Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo

1

Origins of Life
  Mechanisms of Evolution
      - Natural Selection -

2

What is Evolution?
   Simple:
    "change over time"




                        Less Simple:
                         "descent with modification"
                         • many, many, MANY small changes
                           over LOOOOOOOOONG periods of
                           time that result in the formation of
                           many DIFFERENT types of organisms

3

Descent with
    Modification
   Given enough time, many
    small changes could add
    up to big changes within
    populations of organisms

   Mechanisms of change:
    •   mutation
    •   migration
    •   natural selection
    •   genetic drift

   Requires a very, very,
    very, very, VERY long
    time to happen

4

Gene Frequency
   Evolution occurs when there is
    a change in gene frequency
    within a population over time.




                                     • Gene frequency:
                                      the percentage of
                                      a particular allele
                                      compared to the
                                      total of all other
                                      alleles of the
                                      same gene in a
                                      given population

5

Mutations
   A mutation is a change in DNA
    sequence that alters the trait a specific
    gene controls
    • Only one nucleotide pair in a thousand is
      randomly changed every 200,000 years
    • Some genes control many traits or affect
      the expression of many other genes

   Caused by:
    • Copying errors in the genetic material
      during cell division
           Deletion
           Insertion
           Translocation
    • Increased by exposure to ultraviolet
      or ionizing radiation (x-rays),
      chemical mutagens, or viruses

6

Results of Mutation
   Results:
    • most mutations are neutral
          have no effect on
           survival/reproduction
    • many are harmful
          detrimental to fitness or lethal
    • VERY small percent are
      advantageous
          result in a change in phenotype that
           improves reproductive success


   Cell type matters:
    • germ cell (reproductive/sex cell)
      mutations are passed on to offspring
    • DNA of somatic cells aren't passed
      to offspring (mutations stay local)

7

What Changes are Passed On?
   Inherited Traits:
    • characteristics determined
      by genes (DNA)
          eye color, height, tongue-
           rolling ability




                     NOT Environmental/Learned Traits:
                      • things your circumstances teach you
                             language, how to play piano, love of cheese

8

Adaptations
                                        "Fitness" = an organism's ability
   Adaptations are inherited             to survive and reproduce
    traits that improve help an
    organism survive and
    reproduce
    • "I was born with rugged good
      looks and easily found a wife,
      even though there were very few
      women in the Jamestown colony."




                                 Adaptations are NOT learned
                                  behaviors or characteristics
                                  • "Our family moved to the Alaska
                                    and eventually adapted to the
                                    climate."

9

Adaptation & Environment
   A given trait may or may not be an adaptation, depending
    on the environment in which the organism lives.
    Would these cats' long fur be an adaptation in...



                                     Sahara Desert?




          Alaska?

10

Gene Flow
   Gene flow occurs when organisms migrate
    - new genes are introduced when an organism travels to
    join a different population




                                                  - only creates
                                                  change when
                                                  populations are
                                                  isolated
                                                   • geographically
                                                       or
                                                   • reproductively

11

Natural Selection
   A mutation may improve
    "fitness" (chance of
    survival/reproduction)
    • competition for resources
    • health/hardiness
    • reproductive success
    • predator evasion

   Only the fittest (best adapted
    to survival) can reproduce
   Traits passed on are those with
    best adaptations to the current
    environment

12

Case Study
   White Peppered Moth populations
    dwindled and black phenotype
    flourished
   Assumed bird predation
    diminished the less-camouflaged
    white moths
   Individuals less adapted to their
    environment dwindle and may
    eventually become extinct



                        Experiment flaws:
                         • variables not accounted for:
                                migration may have affected numbers
                                time of release, landing behavior, diet
                                the artificially high numbers released might have
                                 created a predatory magnet

13

Speciation in Darwin’s Finches
   In the 1830’s Darwin sailed around the world and
    observed incredible diversity in the population of
    finches on the Galapagos Islands

14

Galapagos Finch Migration
                 Natural selection
                  occurred as the birds
                  competed for food and
                  resources.

                 Adaptations selected
                  by new surroundings
                  when they migrated
                  from mainland to
                  islands

                 Geographic and then
                  reproductive isolation
                  kept the species distinct

15

Genetic Drift
   Random changes in
    allele frequency
    • random circumstances
      cause an allele to become
      more common (or extinct)

                                         Freak
                                      Lawnmower
                                        Accident!
                                     What if the
                                      mower-gone-
                                      crazy takes out
                                      all but two rose
                                      bushes, wiping
                                      out all the
                                      recessive
                                      alleles in a
                                      population?

16

Genetic Variation
   Evolutionary change
    cannot happen without a
    change in genes and gene
    combinations.
   Sources of variation:
    • Mutation
    • Gene Flow
          genetic exchange due to
           the migration
          without isolation,
           reduces differences
           between populations
           (acts against genetic
           variation)
    • Sexual Reproduction

17

Meiosis & Genetic Variation
   Sexual Reproduction increases genetic variation
    • Crossing Over
          segments of DNA swap places during prophase 1 of meiosis
    • Independent Assortment
          chromosomes line up randomly during meiosis

18

Types of Evolution
   Microevolution
    • small changes within a species'
      set of genes that result in
      phenotypic differences
    • hundreds of years (short time)

   Macroevolution
    • descent with modification
    • the process by which modern
      organisms have descended from
      ancient ancestors
      due to many small
      changes over
      hundreds of
      thousands of
      years (long time)

19

Speciation
   a lineage-splitting event
    that produces two or more
    separate species is called
    speciation
    • produced in lab experiments
    • populations change so much that
      they no longer can interbreed and exchange genes
    • seems to require geographic isolation

   Macroevolution = speciation on steroids

   Individuals DO NOT evolve over time.
      ...but POPULATIONS do!

20

Coevolution
Evolution in which two different
  species affect each others'
  adaptations.
Occurs between organisms that have
  close ecological relationships:
 • Competitive
       fight each other for limited
        resources
 • Mutualistic
       live together in a way that
        helps them both survive
        easier
 • Predator/prey
       one hunts/eats the other as
        food
 • Parasite/host
       one lives off the other,
        without killing it completely

21

Origins of Life 2 - Mechanisms

More Related Content

Origins of Life 2 - Mechanisms

  • 1. Origins of Life Mechanisms of Evolution - Natural Selection -
  • 2. What is Evolution?  Simple: "change over time"  Less Simple: "descent with modification" • many, many, MANY small changes over LOOOOOOOOONG periods of time that result in the formation of many DIFFERENT types of organisms
  • 3. Descent with Modification  Given enough time, many small changes could add up to big changes within populations of organisms  Mechanisms of change: • mutation • migration • natural selection • genetic drift  Requires a very, very, very, very, VERY long time to happen
  • 4. Gene Frequency  Evolution occurs when there is a change in gene frequency within a population over time. • Gene frequency: the percentage of a particular allele compared to the total of all other alleles of the same gene in a given population
  • 5. Mutations  A mutation is a change in DNA sequence that alters the trait a specific gene controls • Only one nucleotide pair in a thousand is randomly changed every 200,000 years • Some genes control many traits or affect the expression of many other genes  Caused by: • Copying errors in the genetic material during cell division  Deletion  Insertion  Translocation • Increased by exposure to ultraviolet or ionizing radiation (x-rays), chemical mutagens, or viruses
  • 6. Results of Mutation  Results: • most mutations are neutral  have no effect on survival/reproduction • many are harmful  detrimental to fitness or lethal • VERY small percent are advantageous  result in a change in phenotype that improves reproductive success  Cell type matters: • germ cell (reproductive/sex cell) mutations are passed on to offspring • DNA of somatic cells aren't passed to offspring (mutations stay local)
  • 7. What Changes are Passed On?  Inherited Traits: • characteristics determined by genes (DNA)  eye color, height, tongue- rolling ability  NOT Environmental/Learned Traits: • things your circumstances teach you  language, how to play piano, love of cheese
  • 8. Adaptations "Fitness" = an organism's ability  Adaptations are inherited to survive and reproduce traits that improve help an organism survive and reproduce • "I was born with rugged good looks and easily found a wife, even though there were very few women in the Jamestown colony."  Adaptations are NOT learned behaviors or characteristics • "Our family moved to the Alaska and eventually adapted to the climate."
  • 9. Adaptation & Environment  A given trait may or may not be an adaptation, depending on the environment in which the organism lives. Would these cats' long fur be an adaptation in... Sahara Desert? Alaska?
  • 10. Gene Flow  Gene flow occurs when organisms migrate - new genes are introduced when an organism travels to join a different population - only creates change when populations are isolated • geographically or • reproductively
  • 11. Natural Selection  A mutation may improve "fitness" (chance of survival/reproduction) • competition for resources • health/hardiness • reproductive success • predator evasion  Only the fittest (best adapted to survival) can reproduce  Traits passed on are those with best adaptations to the current environment
  • 12. Case Study  White Peppered Moth populations dwindled and black phenotype flourished  Assumed bird predation diminished the less-camouflaged white moths  Individuals less adapted to their environment dwindle and may eventually become extinct  Experiment flaws: • variables not accounted for:  migration may have affected numbers  time of release, landing behavior, diet  the artificially high numbers released might have created a predatory magnet
  • 13. Speciation in Darwin’s Finches  In the 1830’s Darwin sailed around the world and observed incredible diversity in the population of finches on the Galapagos Islands
  • 14. Galapagos Finch Migration  Natural selection occurred as the birds competed for food and resources.  Adaptations selected by new surroundings when they migrated from mainland to islands  Geographic and then reproductive isolation kept the species distinct
  • 15. Genetic Drift  Random changes in allele frequency • random circumstances cause an allele to become more common (or extinct) Freak Lawnmower Accident!  What if the mower-gone- crazy takes out all but two rose bushes, wiping out all the recessive alleles in a population?
  • 16. Genetic Variation  Evolutionary change cannot happen without a change in genes and gene combinations.  Sources of variation: • Mutation • Gene Flow  genetic exchange due to the migration  without isolation, reduces differences between populations (acts against genetic variation) • Sexual Reproduction
  • 17. Meiosis & Genetic Variation  Sexual Reproduction increases genetic variation • Crossing Over  segments of DNA swap places during prophase 1 of meiosis • Independent Assortment  chromosomes line up randomly during meiosis
  • 18. Types of Evolution  Microevolution • small changes within a species' set of genes that result in phenotypic differences • hundreds of years (short time)  Macroevolution • descent with modification • the process by which modern organisms have descended from ancient ancestors due to many small changes over hundreds of thousands of years (long time)
  • 19. Speciation  a lineage-splitting event that produces two or more separate species is called speciation • produced in lab experiments • populations change so much that they no longer can interbreed and exchange genes • seems to require geographic isolation  Macroevolution = speciation on steroids  Individuals DO NOT evolve over time. ...but POPULATIONS do!
  • 20. Coevolution Evolution in which two different species affect each others' adaptations. Occurs between organisms that have close ecological relationships: • Competitive  fight each other for limited resources • Mutualistic  live together in a way that helps them both survive easier • Predator/prey  one hunts/eats the other as food • Parasite/host  one lives off the other, without killing it completely

Editor's Notes

  1. Hardy-Weinberg Equilibrium = p 2 + pq + q 2 = 1
  2. Substitution A substitution is a mutation that exchanges one base for another (i.e., a change in a single "chemical letter" such as switching an A to a G). Such a substitution could: change a codon to one that encodes a different amino acid and cause a small change in the protein produced. For example, sickle cell anemia is caused by a substitution in the beta-hemoglobin gene, which alters a single amino acid in the protein produced. change a codon to one that encodes the same amino acid and causes no change in the protein produced. These are called silent mutations. change an amino-acid-coding codon to a single "stop" codon and cause an incomplete protein. This can have serious effects since the incomplete protein probably won't function. Insertion Insertions are mutations in which extra base pairs are inserted into a new place in the DNA. Deletion Deletions are mutations in which a section of DNA is lost, or deleted. Frameshift Since protein-coding DNA is divided into codons three bases long, insertions and deletions can alter a gene so that its message is no longer correctly parsed. These changes are called frameshifts. For example, consider the sentence, "The fat cat sat." Each word represents a codon. If we delete the first letter and parse the sentence in the same way, it doesn't make sense. In frameshifts, a similar error occurs at the DNA level, causing the codons to be parsed incorrectly. This usually generates truncated proteins that are as useless as "hef atc ats at" is uninformative. There are other types of mutations as well, but this short list should give you an idea of the possibilities.
  3. Six-legged frog - genetic mutation.
  4. Both interact with the environment the organism lives in, but both are not adaptations.
  5. Peppered moth changing color due to adaptation to England’s industrial revolution resulting in blackened tree bark. Kettlewell's experiments were flawed (moths released at wrong time of day, and in numbers creating a possible predatory magnet of the birds). Moths rest not on tree trunks, but under leaves, higher up in the tree canopy. Even so, as the environment changed, so did the phenotypic predominance of the darker species, showing a great example of adaptation (but not evolution). "Industrial melanism"
  6. Species A migrates from the mainland to the first island. Isolated from the mainland, species A evolves to species B. Species B migrates to the second island. Species B evolves in species C. Species C recolonizes the first islands, but is now unable to reproduce with species B. Species C migrates to the third island. Species C evolves into species D. Species D migrates to the first and second island. Species D evolves to species E.
  7. i.e. bugs get stepped on, fire wipes out certain plants, etc.