This document discusses using machine learning and functional magnetic resonance imaging (fMRI) data to predict stimuli viewed by patients. Specifically, it summarizes research by Miyawaki et al. (2008) and Nishimoto et al. (2011) that used fMRI data to predict images viewed by patients, such as faces and houses, with over 50% accuracy. It also provides an example classification task using fMRI data to predict whether a patient viewed a face or house. The document states that this example prediction can be implemented in under 250 lines of code using Scikit-Learn machine learning library.
2. Alexandre Gramfort Mind Reading with the Scikit-Learn
Basics of Functional MRI (fMRI)
2
Oxy. Hb
Deoxy. Hb
Neurons
3D volumes
(1 every 1 or 2s)
High spatial
resolution
(vox ⋍ 2mm)
Scanner
Nuclear
Magnetic
Resonance
4. Alexandre Gramfort Mind Reading with the Scikit-Learn
Learning from fMRI
4
Image,
sound, task
fMRI volumes
Challenge: Learn and Predict from the fMRI data
scanning
Machine Learningstim
Any variable:
healthy?
5. Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Miyawaki et al. Neuron 2008
5
http://www.youtube.com/watch?v=h1Gu1YSoDaY
6. Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Miyawaki et al. Neuron 2008
6
• Some details about the data:
• 2h of scanning
• 1 image for 12s then 12s of rest
• 800MB of raw data (200MB compressed)
• 5,000 good voxels
7. Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Nishimoto et al. 2011
7
http://www.youtube.com/watch?v=nsjDnYxJ0bo
8. Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Nishimoto et al. 2011
8
• Some details about the data:
• 30GB of stimuli (15 frames/s in .png for 3h)
• about 4,000 volumes
• about 10GB of raw data
• 30,000 “good” voxels
• > 3h in the scanner
9. Alexandre Gramfort Mind Reading with the Scikit-Learn
Classification example with fMRI
9
!!"#$%&'()*+,-#./
0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:#
<=+))8>8&+?85*#@#748*&87=()
67+&(#5>#?'(#A4+8*#>(+?%4()#BC%=?8D+48+?(E
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
K
L8D(*#+#?4+8*8*I#H+?+#)(?#@#7+84)
5>#B>(+?%4()-#=+A(=E-#(/'",#?'(#
&'+4+&?(48)?8>#(+&'#&+?(I54,#8*#
?'(#>(+?%4(#)7+&(@
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
!./
0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:#
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
The objective is to be able
to predict
given an fMRI volume
!5678*###############################3(%45678*-#9:#;+*"#/:9:#
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
?'(#>(+?%4(#)7+&(@
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
ie.
objective: Predict giveny = { 1, 1} x 2 Rp
y = { 1, 1}
!+,-#./
0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:#
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
?'(#>(+?%4(#)7+&(@
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
Patient Controlsvs.
Faces Housesvs.
... ...vs.
1 -1vs.
10. Demo on
Haxby et al. Science 2001
Challenge: Predict the object category viewed
Sample stimuli:
Face House Chair Shoe
11. Alexandre Gramfort Mind Reading with the Scikit-Learn
Miyawaki et al. 2008 with Scikit-Learn
11
< 250 Lines of codes