Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
(Pages : 3)


                       B.TECH. DEGREE EXAMINATION, MAY 2011
                                                MODEL QUESTION PAPER
                                                  First and Second Semester
                                       ENGINEERING MATHEMATICS − I
                                                   (Common to all branches)

   Time : Three Hours                                                                                 Maximum : 100 Marks
                                                             PART A

1. Define eigen values and eigen vectors of a matrix. Find the sum of the eigen values of

    A=


                                                                          x3        y3                du            du
2. State Euler’s theorem on homogeneous functions. If tan u                            , prove that x          y             sin 2u
                                                                           x        y                 dx            dy

              1   x
3. Evaluate           xy x   y dxdy
              0 x

4. Solve D 2 1 y         cos(2 x 1)

5. State the first shifting property in Laplace transforms. Also find L e 3t t 3 .


                                                                                                      [5 x 3 marks = 15 marks]

                                                             PART B


6. Find the rank of the matrix A =

                                                                                   2              2        2                  2
                                                                              u               u        u       1         u
7. If u    f ( x, y) where x r cos          and y r sin , prove that                                                              .
                                                                              x               y        r       r2
                             44        x
8. Evaluate the integral                        dxdy by changing the order of integration.
                             0x   x2       y2
                                                                 d2y
9. Using the method of variation of parameters, solve                    4y       tan 2 x .
                                                                  dx 2
                                           cos at cos bt
10. Find the Laplace transform of                        .
                                                 t
                                                                                                      [5 x 5 marks = 25 marks]
                                                                                                                     Turn over
2

                                                              PART C

                                                             Module I

11. (a) Find values of a and b for which the equations x + ay + z = 3, x + 2y + 2z = b, x + 5y + 3z = 9 are
        consistent.
                                                                                                     (7 marks)

    (b) Show that the vectors (2, −2, 1), (1, 4, −1) and (4, 6, −3) are linearly independent.
                                                                                                               (5 marks)

                                                                      Or

12. Reduce the quadratic from 2 x1x2 2 x1x3 2 x2 x3 to a canonical form by orthogonal transformation.
    and specify the matrix of transformation. Also find the rank, index, signature and nature of the
    quadratic form.
                                                                                                   (12 marks)

                                                             Module II

                                                                                 (u , v, w)
13. (a) If u   x 3y 2       z3, v         4x 2 yz , w 2z 2 xy , evaluate                      at (1, −1, 0).   (5 marks)
                                                                                 ( x, y , z )


    (b) Expand x 2 y 3 y z in powers of (x – 1) and (y + 2) using Taylor’s theorem.                            (7 marks)

                                                                      Or

                        x     y                          u        u    1
14. (a) If u sin 1                    , prove that x          y          tan u                                 (7 marks)
                        x         y                      x        y    2



    (b) In a plane triangle, find the maximum value of cosA cosB cosC.                                         (5 marks)


                                                             Module III


15. (a) Find, by triple integration, the volume of the sphere x 2                y2    z2     a2               (5 marks)



                   1   1 x2           1
                                                 dzdydx
    (b) Evaluate                                                                                               (7 marks)
                   0    0         x2 y 2
                                               x2   y2       z2


                                                                      Or
3



16. (a) Find the area between the circle x 2                y2      a 2 and the line x + y = a lying in the first quadrant, by
         double integration.
                                                                                                                           (5 marks)


    (b) By transforming into cylindrical coordinates, evaluate the integral                          x2       y2   z 2 dx dy dz taken

         over the region of space defined by x 2                 y 2 1 and 0 z 1 .
                                                                                                                           (7 marks)


                                                             Module IV
17. (a) Solve D 2         4 D 3 y sin 3x cos 2 x                                                                          (7 marks)

                   d2y            y       1
     (b) Solve x              2       x                                                                                   (5 marks)
                   dx 2           x       x2

                                                                            Or

                          2
18. (a) Solve D 2             y 8 e2 x        sin 2 x x 2                                                                 (7 marks)

                            2
                          2d y                 dy
    (b) Solve 1 x                     1 x           y   2sin log 1 x                                                      (5 marks)
                           dx 2                dx


                                                             Module V


                                                                 2s 2       6s 5
19. (a) Find the inverse Laplace transform of                                                                             (5 marks)
                                                            s3     6s 2      11s 6


                                                                                                 s
    (b) Using convolution theorem, find the inverse Laplace transform of                                                  (7 marks)
                                                                                                          2
                                                                                            s2   a2


                                                                            Or


20. Solve the following differential equation by the method of Laplace transforms
    y   3y    2y    4t        e3t , when y (0) 1 and y (0)                   1
                                                                                                                         (12 marks)

                                                                                                     [5 x 12 marks = 60 marks]

More Related Content

Maths model%20 qp

  • 1. (Pages : 3) B.TECH. DEGREE EXAMINATION, MAY 2011 MODEL QUESTION PAPER First and Second Semester ENGINEERING MATHEMATICS − I (Common to all branches) Time : Three Hours Maximum : 100 Marks PART A 1. Define eigen values and eigen vectors of a matrix. Find the sum of the eigen values of A= x3 y3 du du 2. State Euler’s theorem on homogeneous functions. If tan u , prove that x y sin 2u x y dx dy 1 x 3. Evaluate xy x y dxdy 0 x 4. Solve D 2 1 y cos(2 x 1) 5. State the first shifting property in Laplace transforms. Also find L e 3t t 3 . [5 x 3 marks = 15 marks] PART B 6. Find the rank of the matrix A = 2 2 2 2 u u u 1 u 7. If u f ( x, y) where x r cos and y r sin , prove that . x y r r2 44 x 8. Evaluate the integral dxdy by changing the order of integration. 0x x2 y2 d2y 9. Using the method of variation of parameters, solve 4y tan 2 x . dx 2 cos at cos bt 10. Find the Laplace transform of . t [5 x 5 marks = 25 marks] Turn over
  • 2. 2 PART C Module I 11. (a) Find values of a and b for which the equations x + ay + z = 3, x + 2y + 2z = b, x + 5y + 3z = 9 are consistent. (7 marks) (b) Show that the vectors (2, −2, 1), (1, 4, −1) and (4, 6, −3) are linearly independent. (5 marks) Or 12. Reduce the quadratic from 2 x1x2 2 x1x3 2 x2 x3 to a canonical form by orthogonal transformation. and specify the matrix of transformation. Also find the rank, index, signature and nature of the quadratic form. (12 marks) Module II (u , v, w) 13. (a) If u x 3y 2 z3, v 4x 2 yz , w 2z 2 xy , evaluate at (1, −1, 0). (5 marks) ( x, y , z ) (b) Expand x 2 y 3 y z in powers of (x – 1) and (y + 2) using Taylor’s theorem. (7 marks) Or x y u u 1 14. (a) If u sin 1 , prove that x y tan u (7 marks) x y x y 2 (b) In a plane triangle, find the maximum value of cosA cosB cosC. (5 marks) Module III 15. (a) Find, by triple integration, the volume of the sphere x 2 y2 z2 a2 (5 marks) 1 1 x2 1 dzdydx (b) Evaluate (7 marks) 0 0 x2 y 2 x2 y2 z2 Or
  • 3. 3 16. (a) Find the area between the circle x 2 y2 a 2 and the line x + y = a lying in the first quadrant, by double integration. (5 marks) (b) By transforming into cylindrical coordinates, evaluate the integral x2 y2 z 2 dx dy dz taken over the region of space defined by x 2 y 2 1 and 0 z 1 . (7 marks) Module IV 17. (a) Solve D 2 4 D 3 y sin 3x cos 2 x (7 marks) d2y y 1 (b) Solve x 2 x (5 marks) dx 2 x x2 Or 2 18. (a) Solve D 2 y 8 e2 x sin 2 x x 2 (7 marks) 2 2d y dy (b) Solve 1 x 1 x y 2sin log 1 x (5 marks) dx 2 dx Module V 2s 2 6s 5 19. (a) Find the inverse Laplace transform of (5 marks) s3 6s 2 11s 6 s (b) Using convolution theorem, find the inverse Laplace transform of (7 marks) 2 s2 a2 Or 20. Solve the following differential equation by the method of Laplace transforms y 3y 2y 4t e3t , when y (0) 1 and y (0) 1 (12 marks) [5 x 12 marks = 60 marks]