Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Alexandre Gramfort
http://alexandre.gramfort.net
http://scikit-learn.org
“Lire dans les pensées avec Scikit-Learn”
“Mind Reading with Scikit-Learn”
Paris Machine Learning Meetup - Sept. 2013
Alexandre Gramfort Mind Reading with the Scikit-Learn
Basics of Functional MRI (fMRI)
2
Oxy. Hb
Deoxy. Hb
Neurons
3D volumes
(1 every 1 or 2s)
High spatial
resolution
(vox ⋍ 2mm)
Scanner
Nuclear
Magnetic
Resonance
courtesy of GaelVaroquauxhttp://www.youtube.com/watch?v=uhCF-zlk0jY
Alexandre Gramfort Mind Reading with the Scikit-Learn
Learning from fMRI
4
Image,
sound, task
fMRI volumes
Challenge: Learn and Predict from the fMRI data
scanning
Machine Learningstim
Any variable:
healthy?
Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Miyawaki et al. Neuron 2008
5
http://www.youtube.com/watch?v=h1Gu1YSoDaY
Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Miyawaki et al. Neuron 2008
6
• Some details about the data:
• 2h of scanning
• 1 image for 12s then 12s of rest
• 800MB of raw data (200MB compressed)
• 5,000 good voxels
Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Nishimoto et al. 2011
7
http://www.youtube.com/watch?v=nsjDnYxJ0bo
Alexandre Gramfort Mind Reading with the Scikit-Learn
Result from Nishimoto et al. 2011
8
• Some details about the data:
• 30GB of stimuli (15 frames/s in .png for 3h)
• about 4,000 volumes
• about 10GB of raw data
• 30,000 “good” voxels
• > 3h in the scanner
Alexandre Gramfort Mind Reading with the Scikit-Learn
Classification example with fMRI
9
!!"#$%&'()*+,-#./
0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:#
<=+))8>8&+?85*#@#748*&87=()
67+&(#5>#?'(#A4+8*#>(+?%4()#BC%=?8D+48+?(E
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
K
L8D(*#+#?4+8*8*I#H+?+#)(?#@#7+84)
5>#B>(+?%4()-#=+A(=E-#(/'",#?'(#
&'+4+&?(48)?8&#5>#(+&'#&+?(I54,#8*#
?'(#>(+?%4(#)7+&(@
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
!./
0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:#
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
The objective is to be able
to predict
given an fMRI volume
!5678*###############################3(%45678*-#9:#;+*"#/:9:#
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
?'(#>(+?%4(#)7+&(@
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
ie.
objective: Predict giveny = { 1, 1} x 2 Rp
y = { 1, 1}
!+,-#./
0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:#
!"#$$%&'()*'+)#,-.
FG4(H8&?#%*)((*#B?()?E#8C+I(@######54
F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(?
?'(#>(+?%4(#)7+&(@
F.*#?'8)#&+)(#74(H8&?(H#M#?4%(#
FN(7(+?#>54#+==#)+C7=()
FOD(4+I(
Patient Controlsvs.
Faces Housesvs.
... ...vs.
1 -1vs.
Demo on
Haxby et al. Science 2001
Challenge: Predict the object category viewed
Sample stimuli:
Face House Chair Shoe
Alexandre Gramfort Mind Reading with the Scikit-Learn
Miyawaki et al. 2008 with Scikit-Learn
11
< 250 Lines of codes
Alexandre Gramfort
alexandre.gramfort@telecom-paristech.fr
http://alexandre.gramfort.net
http://www.github.com/agramfort
@agramfort
Contact:

More Related Content

Paris machine learning meetup 17 Sept. 2013

  • 1. Alexandre Gramfort http://alexandre.gramfort.net http://scikit-learn.org “Lire dans les pensées avec Scikit-Learn” “Mind Reading with Scikit-Learn” Paris Machine Learning Meetup - Sept. 2013
  • 2. Alexandre Gramfort Mind Reading with the Scikit-Learn Basics of Functional MRI (fMRI) 2 Oxy. Hb Deoxy. Hb Neurons 3D volumes (1 every 1 or 2s) High spatial resolution (vox ⋍ 2mm) Scanner Nuclear Magnetic Resonance
  • 4. Alexandre Gramfort Mind Reading with the Scikit-Learn Learning from fMRI 4 Image, sound, task fMRI volumes Challenge: Learn and Predict from the fMRI data scanning Machine Learningstim Any variable: healthy?
  • 5. Alexandre Gramfort Mind Reading with the Scikit-Learn Result from Miyawaki et al. Neuron 2008 5 http://www.youtube.com/watch?v=h1Gu1YSoDaY
  • 6. Alexandre Gramfort Mind Reading with the Scikit-Learn Result from Miyawaki et al. Neuron 2008 6 • Some details about the data: • 2h of scanning • 1 image for 12s then 12s of rest • 800MB of raw data (200MB compressed) • 5,000 good voxels
  • 7. Alexandre Gramfort Mind Reading with the Scikit-Learn Result from Nishimoto et al. 2011 7 http://www.youtube.com/watch?v=nsjDnYxJ0bo
  • 8. Alexandre Gramfort Mind Reading with the Scikit-Learn Result from Nishimoto et al. 2011 8 • Some details about the data: • 30GB of stimuli (15 frames/s in .png for 3h) • about 4,000 volumes • about 10GB of raw data • 30,000 “good” voxels • > 3h in the scanner
  • 9. Alexandre Gramfort Mind Reading with the Scikit-Learn Classification example with fMRI 9 !!"#$%&'()*+,-#./ 0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:# <=+))8>8&+?85*#@#748*&87=() 67+&(#5>#?'(#A4+8*#>(+?%4()#BC%=?8D+48+?(E !"#$$%&'()*'+)#,-. FG4(H8&?#%*)((*#B?()?E#8C+I(@######54 F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(? K L8D(*#+#?4+8*8*I#H+?+#)(?#@#7+84) 5>#B>(+?%4()-#=+A(=E-#(/'",#?'(# &'+4+&?(48)?8&#5>#(+&'#&+?(I54,#8*# ?'(#>(+?%4(#)7+&(@ F.*#?'8)#&+)(#74(H8&?(H#M#?4%(# FN(7(+?#>54#+==#)+C7=() FOD(4+I( !./ 0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:# !"#$$%&'()*'+)#,-. FG4(H8&?#%*)((*#B?()?E#8C+I(@######54 F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(? F.*#?'8)#&+)(#74(H8&?(H#M#?4%(# FN(7(+?#>54#+==#)+C7=() FOD(4+I( The objective is to be able to predict given an fMRI volume !5678*###############################3(%45678*-#9:#;+*"#/:9:# !"#$$%&'()*'+)#,-. FG4(H8&?#%*)((*#B?()?E#8C+I(@######54 F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(? ?'(#>(+?%4(#)7+&(@ F.*#?'8)#&+)(#74(H8&?(H#M#?4%(# FN(7(+?#>54#+==#)+C7=() FOD(4+I( ie. objective: Predict giveny = { 1, 1} x 2 Rp y = { 1, 1} !+,-#./ 0123(%45678*###############################3(%45678*-#9:#;+*"#/:9:# !"#$$%&'()*'+)#,-. FG4(H8&?#%*)((*#B?()?E#8C+I(@######54 F<5C7+4(#74(H8&?(H#=+A(=#J8?'#?4%(#?+4I(? ?'(#>(+?%4(#)7+&(@ F.*#?'8)#&+)(#74(H8&?(H#M#?4%(# FN(7(+?#>54#+==#)+C7=() FOD(4+I( Patient Controlsvs. Faces Housesvs. ... ...vs. 1 -1vs.
  • 10. Demo on Haxby et al. Science 2001 Challenge: Predict the object category viewed Sample stimuli: Face House Chair Shoe
  • 11. Alexandre Gramfort Mind Reading with the Scikit-Learn Miyawaki et al. 2008 with Scikit-Learn 11 < 250 Lines of codes