Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Soft x-ray nanoanalytical tools for
thin film organic electronics
Rainer H. Fink
Friedrich-Alexander University Erlangen-Nürnberg
Physical Chemistry 2 (surface & interface science)
http://www.raifi.de
莱纳·芬克教授 博士
Chemistry @ FAU: Excellence in research
• Funding: 2013: More than 8.6 million € p.a. third-party funds
2010 – 2012: On average 7.3 € p.a. third-party funds
• DFG Funding Atlas 2012: Number 2 in Germany in DFG based funding
• Taiwan Ranking 2014: World rank: 70
(since 2009: >1,350 papers, 142 JACS or Angew.Ch. and 16 Science or Nature)
• Shanghai Academic Ranking of World Universities 2014:
TOP 75, #1 in FAU
FAU relationship to ACES / UoW
• International student exchange programs (since 2006)
• Double degree programs: M.Sc. „Chemistry – in International Degree“
• Joint PhD program
• D. Guldi – Co-PI at ACES (dye-sensitized solar cells)
Synthetic Carbon Allotropes
Organic Nanostructures, molecular wires
Supramolecular
Chemistry
Time-resolved
charge transfer
Photovoltaics /
artificial leaves /
energy
From molecules to
materials & devices
Our department focuses on ...
Research focus of the Fink group
Organic molecules,
Organic thin films
Polymer films,
nanostructures
Organic electronic
devices
Instrumentation for
x-ray based
microspectroscopy
„ferric wheels“,
molecular magnets
Hybrid partices
Includes development of novel soft x-ray instrumentation
In-operando study of OFETs (30 nm pentacene)
Channel length: 250 μm
Channel width: 20/40 μm
Device characteristics comparable
to „conventional“ devices
-10 -5 0 5
0,0
5,0x10
-4
1,0x10
-3
1,5x10
-3
2,0x10
-3
2,5x10
-3 Drain-source voltage = -10 V
Gate-source voltage (V)
Squarerootofdraincurrent[mA]
10
-12
10
-11
1x10
-10
1x10
-9
1x10
-8
1x10
-7
1x10
-6
1x10
-5
Draincurrent(A)
Transfer characteristics:
field effect mobility (RT): μ = 0.6 cm²/Vs
Ion / IOff ratio: 5 x 106
threshold voltage: Vth = -2.3 V
subthreshold slope: S ≈ 0.3 V/dec

VLM
Contrast in soft x-ray microspectroscopy
Chemical speciation through
X-ray absorption spectra
(NEXAFS)
C, N, O K-edges
[µm]
Specimen thickness: 2 - 200 nm
Chemical fingerprint &
electronic structure
Scanning transmission x-ray microspectroscopy (PolLux-STXM)
J. Raabe et al., Rev. Sci. Instrum. 79 (2008) 113704
Inside the PolLux-STXM
Resolution  outermost zone width
Proven resolution: 12 nm
(< 10 nm in progress)
Film morphology/molecular orientation - DHDAP
STXM FOV 20 x 20 mm2
AFM 5 x 5 mm2
On Si3N4
On Al/Al2O3
resonant310eV
STXM / NEXAFS
1 µm
X-ray
polarization
C 1s  π* resonance at 283.3 eV
In-situ study of pentacene-based OFET – 5 nm
Calculations:
B. Paez-Sierra,Ph.D. thesis
Experiments:
C. Hub et al., J. Mat.Chem.
20 (2010) 4884
282 284 286 288 290
UG
: 0V / UD
: 0V
intensity[a.u.]
UG
: -10V / UD
: -10Vabsorption electron yield
Diacetamide-4-thiophenes
AFM 15 x 15 mm2
STXM 14 x 14 mm2
STXM 6 x 6mm2
Strongly anisotropic growth due to
pp-interaction & H-bonding
Rainer Fink, March 14, 2015 (SUSTC Shenzhen)
OFET studies
3 nm Ac4T (p-type)
within active channel
hv = 287,5 eV
12 x 12 µm2
gate effect: yes
transport effect: no !
Number of charge carriers is too low
(injection limited !)
Charge trapping ?
SAMFETs
All functionalities in one molecule
M. Halik and A. Hirsch, Adv. Mater. 23 (2011) 2689
(ongoing STXM study)
Charge trapping in pentacene films – Raman Microscopy
B. Rösner et al. Organ. Electronics (2014)
M. Tello, H. Sirringhaus, Adv. Funct.
Mater. 2008
charge trapping in
intergrain regions
reaction in solution reaction in the gas phase
5 µm
SEM
1 µm
SEM
1 µm
SEM
closedsilverfilm
closedsilverfilm
80° sample tilt
Ag (30 nm)
Si substrate
p = 10-2 mbar
T = 90°-150°CAg (30 nm)
saturated TCNQ solution
Si substrate
in acetonitrile saturated TCNQ vapour phase
Ag-TCNQ CT-complexes
Electronically bistable
Electrocatalytically active
Photoactivity
Distinguish neutral and charged species spectroscopically
Confocal Raman Microscopy Micro-NEXAFS
Quantitative evaluation
of affected molecules
B. Rösner et al., PCCP (submitted)
Solar cell device performance
PC60BM +DIO +DIO+Eva
STXM micrographs recorded at 284.5 eV (5 × 5 µm2)
PDPP-TT+PC60BM
Bulk heterojunction solar cells (DIO optimizes nanomorphology)
RSoXS applied to binary/ternary polymer solar cells
ICBA Si-PCDBTBT
283 284 285 286 287 288 289 290 291 292 293 294 295
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
P3HT
ICBA
Si-PCPDTBT
LinnerAbsorption(nm-1
)
Photon Energy (eV)
P3HT
STXM 284.5 eV
STXM cannot resolve
the nanostructure !
10
-8
10
-7
10
-6
Contrast(



)
290285280275270
Energy [eV]
Orientation
Density
Contrast Functions
Intensity[au]
4 5 6
0.01
2 3 4 5 6
0.1
2 3 4
q [nm
-1
]
1000 100 202p/q [nm]
270 eV
P-SoXS Profiles
Intensity[au]
4 5 6
0.01
2 3 4 5 6
0.1
2 3 4
q [nm
-1
]
1000 100 202p/q [nm]
270 eV
284.2
285.9
289
● Large, well-defined domains
● Easily identified via microscopy
● P-SoXS also separates
mass-contrast & orientation
through contrast functions
46
2μm
58
2μm
Non-resonant Resonant
STXM
Mass-Thickness
Contrast Dominates
Orientational Contrast
Dominates
Individual DomainsOrientational
Domain Clusters
Feature Position
= Size
Feature Intensity
= Level of ordering
P-SoXS Demonstration: Pentacene
Ternary polymer solar cells
X. Du et al, Macromolec. Lett. (submitted)
Azimuthally integrated scattering profiles with associated peak fits and
calculation of the Total Scattered Intensity (TSI) for P3HT: Si-PCPDTBT: ICBA
blends
SiZZ
0.2
SiZZ
0.35
SiZZ
0.5
Nanostructure correlates with optimum
device performance
Summary & conclusions
● STXMs offer superb resolution based on recent zone plate developments
● NEXAFS detects modifications in the unoccupied DOS in OFETs under
operation – still some issues with potential energy shifts (p-materials ?)
● Combine STXM with complementary microscopies to access
interesting material properties (especially in-situ microspectroscopy)
● RSoXS complements STXM for structures below the ZP resolution limit
● NanoXAS: combine STXM and AFM at same spot
z
Cantilever

More Related Content

Soft x-ray nanoanalytical tools for thin film organic electronics

  • 1. Soft x-ray nanoanalytical tools for thin film organic electronics Rainer H. Fink Friedrich-Alexander University Erlangen-Nürnberg Physical Chemistry 2 (surface & interface science) http://www.raifi.de 莱纳·芬克教授 博士
  • 2. Chemistry @ FAU: Excellence in research • Funding: 2013: More than 8.6 million € p.a. third-party funds 2010 – 2012: On average 7.3 € p.a. third-party funds • DFG Funding Atlas 2012: Number 2 in Germany in DFG based funding • Taiwan Ranking 2014: World rank: 70 (since 2009: >1,350 papers, 142 JACS or Angew.Ch. and 16 Science or Nature) • Shanghai Academic Ranking of World Universities 2014: TOP 75, #1 in FAU FAU relationship to ACES / UoW • International student exchange programs (since 2006) • Double degree programs: M.Sc. „Chemistry – in International Degree“ • Joint PhD program • D. Guldi – Co-PI at ACES (dye-sensitized solar cells)
  • 3. Synthetic Carbon Allotropes Organic Nanostructures, molecular wires Supramolecular Chemistry Time-resolved charge transfer Photovoltaics / artificial leaves / energy From molecules to materials & devices Our department focuses on ...
  • 4. Research focus of the Fink group Organic molecules, Organic thin films Polymer films, nanostructures Organic electronic devices Instrumentation for x-ray based microspectroscopy „ferric wheels“, molecular magnets Hybrid partices Includes development of novel soft x-ray instrumentation
  • 5. In-operando study of OFETs (30 nm pentacene) Channel length: 250 μm Channel width: 20/40 μm Device characteristics comparable to „conventional“ devices -10 -5 0 5 0,0 5,0x10 -4 1,0x10 -3 1,5x10 -3 2,0x10 -3 2,5x10 -3 Drain-source voltage = -10 V Gate-source voltage (V) Squarerootofdraincurrent[mA] 10 -12 10 -11 1x10 -10 1x10 -9 1x10 -8 1x10 -7 1x10 -6 1x10 -5 Draincurrent(A) Transfer characteristics: field effect mobility (RT): μ = 0.6 cm²/Vs Ion / IOff ratio: 5 x 106 threshold voltage: Vth = -2.3 V subthreshold slope: S ≈ 0.3 V/dec  VLM
  • 6. Contrast in soft x-ray microspectroscopy Chemical speciation through X-ray absorption spectra (NEXAFS) C, N, O K-edges [µm] Specimen thickness: 2 - 200 nm Chemical fingerprint & electronic structure
  • 7. Scanning transmission x-ray microspectroscopy (PolLux-STXM) J. Raabe et al., Rev. Sci. Instrum. 79 (2008) 113704 Inside the PolLux-STXM Resolution  outermost zone width Proven resolution: 12 nm (< 10 nm in progress)
  • 8. Film morphology/molecular orientation - DHDAP STXM FOV 20 x 20 mm2 AFM 5 x 5 mm2 On Si3N4 On Al/Al2O3 resonant310eV
  • 9. STXM / NEXAFS 1 µm X-ray polarization C 1s  π* resonance at 283.3 eV
  • 10. In-situ study of pentacene-based OFET – 5 nm Calculations: B. Paez-Sierra,Ph.D. thesis Experiments: C. Hub et al., J. Mat.Chem. 20 (2010) 4884 282 284 286 288 290 UG : 0V / UD : 0V intensity[a.u.] UG : -10V / UD : -10Vabsorption electron yield
  • 11. Diacetamide-4-thiophenes AFM 15 x 15 mm2 STXM 14 x 14 mm2 STXM 6 x 6mm2 Strongly anisotropic growth due to pp-interaction & H-bonding Rainer Fink, March 14, 2015 (SUSTC Shenzhen)
  • 12. OFET studies 3 nm Ac4T (p-type) within active channel hv = 287,5 eV 12 x 12 µm2 gate effect: yes transport effect: no ! Number of charge carriers is too low (injection limited !) Charge trapping ? SAMFETs All functionalities in one molecule M. Halik and A. Hirsch, Adv. Mater. 23 (2011) 2689 (ongoing STXM study)
  • 13. Charge trapping in pentacene films – Raman Microscopy B. Rösner et al. Organ. Electronics (2014) M. Tello, H. Sirringhaus, Adv. Funct. Mater. 2008 charge trapping in intergrain regions
  • 14. reaction in solution reaction in the gas phase 5 µm SEM 1 µm SEM 1 µm SEM closedsilverfilm closedsilverfilm 80° sample tilt Ag (30 nm) Si substrate p = 10-2 mbar T = 90°-150°CAg (30 nm) saturated TCNQ solution Si substrate in acetonitrile saturated TCNQ vapour phase Ag-TCNQ CT-complexes Electronically bistable Electrocatalytically active Photoactivity
  • 15. Distinguish neutral and charged species spectroscopically Confocal Raman Microscopy Micro-NEXAFS Quantitative evaluation of affected molecules B. Rösner et al., PCCP (submitted)
  • 16. Solar cell device performance PC60BM +DIO +DIO+Eva STXM micrographs recorded at 284.5 eV (5 × 5 µm2) PDPP-TT+PC60BM Bulk heterojunction solar cells (DIO optimizes nanomorphology)
  • 17. RSoXS applied to binary/ternary polymer solar cells ICBA Si-PCDBTBT 283 284 285 286 287 288 289 290 291 292 293 294 295 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 P3HT ICBA Si-PCPDTBT LinnerAbsorption(nm-1 ) Photon Energy (eV) P3HT STXM 284.5 eV STXM cannot resolve the nanostructure !
  • 18. 10 -8 10 -7 10 -6 Contrast(    ) 290285280275270 Energy [eV] Orientation Density Contrast Functions Intensity[au] 4 5 6 0.01 2 3 4 5 6 0.1 2 3 4 q [nm -1 ] 1000 100 202p/q [nm] 270 eV P-SoXS Profiles Intensity[au] 4 5 6 0.01 2 3 4 5 6 0.1 2 3 4 q [nm -1 ] 1000 100 202p/q [nm] 270 eV 284.2 285.9 289 ● Large, well-defined domains ● Easily identified via microscopy ● P-SoXS also separates mass-contrast & orientation through contrast functions 46 2μm 58 2μm Non-resonant Resonant STXM Mass-Thickness Contrast Dominates Orientational Contrast Dominates Individual DomainsOrientational Domain Clusters Feature Position = Size Feature Intensity = Level of ordering P-SoXS Demonstration: Pentacene
  • 19. Ternary polymer solar cells X. Du et al, Macromolec. Lett. (submitted) Azimuthally integrated scattering profiles with associated peak fits and calculation of the Total Scattered Intensity (TSI) for P3HT: Si-PCPDTBT: ICBA blends SiZZ 0.2 SiZZ 0.35 SiZZ 0.5 Nanostructure correlates with optimum device performance
  • 20. Summary & conclusions ● STXMs offer superb resolution based on recent zone plate developments ● NEXAFS detects modifications in the unoccupied DOS in OFETs under operation – still some issues with potential energy shifts (p-materials ?) ● Combine STXM with complementary microscopies to access interesting material properties (especially in-situ microspectroscopy) ● RSoXS complements STXM for structures below the ZP resolution limit ● NanoXAS: combine STXM and AFM at same spot z Cantilever

Editor's Notes

  1. Electronically bistable (organic switch) Electrocatalytically active Photoactivity