2
                                                                                      f
   Recall that the derivative of a
   power function is a power
   function.
   Fact (The Power Rule)
   If f(x) = xr , then f′ (x) = rxr−1 .

                                                                       .
                                                                                      x
                                                                                      .




                                                                       .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                 June 16, 2010   10 / 33
Antiderivatives of power functions

                                                                         ′
                                                                      y f
                                                                      . . (x) = 2x
                                                                                      .(x) = x2
                                                                                      f
   Recall that the derivative of a
   power function is a power
   function.                                                                          F
                                                                                      . (x) = ?

   Fact (The Power Rule)
   If f(x) = xr , then f′ (x) = rxr−1 .

                                                                       .
                                                                                      x
                                                                                      .




                                                                       .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                 June 16, 2010   10 / 33
Antiderivatives of power functions

                                                                         ′
                                                                      y f
                                                                      . . (x) = 2x
                                                                                      .(x) = x2
                                                                                      f
   Recall that the derivative of a
   power function is a power
   function.                                                                          F
                                                                                      . (x) = ?

   Fact (The Power Rule)
   If f(x) = xr , then f′ (x) = rxr−1 .

   So in looking for antiderivatives
                                                                       .
   of power functions, try power                                                      x
                                                                                      .
   functions!




                                                                       .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                 June 16, 2010   10 / 33
Example
 Find an antiderivative for the function f(x) = x3 .




                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr




                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .




                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .

         r − 1 = 3 =⇒ r = 4




                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                     1
         r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                     4




                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                     1
         r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                     4
                    1 4
         So F(x) = x is an antiderivative.
                    4




                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                     1
         r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                     4
                    1 4
         So F(x) = x is an antiderivative.
                    4
         Check:                 (    )
                            d 1 4           1
                                   x = 4 · x4−1 = x3
                           dx 4             4




                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                     1
         r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                     4
                    1 4
         So F(x) = x is an antiderivative.
                    4
         Check:                 (    )
                            d 1 4
                           dx 4
                                            1
                                   x = 4 · x4−1 = x3
                                            4
                                                                          

                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                     1
         r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                     4
                    1 4
         So F(x) = x is an antiderivative.
                    4
         Check:                 (    )
                            d 1 4
                           dx 4
                                            1
                                   x = 4 · x4−1 = x3
                                            4
                                                                          
         Any others?

                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Example
 Find an antiderivative for the function f(x) = x3 .

 Solution

         Try a power function F(x) = axr
         Then F′ (x) = arxr−1 , so we want arxr−1 = x3 .
                                                     1
         r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = .
                                                     4
                    1 4
         So F(x) = x is an antiderivative.
                    4
         Check:                 (    )
                            d 1 4
                           dx 4
                                            1
                                   x = 4 · x4−1 = x3
                                            4
                                                                          
                                           1 4
         Any others? Yes, F(x) =             x + C is the most general form.
                                           4
                                                                      .   .   .      .      .     .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   11 / 33
Fact (The Power Rule for antiderivatives)
 If f(x) = xr , then
                                                     1 r+1
                                        F(x) =          x
                                                    r+1
 is an antiderivative for f…




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   12 / 33
Fact (The Power Rule for antiderivatives)
 If f(x) = xr , then
                                          1 r+1
                                        F(x) =
                                             x
                                       r+1
 is an antiderivative for f as long as r ̸= −1.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   12 / 33
Fact (The Power Rule for antiderivatives)
 If f(x) = xr , then
                                          1 r+1
                                        F(x) =
                                             x
                                       r+1
 is an antiderivative for f as long as r ̸= −1.

 Fact
                          1
 If f(x) = x−1 =            , then
                          x
                                        F(x) = ln |x| + C
 is an antiderivative for f.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   12 / 33
What's with the absolute value?
                                                   {
                                                       ln(x)  if x  0;
                                F(x) = ln |x| =
                                                       ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.




                                                                       .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                      {
                                                          ln(x)  if x  0;
                                F(x) = ln |x| =
                                                          ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                           ln |x|
                                        dx




                                                                          .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)       Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d           d
                                           ln |x| =    ln(x)
                                        dx          dx




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d           d          1
                                           ln |x| =    ln(x) =
                                        dx          dx         x




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                        dx
                                           ln |x| =
                                                    d
                                                    dx
                                                       ln(x) =
                                                               1
                                                               x
                                                                             




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                        dx
                                           ln |x| =
                                                    d
                                                    dx
                                                       ln(x) =
                                                               1
                                                               x
                                                                             
         If x  0,
                             d
                                ln |x|
                             dx


                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                        dx
                                           ln |x| =
                                                    d
                                                    dx
                                                       ln(x) =
                                                               1
                                                               x
                                                                             
         If x  0,
                             d           d
                                ln |x| =    ln(−x)
                             dx          dx


                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                        dx
                                           ln |x| =
                                                    d
                                                    dx
                                                       ln(x) =
                                                               1
                                                               x
                                                                             
         If x  0,
                             d           d           1
                                ln |x| =    ln(−x) =    · (−1)
                             dx          dx          −x


                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                        dx
                                           ln |x| =
                                                    d
                                                    dx
                                                       ln(x) =
                                                               1
                                                               x
                                                                             
         If x  0,
                             d           d           1           1
                                ln |x| =    ln(−x) =    · (−1) =
                             dx          dx          −x          x


                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                        dx
                                           ln |x| =
                                                    d
                                                    dx
                                                       ln(x) =
                                                               1
                                                               x
                                                                             
         If x  0,
                             d
                             dx
                                ln |x| =
                                         d
                                         dx
                                            ln(−x) =
                                                     1
                                                     −x
                                                        · (−1) =
                                                                 1
                                                                 x
                                                                                     

                                                                         .   .   .       .      .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
What's with the absolute value?
                                                     {
                                                         ln(x)  if x  0;
                                F(x) = ln |x| =
                                                         ln(−x) if x  0.

         The domain of F is all nonzero numbers, while ln x is only defined
         on positive numbers.
         If x  0,
                                        d
                                        dx
                                           ln |x| =
                                                    d
                                                    dx
                                                       ln(x) =
                                                               1
                                                               x
                                                                             
         If x  0,
                             d
                             dx
                                ln |x| =
                                         d
                                         dx
                                            ln(−x) =
                                                     1
                                                     −x
                                                        · (−1) =
                                                                 1
                                                                 x
                                                                                     
         We prefer the antiderivative with the larger domain.
                                                                         .   .   .       .      .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   13 / 33
Graph of ln |x|

                                        y
                                        .




                                            .                                 f
                                                                              .(x) = 1/x
                                                                              x
                                                                              .




                                                                      .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                June 16, 2010   14 / 33
Graph of ln |x|

                                        y
                                        .




                                                                              F
                                                                              . (x) = ln(x)


                                            .                                 f
                                                                              .(x) = 1/x
                                                                              x
                                                                              .




                                                                      .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                June 16, 2010   14 / 33
Graph of ln |x|

                                        y
                                        .




                                                                              . (x) = ln |x|
                                                                              F


                                            .                                 f
                                                                              .(x) = 1/x
                                                                              x
                                                                              .




                                                                      .   .    .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                June 16, 2010   14 / 33
Combinations of antiderivatives
 Fact (Sum and Constant Multiple Rule for Antiderivatives)

         If F is an antiderivative of f and G is an antiderivative of g, then
         F + G is an antiderivative of f + g.
         If F is an antiderivative of f and c is a constant, then cF is an
         antiderivative of cf.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   15 / 33
Combinations of antiderivatives
 Fact (Sum and Constant Multiple Rule for Antiderivatives)

         If F is an antiderivative of f and G is an antiderivative of g, then
         F + G is an antiderivative of f + g.
         If F is an antiderivative of f and c is a constant, then cF is an
         antiderivative of cf.

 Proof.
 These follow from the sum and constant multiple rule for derivatives:
         If F′ = f and G′ = g, then

                                        (F + G)′ = F′ + G′ = f + g

         Or, if F′ = f,
                                              (cF)′ = cF′ = cf
                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   15 / 33
Antiderivatives of Polynomials
 Example
 Find an antiderivative for f(x) = 16x + 5.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   16 / 33
Antiderivatives of Polynomials
 Example
 Find an antiderivative for f(x) = 16x + 5.

 Solution
                            1 2
 The expression               x is an antiderivative for x, and x is an antiderivative
                            2
 for 1. So
                                        (         )
                                            1 2
                      F(x) = 16 ·             x       + 5 · x + C = 8x2 + 5x + C
                                            2

 is the antiderivative of f.




                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.7 Antiderivatives               June 16, 2010   16 / 33
Antiderivatives of Polynomials
 Example
 Find an antiderivative for f(x) = 16x + 5.

 Solution
                            1 2
 The expression               x is an antiderivative for x, and x is an antiderivative
                            2
 for 1. So
                                        (         )
                                            1 2
                      F(x) = 16 ·             x       + 5 · x + C = 8x2 + 5x + C
                                            2

 is the antiderivative of f.

 Question
 Why do we not need two C’s?

                                                                           .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)        Section 4.7 Antiderivatives               June 16, 2010   16 / 33
Antiderivatives of Polynomials
 Example
 Find an antiderivative for f(x) = 16x + 5.

 Solution
                            1 2
 The expression               x is an antiderivative for x, and x is an antiderivative
                            2
 for 1. So
                                        (         )
                                            1 2
                      F(x) = 16 ·             x       + 5 · x + C = 8x2 + 5x + C
                                            2

 is the antiderivative of f.

 Question
 Why do we not need two C’s?

 Answer                                                             .   .   .      .   .   .


 A combination of two arbitrary constants is still an arbitrary constant.16 / 33
V63.0121.002.2010Su, Calculus I (NYU)
                             Section 4.7 Antiderivatives      June 16, 2010
Exponential Functions

 Fact
 If f(x) = ax , f′ (x) = (ln a)ax .




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   17 / 33
Exponential Functions

 Fact
 If f(x) = ax , f′ (x) = (ln a)ax .

 Accordingly,
 Fact
                                         1 x
 If f(x) = ax , then F(x) =                  a + C is the antiderivative of f.
                                        ln a




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   17 / 33
Exponential Functions

 Fact
 If f(x) = ax , f′ (x) = (ln a)ax .

 Accordingly,
 Fact
                                         1 x
 If f(x) = ax , then F(x) =                  a + C is the antiderivative of f.
                                        ln a

 Proof.
 Check it yourself.




                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   17 / 33
Exponential Functions

 Fact
 If f(x) = ax , f′ (x) = (ln a)ax .

 Accordingly,
 Fact
                                         1 x
 If f(x) = ax , then F(x) =                  a + C is the antiderivative of f.
                                        ln a

 Proof.
 Check it yourself.

 In particular,
 Fact
 If f(x) = ex , then F(x) = ex + C is the antiderivative of f.
                                                                         .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)      Section 4.7 Antiderivatives               June 16, 2010   17 / 33
Logarithmic functions?

         Remember we found

                                           F(x) = x ln x − x

         is an antiderivative of f(x) = ln x.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   18 / 33
Logarithmic functions?

         Remember we found

                                           F(x) = x ln x − x

         is an antiderivative of f(x) = ln x.
         This is not obvious. See Calc II for the full story.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   18 / 33
Logarithmic functions?

         Remember we found

                                            F(x) = x ln x − x

         is an antiderivative of f(x) = ln x.
         This is not obvious. See Calc II for the full story.
                                                ln x
         However, using the fact that loga x =       , we get:
                                                ln a

 Fact
 If f(x) = loga (x)

                                 1                                  1
                   F(x) =            (x ln x − x) + C = x loga x −      x+C
                                ln a                               ln a
 is the antiderivative of f(x).
                                                                       .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)    Section 4.7 Antiderivatives               June 16, 2010   18 / 33
Trigonometric functions


 Fact

                            d                           d
                               sin x = cos x               cos x = − sin x
                            dx                          dx




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   19 / 33
Trigonometric functions


 Fact

                            d                           d
                               sin x = cos x               cos x = − sin x
                            dx                          dx

 So to turn these around,
 Fact

         The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   19 / 33
Trigonometric functions


 Fact

                            d                           d
                               sin x = cos x               cos x = − sin x
                            dx                          dx

 So to turn these around,
 Fact

         The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
         The function F(x) = sin x + C is the antiderivative of f(x) = cos x.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   19 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.

 Solution
 ???




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.

 Solution
 ???

 Answer
 F(x) = ln(sec x).




                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.

 Solution
 ???

 Answer
 F(x) = ln(sec x).

 Check

                 d      1    d
                    =      ·   sec x
                 dx   sec x dx


                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.

 Solution
 ???

 Answer
 F(x) = ln(sec x).

 Check

                 d      1    d           1
                    =      ·   sec x =       · sec x tan x
                 dx   sec x dx         sec x


                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.

 Solution
 ???

 Answer
 F(x) = ln(sec x).

 Check

                 d      1    d           1
                    =      ·   sec x =       · sec x tan x = tan x
                 dx   sec x dx         sec x


                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.

 Solution
 ???

 Answer
 F(x) = ln(sec x).

 Check

                 d
                 dx
                    =
                        1
                           ·
                             d
                      sec x dx
                               sec x =
                                         1
                                       sec x
                                             · sec x tan x = tan x                   
                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
More Trig
 Example
 Find an antiderivative of f(x) = tan x.

 Solution
 ???

 Answer
 F(x) = ln(sec x).

 Check

                 d
                 dx
                    =
                        1
                           ·
                             d
                      sec x dx
                               sec x =
                                         1
                                       sec x
                                             · sec x tan x = tan x                   
 More about this later.                                               .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   20 / 33
Outline


 What is an antiderivative?

 Tabulating Antiderivatives
    Power functions
    Combinations
    Exponential functions
    Trigonometric functions

 Finding Antiderivatives Graphically

 Rectilinear motion


                                                                      .   .   .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives               June 16, 2010   21 / 33
Finding Antiderivatives Graphically

 Problem
 Below is the graph of a function f. Draw the graph of an antiderivative
 for f.

                             y
                             .
                                              .
                                         .                                   . . = f(x)
                                                                               y
                                 .        .    .      .       .       .       .
                                                                                x
                                                                                .
                                        1
                                        .     2
                                              .      3
                                                     .       4
                                                             .       5
                                                                     .       6
                                                                             .



                                                              .

                                                                               .    .     .      .       .    .

V63.0121.002.2010Su, Calculus I (NYU)          Section 4.7 Antiderivatives                    June 16, 2010   22 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:
                                                                                                      ′
                                                .       .        .     .    .    .          .. = F
                                                                                             f

        y
        .                                              1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..
                     .
                 .          .                                                                 ′           ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .            .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010         23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:
                                                                                                      ′
                                                .       .. .
                                                         +             .    .    .          .. = F
                                                                                             f

        y
        .                                              1
                                                       .   2
                                                           .          3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..
                     .
                 .          .                                                                 ′           ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .            .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010         23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:
                                                                                                      ′
                                                .       .. .. .
                                                         + +                .    .          .. = F
                                                                                             f

        y
        .                                              1
                                                       .   2
                                                           .  3
                                                              .            4
                                                                           .    5
                                                                                .           6F
                                                                                            ..
                     .
                 .          .                                                                 ′           ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .            .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010         23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                         + + −                                        ′
                                                .       .. .. .. .               .          .. = F
                                                                                             f

        y
        .                                              1
                                                       .   2
                                                           .  3
                                                              .  4
                                                                 .              5
                                                                                .           6F
                                                                                            ..
                     .
                 .          .                                                                 ′           ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .            .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010         23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                         + + − −                                      ′
                                                .       .. .. .. .. .                       .. = F
                                                                                             f

        y
        .                                              1
                                                       .   2
                                                           .  3
                                                              .  4
                                                                 .  5
                                                                    .                       6F
                                                                                            ..
                     .
                 .          .                                                                 ′           ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .            .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010         23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1
                                                       .    2
                                                            .   3
                                                                .   4
                                                                    .   5
                                                                        .   6F
                                                                            ..
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1↗2
                                                       . . .    3
                                                                .   4
                                                                    .   5
                                                                        .   6F
                                                                            ..
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1↗2↗3
                                                       . . . . .    4
                                                                    .   5
                                                                        .   6F
                                                                            ..
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1↗2↗3↘4
                                                       . . . . . . .    5
                                                                        .   6F
                                                                            ..
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1↗2↗3↘4↘5
                                                       . . . . . . . . .    6F
                                                                            ..
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . . . . . . . . . ..
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . .. . . . . . . . . .
                                                               max
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . .. . . . .. . . . . .
                                                               max      min
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .        .     .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . .. . . . .. . . . . .
                                                               max      min
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .. + .
                                                         +             .    .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .    2
                                                            .         3
                                                                      .    4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . .. . . . .. . . . . .
                                                               max      min
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .. + .. − .
                                                         + −                .    .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .    2
                                                            .    3
                                                                 .         4
                                                                           .    5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . .. . . . .. . . . . .
                                                               max      min
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .. + .. − .. − .
                                                         + − −                   .          .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .    2
                                                            .    3
                                                                 .    4
                                                                      .         5
                                                                                .           6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . .. . . . .. . . . . .
                                                               max      min
                     .
                 .          .                                                                 ′       ′′
            .    . . . . . .                            .. + .. − .. − .. + .
                                                         + − − +                            .. = F
                                                                                             f

                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .    2
                                                            .    3
                                                                 .    4
                                                                      .    5
                                                                           .                6F
                                                                                            ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .         .        .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Using f to make a sign chart for F

 Assuming F′ = f, we can make a sign chart for f and f′ to find the
 intervals of monotonicity and concavity for F:

                                                          + + − − + f              ′
                                                .       . . . . . . . . . . .. = F
        y
        .                                              1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F
                                                       . . .. . . . .. . . . . .
                                                               max      min
                     .
                 .          .                            + − − + + f′                   ′′
            .    . . . . . .                            .. + .. − .. − .. + .. + . . = F
                1 2 3 4 5 6
                . . . . . .
                              x
                              .                        1
                                                       .    2
                                                            .    3
                                                                 .    4
                                                                      .    5
                                                                           .    6F
                                                                                ..

                               .
                                                        .        .     .    .    .           ..
                                                                                              F
                                                       1
                                                       .        2
                                                                .     3
                                                                      .    4
                                                                           .    5
                                                                                .           6s
                                                                                            . . hape

                                                                      .    .    .       .       .      .

V63.0121.002.2010Su, Calculus I (NYU)   Section 4.7 Antiderivatives                  June 16, 2010     23 / 33
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives

More Related Content

Lesson 23: Antiderivatives

  • 1. Section 4.7 Antiderivatives V63.0121.002.2010Su, Calculus I New York University June 16, 2010 Announcements Quiz 4 Thursday on 4.1–4.4 . . . . . .
  • 2. Announcements Quiz 4 Thursday on 4.1–4.4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 2 / 33
  • 3. Objectives Given a ”simple“ elementary function, find a function whose derivative is that function. Remember that a function whose derivative is zero along an interval must be zero along that interval. Solve problems involving rectilinear motion. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 3 / 33
  • 4. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 4 / 33
  • 5. What is an antiderivative? Definition Let f be a function. An antiderivative for f is a function F such that F′ = f. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 5 / 33
  • 6. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 6 / 33
  • 7. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 6 / 33
  • 8. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 6 / 33
  • 9. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d (x ln x − x) dx . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 6 / 33
  • 10. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d 1 (x ln x − x) = 1 · ln x + x · − 1 dx x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 6 / 33
  • 11. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d 1 (x ln x − x) = 1 · ln x + x · − 1 = ln x dx x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 6 / 33
  • 12. Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx 1 (x ln x − x) = 1 · ln x + x · − 1 = ln x x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 6 / 33
  • 13. Why the MVT is the MITC Most Important Theorem In Calculus! Theorem Let f′ = 0 on an interval (a, b). Then f is constant on (a, b). Proof. Pick any points x and y in (a, b) with x y. Then f is continuous on [x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y) such that f(y) − f(x) = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x) y−x But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b), then f is constant. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 7 / 33
  • 14. When two functions have the same derivative Theorem Suppose f and g are two differentiable functions on (a, b) with f′ = g′ . Then f and g differ by a constant. That is, there exists a constant C such that f(x) = g(x) + C. Proof. Let h(x) = f(x) − g(x) Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b) So h(x) = C, a constant This means f(x) − g(x) = C on (a, b) . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 8 / 33
  • 15. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 9 / 33
  • 16. Antiderivatives of power functions y . .(x) = x2 f Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 10 / 33
  • 17. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 10 / 33
  • 18. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. F . (x) = ? Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . . x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 10 / 33
  • 19. Antiderivatives of power functions ′ y f . . (x) = 2x .(x) = x2 f Recall that the derivative of a power function is a power function. F . (x) = ? Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . So in looking for antiderivatives . of power functions, try power x . functions! . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 10 / 33
  • 20. Example Find an antiderivative for the function f(x) = x3 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 21. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 22. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 23. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 24. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 25. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 26. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 1 x = 4 · x4−1 = x3 dx 4 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 27. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 28. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 Any others? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 29. Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . 1 r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = . 4 1 4 So F(x) = x is an antiderivative. 4 Check: ( ) d 1 4 dx 4 1 x = 4 · x4−1 = x3 4 1 4 Any others? Yes, F(x) = x + C is the most general form. 4 . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 11 / 33
  • 30. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f… . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 12 / 33
  • 31. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f as long as r ̸= −1. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 12 / 33
  • 32. Fact (The Power Rule for antiderivatives) If f(x) = xr , then 1 r+1 F(x) = x r+1 is an antiderivative for f as long as r ̸= −1. Fact 1 If f(x) = x−1 = , then x F(x) = ln |x| + C is an antiderivative for f. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 12 / 33
  • 33. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 34. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d ln |x| dx . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 35. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d d ln |x| = ln(x) dx dx . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 36. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d d 1 ln |x| = ln(x) = dx dx x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 37. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 38. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d ln |x| dx . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 39. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d ln |x| = ln(−x) dx dx . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 40. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d 1 ln |x| = ln(−x) = · (−1) dx dx −x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 41. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d d 1 1 ln |x| = ln(−x) = · (−1) = dx dx −x x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 42. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 43. What's with the absolute value? { ln(x) if x 0; F(x) = ln |x| = ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x We prefer the antiderivative with the larger domain. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 13 / 33
  • 44. Graph of ln |x| y . . f .(x) = 1/x x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 14 / 33
  • 45. Graph of ln |x| y . F . (x) = ln(x) . f .(x) = 1/x x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 14 / 33
  • 46. Graph of ln |x| y . . (x) = ln |x| F . f .(x) = 1/x x . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 14 / 33
  • 47. Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 15 / 33
  • 48. Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. Proof. These follow from the sum and constant multiple rule for derivatives: If F′ = f and G′ = g, then (F + G)′ = F′ + G′ = f + g Or, if F′ = f, (cF)′ = cF′ = cf . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 15 / 33
  • 49. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 16 / 33
  • 50. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution 1 2 The expression x is an antiderivative for x, and x is an antiderivative 2 for 1. So ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 is the antiderivative of f. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 16 / 33
  • 51. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution 1 2 The expression x is an antiderivative for x, and x is an antiderivative 2 for 1. So ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 is the antiderivative of f. Question Why do we not need two C’s? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 16 / 33
  • 52. Antiderivatives of Polynomials Example Find an antiderivative for f(x) = 16x + 5. Solution 1 2 The expression x is an antiderivative for x, and x is an antiderivative 2 for 1. So ( ) 1 2 F(x) = 16 · x + 5 · x + C = 8x2 + 5x + C 2 is the antiderivative of f. Question Why do we not need two C’s? Answer . . . . . . A combination of two arbitrary constants is still an arbitrary constant.16 / 33 V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010
  • 53. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 17 / 33
  • 54. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 17 / 33
  • 55. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a Proof. Check it yourself. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 17 / 33
  • 56. Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact 1 x If f(x) = ax , then F(x) = a + C is the antiderivative of f. ln a Proof. Check it yourself. In particular, Fact If f(x) = ex , then F(x) = ex + C is the antiderivative of f. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 17 / 33
  • 57. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 18 / 33
  • 58. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 18 / 33
  • 59. Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. ln x However, using the fact that loga x = , we get: ln a Fact If f(x) = loga (x) 1 1 F(x) = (x ln x − x) + C = x loga x − x+C ln a ln a is the antiderivative of f(x). . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 18 / 33
  • 60. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 19 / 33
  • 61. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 19 / 33
  • 62. Trigonometric functions Fact d d sin x = cos x cos x = − sin x dx dx So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. The function F(x) = sin x + C is the antiderivative of f(x) = cos x. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 19 / 33
  • 63. More Trig Example Find an antiderivative of f(x) = tan x. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 64. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 65. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 66. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d = · sec x dx sec x dx . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 67. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d 1 = · sec x = · sec x tan x dx sec x dx sec x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 68. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d 1 d 1 = · sec x = · sec x tan x = tan x dx sec x dx sec x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 69. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 · d sec x dx sec x = 1 sec x · sec x tan x = tan x . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 70. More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln(sec x). Check d dx = 1 · d sec x dx sec x = 1 sec x · sec x tan x = tan x More about this later. . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 20 / 33
  • 71. Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Finding Antiderivatives Graphically Rectilinear motion . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 21 / 33
  • 72. Finding Antiderivatives Graphically Problem Below is the graph of a function f. Draw the graph of an antiderivative for f. y . . . . . = f(x) y . . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6 . . . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 22 / 33
  • 73. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: ′ . . . . . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 74. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: ′ . .. . + . . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 75. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: ′ . .. .. . + + . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 76. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − ′ . .. .. .. . . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 77. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − ′ . .. .. .. .. . .. = F f y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 78. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 . 2 . 3 . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 79. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2 . . . 3 . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 80. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3 . . . . . 4 . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 81. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3↘4 . . . . . . . 5 . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 82. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1↗2↗3↘4↘5 . . . . . . . . . 6F .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 83. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . . . . . . . . . .. . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 84. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . . . . . . . max . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 85. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . . . . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 86. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + . + . . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 87. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − . + − . . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 88. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − .. − . + − − . .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 89. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . ′ ′′ . . . . . . . .. + .. − .. − .. + . + − − + .. = F f 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33
  • 90. Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: + + − − + f ′ . . . . . . . . . . . .. = F y . 1 ↗ 2 ↗ 3 ↘ 4 ↘ 5 ↗ 6F . . .. . . . .. . . . . . max min . . . + − − + + f′ ′′ . . . . . . . .. + .. − .. − .. + .. + . . = F 1 2 3 4 5 6 . . . . . . x . 1 . 2 . 3 . 4 . 5 . 6F .. . . . . . . .. F 1 . 2 . 3 . 4 . 5 . 6s . . hape . . . . . . V63.0121.002.2010Su, Calculus I (NYU) Section 4.7 Antiderivatives June 16, 2010 23 / 33