Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Making Apache Spark™
Better with Delta Lake
Michael Armbrust
@michaelarmbrust
1. Collect
Everything
• Recommendation Engines
• Risk, Fraud Detection
• IoT & Predictive Maintenance
• Genomics & DNA Sequencing
3. Data Science &
Machine Learning
2. Store it all in
the Data Lake
The Promise of the Data Lake
Garbage In Garbage Stored Garbage Out
🔥
🔥
🔥
🔥🔥
🔥
🔥
What does a typical
data lake project look like?
Evolution of a Cutting-Edge Data Lake
Events
?
AI & Reporting
Streaming
Analytics
Data Lake
Evolution of a Cutting-Edge Data Lake
Events
AI & Reporting
Streaming
Analytics
Data Lake
Challenge #1: Historical Queries?
Data Lake
λ-arch
λ-arch
Streaming
Analytics
AI & Reporting
Events
λ-arch1
1
1
Challenge #2: Messy Data?
Data Lake
λ-arch
λ-arch
Streaming
Analytics
AI & Reporting
Events
Validation
λ-arch
Validation
1
21
1
2
Reprocessing
Challenge #3: Mistakes and Failures?
Data Lake
λ-arch
λ-arch
Streaming
Analytics
AI & Reporting
Events
Validation
λ-arch
Validation
Reprocessing
Partitioned
1
2
3
1
1
3
2
Reprocessing
Challenge #4: Updates?
Data Lake
λ-arch
λ-arch
Streaming
Analytics
AI & Reporting
Events
Validation
λ-arch
Validation
Reprocessing
Updates
Partitioned
UPDATE &
MERGE
Scheduled to
Avoid
Modifications
1
2
3
1
1
3
4
4
4
2
Wasting Time & Money
Solving Systems Problems
Instead of Extracting Value From Data
Data Lake Distractions
No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery
✗
No quality enforcement creates inconsistent
and unusable data
No consistency / isolation makes it almost
impossible to mix appends and reads, batch and
streaming
Let’s try it instead with
Reprocessing
Challenges of the Data Lake
Data Lake
λ-arch
λ-arch
Streaming
Analytics
AI & Reporting
Events
Validation
λ-arch
Validation
Reprocessing
Updates
Partitioned
UPDATE &
MERGE
Scheduled to
Avoid
Modifications
1
2
3
1
1
3
4
4
4
2
AI & Reporting
Streaming
Analytics
The Architecture
Data Lake
CSV,
JSON, TXT…
Kinesis
AI & Reporting
Streaming
Analytics
The Architecture
Data Lake
CSV,
JSON, TXT…
Kinesis
Full ACID Transaction
Focus on your data flow, instead of worrying about failures.
AI & Reporting
Streaming
Analytics
The Architecture
Data Lake
CSV,
JSON, TXT…
Kinesis
Open Standards, Open Source (Apache License)
Store petabytes of data without worries of lock-in. Growing
community including Presto, Spark and more.
AI & Reporting
Streaming
Analytics
The Architecture
Data Lake
CSV,
JSON, TXT…
Kinesis
Powered by
Unifies Streaming / Batch. Convert existing jobs with minimal
modifications.
Data Lake
AI & Reporting
Streaming
Analytics
Business-level
Aggregates
Filtered, Cleaned
Augmented
Raw
Ingestion
The
Bronze Silver Gold
CSV,
JSON, TXT…
Kinesis
Quality
Delta Lake allows you to incrementally improve the
quality of your data until it is ready for consumption.
*Data Quality Levels *
Data Lake
AI & Reporting
Streaming
Analytics
Business-level
Aggregates
Filtered, Cleaned
Augmented
Raw
Ingestion
The
Bronze Silver Gold
CSV,
JSON, TXT…
Kinesis
• Dumping ground for raw data
• Often with long retention (years)
• Avoid error-prone parsing
🔥
Data Lake
AI & Reporting
Streaming
Analytics
Business-level
Aggregates
Filtered, Cleaned
Augmented
Raw
Ingestion
The
Bronze Silver Gold
CSV,
JSON, TXT…
Kinesis
Intermediate data with some cleanup applied.
Queryable for easy debugging!
Data Lake
AI & Reporting
Streaming
Analytics
Business-level
Aggregates
Filtered, Cleaned
Augmented
Raw
Ingestion
The
Bronze Silver Gold
CSV,
JSON, TXT…
Kinesis
Clean data, ready for consumption.
Read with Spark or Presto*
*Coming Soon
Data Lake
AI & Reporting
Streaming
Analytics
Business-level
Aggregates
Filtered, Cleaned
Augmented
Raw
Ingestion
The
Bronze Silver Gold
CSV,
JSON, TXT…
Kinesis
Streams move data through the Delta Lake
• Low-latency or manually triggered
• Eliminates management of schedules and jobs
Data Lake
AI & Reporting
Streaming
Analytics
Business-level
Aggregates
Filtered, Cleaned
Augmented
Raw
Ingestion
The
Bronze Silver Gold
CSV,
JSON, TXT…
Kinesis
Delta Lake also supports batch jobs
and standard DML
UPDATE
DELETE
MERGE
OVERWRITE
• Retention
• Corrections
• GDPR
• UPSERTS
INSERT
*DML Coming in 0.3.0
Data Lake
AI & Reporting
Streaming
Analytics
Business-level
Aggregates
Filtered, Cleaned
Augmented
Raw
Ingestion
The
Bronze Silver Gold
CSV,
JSON, TXT…
Kinesis
Easy to recompute when business logic changes:
• Clear tables
• Restart streams
DELETE DELETE
Who is using ?
Used by 1000s of organizations world wide
> 1 exabyte processed last month alone
27
Improved reliability:
Petabyte-scale jobs
10x lower compute:
640 instances to 64!
Simpler, faster ETL:
84 jobs → 3 jobs
halved data latency
How do I use ?
dataframe
.write
.format("delta")
.save("/data")
Get Started with Delta using Spark APIs
dataframe
.write
.format("parquet")
.save("/data")
Instead of parquet... … simply say delta
Add Spark Package
pyspark --packages io.delta:delta-core_2.12:0.1.0
bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0
<dependency>
<groupId>io.delta</groupId>
<artifactId>delta-core_2.12</artifactId>
<version>0.1.0</version>
</dependency>
Maven
Data Quality
Enforce metadata, storage, and quality declaratively.
table("warehouse")
.location(…) // Location on DBFS
.schema(…) // Optional strict schema checking
.metastoreName(…) // Registration in Hive Metastore
.description(…) // Human readable description for users
.expect("validTimestamp", // Expectations on data quality
"timestamp > 2012-01-01 AND …",
"fail / alert / quarantine")
*Coming Soon
Data Quality
Enforce metadata, storage, and quality declaratively.
table("warehouse")
.location(…) // Location on DBFS
.schema(…) // Optional strict schema checking
.metastoreName(…) // Registration in Hive Metastore
.description(…) // Human readable description for users
.expect("validTimestamp", // Expectations on data quality
"timestamp > 2012-01-01 AND …",
"fail / alert / quarantine")
*Coming Soon
How does work?
Delta On Disk
my_table/
_delta_log/
00000.json
00001.json
date=2019-01-01/
file-1.parquet
Transaction Log
Table Versions
(Optional) Partition Directories
Data Files
Table = result of a set of actions
Change Metadata – name, schema, partitioning, etc
Add File – adds a file (with optional statistics)
Remove File – removes a file
Result: Current Metadata, List of Files, List of Txns, Version
Implementing Atomicity
Changes to the table
are stored as
ordered, atomic
units called commits
Add 1.parquet
Add 2.parquet
Remove 1.parquet
Remove 2.parquet
Add 3.parquet
000000.json
000001.json
…
Ensuring Serializablity
Need to agree on the
order of changes, even
when there are multiple
writers. 000000.json
000001.json
000002.json
User 1 User 2
Solving Conflicts Optimistically
1. Record start version
2. Record reads/writes
3. Attempt commit
4. If someone else wins,
check if anything you
read has changed.
5. Try again.
000000.json
000001.json
000002.json
User 1 User 2
Write: Append
Read: Schema
Write: Append
Read: Schema
Handling Massive Metadata
Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!
Add 1.parquet
Add 2.parquet
Remove 1.parquet
Remove 2.parquet
Add 3.parquet
Checkpoint
Road Map
• 0.2.0 – Released!
• S3 Support
• Azure Blob Store and ADLS Support
• 0.3.0 (~July)
• UPDATE (Scala)
• DELETE (Scala)
• MERGE (Scala)
• VACUUM (Scala)
• Rest of Q3
• DDL Support / Hive Metastore
• SQL DML Support
Build your own Delta Lake
at https://delta.io

More Related Content

Making Apache Spark Better with Delta Lake

  • 1. Making Apache Spark™ Better with Delta Lake Michael Armbrust @michaelarmbrust
  • 2. 1. Collect Everything • Recommendation Engines • Risk, Fraud Detection • IoT & Predictive Maintenance • Genomics & DNA Sequencing 3. Data Science & Machine Learning 2. Store it all in the Data Lake The Promise of the Data Lake Garbage In Garbage Stored Garbage Out 🔥 🔥 🔥 🔥🔥 🔥 🔥
  • 3. What does a typical data lake project look like?
  • 4. Evolution of a Cutting-Edge Data Lake Events ? AI & Reporting Streaming Analytics Data Lake
  • 5. Evolution of a Cutting-Edge Data Lake Events AI & Reporting Streaming Analytics Data Lake
  • 6. Challenge #1: Historical Queries? Data Lake λ-arch λ-arch Streaming Analytics AI & Reporting Events λ-arch1 1 1
  • 7. Challenge #2: Messy Data? Data Lake λ-arch λ-arch Streaming Analytics AI & Reporting Events Validation λ-arch Validation 1 21 1 2
  • 8. Reprocessing Challenge #3: Mistakes and Failures? Data Lake λ-arch λ-arch Streaming Analytics AI & Reporting Events Validation λ-arch Validation Reprocessing Partitioned 1 2 3 1 1 3 2
  • 9. Reprocessing Challenge #4: Updates? Data Lake λ-arch λ-arch Streaming Analytics AI & Reporting Events Validation λ-arch Validation Reprocessing Updates Partitioned UPDATE & MERGE Scheduled to Avoid Modifications 1 2 3 1 1 3 4 4 4 2
  • 10. Wasting Time & Money Solving Systems Problems Instead of Extracting Value From Data
  • 11. Data Lake Distractions No atomicity means failed production jobs leave data in corrupt state requiring tedious recovery ✗ No quality enforcement creates inconsistent and unusable data No consistency / isolation makes it almost impossible to mix appends and reads, batch and streaming
  • 12. Let’s try it instead with
  • 13. Reprocessing Challenges of the Data Lake Data Lake λ-arch λ-arch Streaming Analytics AI & Reporting Events Validation λ-arch Validation Reprocessing Updates Partitioned UPDATE & MERGE Scheduled to Avoid Modifications 1 2 3 1 1 3 4 4 4 2
  • 14. AI & Reporting Streaming Analytics The Architecture Data Lake CSV, JSON, TXT… Kinesis
  • 15. AI & Reporting Streaming Analytics The Architecture Data Lake CSV, JSON, TXT… Kinesis Full ACID Transaction Focus on your data flow, instead of worrying about failures.
  • 16. AI & Reporting Streaming Analytics The Architecture Data Lake CSV, JSON, TXT… Kinesis Open Standards, Open Source (Apache License) Store petabytes of data without worries of lock-in. Growing community including Presto, Spark and more.
  • 17. AI & Reporting Streaming Analytics The Architecture Data Lake CSV, JSON, TXT… Kinesis Powered by Unifies Streaming / Batch. Convert existing jobs with minimal modifications.
  • 18. Data Lake AI & Reporting Streaming Analytics Business-level Aggregates Filtered, Cleaned Augmented Raw Ingestion The Bronze Silver Gold CSV, JSON, TXT… Kinesis Quality Delta Lake allows you to incrementally improve the quality of your data until it is ready for consumption. *Data Quality Levels *
  • 19. Data Lake AI & Reporting Streaming Analytics Business-level Aggregates Filtered, Cleaned Augmented Raw Ingestion The Bronze Silver Gold CSV, JSON, TXT… Kinesis • Dumping ground for raw data • Often with long retention (years) • Avoid error-prone parsing 🔥
  • 20. Data Lake AI & Reporting Streaming Analytics Business-level Aggregates Filtered, Cleaned Augmented Raw Ingestion The Bronze Silver Gold CSV, JSON, TXT… Kinesis Intermediate data with some cleanup applied. Queryable for easy debugging!
  • 21. Data Lake AI & Reporting Streaming Analytics Business-level Aggregates Filtered, Cleaned Augmented Raw Ingestion The Bronze Silver Gold CSV, JSON, TXT… Kinesis Clean data, ready for consumption. Read with Spark or Presto* *Coming Soon
  • 22. Data Lake AI & Reporting Streaming Analytics Business-level Aggregates Filtered, Cleaned Augmented Raw Ingestion The Bronze Silver Gold CSV, JSON, TXT… Kinesis Streams move data through the Delta Lake • Low-latency or manually triggered • Eliminates management of schedules and jobs
  • 23. Data Lake AI & Reporting Streaming Analytics Business-level Aggregates Filtered, Cleaned Augmented Raw Ingestion The Bronze Silver Gold CSV, JSON, TXT… Kinesis Delta Lake also supports batch jobs and standard DML UPDATE DELETE MERGE OVERWRITE • Retention • Corrections • GDPR • UPSERTS INSERT *DML Coming in 0.3.0
  • 24. Data Lake AI & Reporting Streaming Analytics Business-level Aggregates Filtered, Cleaned Augmented Raw Ingestion The Bronze Silver Gold CSV, JSON, TXT… Kinesis Easy to recompute when business logic changes: • Clear tables • Restart streams DELETE DELETE
  • 26. Used by 1000s of organizations world wide > 1 exabyte processed last month alone
  • 27. 27 Improved reliability: Petabyte-scale jobs 10x lower compute: 640 instances to 64! Simpler, faster ETL: 84 jobs → 3 jobs halved data latency
  • 28. How do I use ?
  • 29. dataframe .write .format("delta") .save("/data") Get Started with Delta using Spark APIs dataframe .write .format("parquet") .save("/data") Instead of parquet... … simply say delta Add Spark Package pyspark --packages io.delta:delta-core_2.12:0.1.0 bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0 <dependency> <groupId>io.delta</groupId> <artifactId>delta-core_2.12</artifactId> <version>0.1.0</version> </dependency> Maven
  • 30. Data Quality Enforce metadata, storage, and quality declaratively. table("warehouse") .location(…) // Location on DBFS .schema(…) // Optional strict schema checking .metastoreName(…) // Registration in Hive Metastore .description(…) // Human readable description for users .expect("validTimestamp", // Expectations on data quality "timestamp > 2012-01-01 AND …", "fail / alert / quarantine") *Coming Soon
  • 31. Data Quality Enforce metadata, storage, and quality declaratively. table("warehouse") .location(…) // Location on DBFS .schema(…) // Optional strict schema checking .metastoreName(…) // Registration in Hive Metastore .description(…) // Human readable description for users .expect("validTimestamp", // Expectations on data quality "timestamp > 2012-01-01 AND …", "fail / alert / quarantine") *Coming Soon
  • 34. Table = result of a set of actions Change Metadata – name, schema, partitioning, etc Add File – adds a file (with optional statistics) Remove File – removes a file Result: Current Metadata, List of Files, List of Txns, Version
  • 35. Implementing Atomicity Changes to the table are stored as ordered, atomic units called commits Add 1.parquet Add 2.parquet Remove 1.parquet Remove 2.parquet Add 3.parquet 000000.json 000001.json …
  • 36. Ensuring Serializablity Need to agree on the order of changes, even when there are multiple writers. 000000.json 000001.json 000002.json User 1 User 2
  • 37. Solving Conflicts Optimistically 1. Record start version 2. Record reads/writes 3. Attempt commit 4. If someone else wins, check if anything you read has changed. 5. Try again. 000000.json 000001.json 000002.json User 1 User 2 Write: Append Read: Schema Write: Append Read: Schema
  • 38. Handling Massive Metadata Large tables can have millions of files in them! How do we scale the metadata? Use Spark for scaling! Add 1.parquet Add 2.parquet Remove 1.parquet Remove 2.parquet Add 3.parquet Checkpoint
  • 39. Road Map • 0.2.0 – Released! • S3 Support • Azure Blob Store and ADLS Support • 0.3.0 (~July) • UPDATE (Scala) • DELETE (Scala) • MERGE (Scala) • VACUUM (Scala) • Rest of Q3 • DDL Support / Hive Metastore • SQL DML Support
  • 40. Build your own Delta Lake at https://delta.io