Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
To detect humans and food items and perform semantic segmentation using PyTorch,
you can utilize a pre-trained deep learning model such as Mask R-CNN. Mask R-CNN is
commonly used for instance segmentation tasks, which involves both object detection
and pixel-level segmentation.
Before proceeding, please note that implementing a complete and accurate object
detection and segmentation system can be complex. It typically requires significant
computational resources, training data, and expertise in deep learning. Additionally,
obtaining or creating a labeled dataset for specific food items may be challenging.
Therefore, the code provided below is a simplified example that uses a pre-trained
model trained on general object detection tasks. It may not achieve high accuracy for
food item segmentation.
To get started, you'll need to install the required libraries. Run the following command to
install torch, torchvision, and opencv-python:
pip install torch torchvision opencv-python
Once you have the necessary dependencies, you can use the following code as a
starting point:
import torch
import torchvision
import cv2
import numpy as np
# Load the pre-trained model
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
model.eval()
# Define the class labels for the COCO dataset (including humans and various food
items)
class_labels = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A',
'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports
ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife',
'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse',
'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair
drier', 'toothbrush']
# Load an image
image_path = 'path_to_your_image.jpg'
image = cv2.imread(image_path)
# Convert image to RGB format
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Convert image array to PyTorch tensor
image_tensor = torch.from_numpy(image / 255.0).permute(2, 0, 1).float()
# Add a batch dimension to the tensor
image_tensor = image_tensor.unsqueeze(0)
# Forward pass through the model
predictions = model(image_tensor)
# Get the predicted bounding boxes, labels, and masks
boxes = predictions[0]['boxes'].detach().numpy()
labels = predictions[0]['labels'].detach().numpy()
masks = predictions[0]['masks'].detach().numpy()
# Iterate over the predictions
for box, label, mask in zip(boxes, labels, masks):
# Filter out non-human and non-food labels
if label == 1 or (51 <= label <= 61):
# Extract the bounding box coordinates
x_min, y_min, x_max, y_max = box
# Convert the floating-point coordinates to integers
x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max),
int(y_max)
# Extract the class label
class_label = class_labels[label]
# Draw the bounding box and class label on the image
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
cv2.putText(image, class_label, (x_min, y_min - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Apply the mask to the image
mask = mask[0, :, :]
mask = (mask > 0.5) # Threshold the mask
mask = mask.astype(np.uint8) * 255
mask = cv2.resize(mask, (x_max - x_min, y_max - y_min))
image[y_min:y_max, x_min:x_max] = cv2.bitwise_and(image[y_min:y_max,
x_min:x_max], image[y_min:y_max, x_min:x_max], mask=mask)
# Display the image with bounding boxes and masks
cv2.imshow('Image', cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
cv2.waitKey(0)
cv2.destroyAllWindows()
Make sure to replace 'path_to_your_image.jpg' with the actual path to your image
file.
In this code, we first load the pre-trained Mask R-CNN model from the torchvision library
and set it to evaluation mode. We then load an image, convert it to the RGB format, and
convert the image array to a PyTorch tensor. The tensor is fed into the model, and the
resulting predictions contain the bounding boxes, labels, and masks for detected
objects.
We iterate over the predictions and filter out non-human and non-food labels. For each
selected object, we draw the bounding box and class label on the image. We also apply
the segmentation mask to the corresponding region of the image.
Finally, we display the image with the bounding boxes and masks using OpenCV.
Please keep in mind that the provided code is a simplified example and may not achieve
accurate segmentation results for food items. To improve the accuracy, you might need
a larger and more diverse dataset of labeled food items and further fine-tuning of the
model

More Related Content

PyTorch to detect Humans Eating Food.pdf

  • 1. To detect humans and food items and perform semantic segmentation using PyTorch, you can utilize a pre-trained deep learning model such as Mask R-CNN. Mask R-CNN is commonly used for instance segmentation tasks, which involves both object detection and pixel-level segmentation. Before proceeding, please note that implementing a complete and accurate object detection and segmentation system can be complex. It typically requires significant computational resources, training data, and expertise in deep learning. Additionally, obtaining or creating a labeled dataset for specific food items may be challenging. Therefore, the code provided below is a simplified example that uses a pre-trained model trained on general object detection tasks. It may not achieve high accuracy for food item segmentation. To get started, you'll need to install the required libraries. Run the following command to install torch, torchvision, and opencv-python: pip install torch torchvision opencv-python Once you have the necessary dependencies, you can use the following code as a starting point: import torch import torchvision import cv2 import numpy as np # Load the pre-trained model model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True) model.eval() # Define the class labels for the COCO dataset (including humans and various food items) class_labels = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A',
  • 2. 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] # Load an image image_path = 'path_to_your_image.jpg' image = cv2.imread(image_path) # Convert image to RGB format image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert image array to PyTorch tensor image_tensor = torch.from_numpy(image / 255.0).permute(2, 0, 1).float() # Add a batch dimension to the tensor image_tensor = image_tensor.unsqueeze(0) # Forward pass through the model predictions = model(image_tensor) # Get the predicted bounding boxes, labels, and masks boxes = predictions[0]['boxes'].detach().numpy() labels = predictions[0]['labels'].detach().numpy() masks = predictions[0]['masks'].detach().numpy() # Iterate over the predictions for box, label, mask in zip(boxes, labels, masks): # Filter out non-human and non-food labels if label == 1 or (51 <= label <= 61): # Extract the bounding box coordinates x_min, y_min, x_max, y_max = box # Convert the floating-point coordinates to integers x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max) # Extract the class label class_label = class_labels[label]
  • 3. # Draw the bounding box and class label on the image cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) cv2.putText(image, class_label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # Apply the mask to the image mask = mask[0, :, :] mask = (mask > 0.5) # Threshold the mask mask = mask.astype(np.uint8) * 255 mask = cv2.resize(mask, (x_max - x_min, y_max - y_min)) image[y_min:y_max, x_min:x_max] = cv2.bitwise_and(image[y_min:y_max, x_min:x_max], image[y_min:y_max, x_min:x_max], mask=mask) # Display the image with bounding boxes and masks cv2.imshow('Image', cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) cv2.waitKey(0) cv2.destroyAllWindows() Make sure to replace 'path_to_your_image.jpg' with the actual path to your image file. In this code, we first load the pre-trained Mask R-CNN model from the torchvision library and set it to evaluation mode. We then load an image, convert it to the RGB format, and convert the image array to a PyTorch tensor. The tensor is fed into the model, and the resulting predictions contain the bounding boxes, labels, and masks for detected objects. We iterate over the predictions and filter out non-human and non-food labels. For each selected object, we draw the bounding box and class label on the image. We also apply the segmentation mask to the corresponding region of the image. Finally, we display the image with the bounding boxes and masks using OpenCV. Please keep in mind that the provided code is a simplified example and may not achieve accurate segmentation results for food items. To improve the accuracy, you might need a larger and more diverse dataset of labeled food items and further fine-tuning of the model