Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Back to Basics: Type Classes
Tomer Gabel, Wix
August, 2014
THE EXPRESSION PROBLEM
“Define a datatype by cases, where one can add new cases to
the datatype and new functions over the datatype, without
recompiling existing code, and while retaining static type
safety (e.g., no casts).”
-- Philip Wadler
Let’s Build a Calculator
• Operators:
– Addition (+)
– Subtraction (-)
– Multiplication (*)
– Division (/)
– Remainder (%)
• Types:
– Integers (32-bit signed)
– Longs (64-bit signed)
– Floats (32-bit IEEE 754)
– Longs (64-bit IEEE 754)
Two Views of the Same Problem
Pattern Matching
sealed trait Operand
case class Int32(value: Int) extends Operand
case class Real32(value: Float) extends Operand
// ...
def addition[T <: Operand](left: T, right: T): T =
(left, right) match {
case (Int32 (l), Int32 (r)) => Int32 (l + r)
case (Real32(l), Real32(r)) => Real32(l + r)
// ...
}
Object Oriented
sealed trait Operand
case class Int32(value: Int) extends Operand {
def add(other: Int) = Int32(value + other)
def subtract(other: Int) = Int32(value - other)
// ...
}
case class Real32(value: Float) extends Operand {
def add(other: Float) = Real32(value + other)
def subtract(other: Float) = Real32(value - other)
// ...
}
Two Views of the Same Problem
Pattern Matching
sealed trait Operand
case class Int32(value: Int) extends Operand
case class Real32(value: Float) extends Operand
// ...
def addition[T <: Operand](left: T, right: T): T =
(left, right) match {
case (Int32 (l), Int32 (r)) => Int32 (l + r)
case (Real32(l), Real32(r)) => Real32(l + r)
// ...
}
Object Oriented
sealed trait Operand
case class Int32(value: Int) extends Operand {
def add(other: Int) = Int32(value + other)
def subtract(other: Int) = Int32(value - other)
// ...
}
case class Real32(value: Float) extends Operand {
def add(other: Float) = Real32(value + other)
def subtract(other: Float) = Real32(value - other)
// ...
}
Two Views of the Same Problem
Pattern Matching
sealed trait Operand
case class Int32(value: Int) extends Operand
case class Real32(value: Float) extends Operand
// ...
def addition[T <: Operand](left: T, right: T): T =
(left, right) match {
case (Int32 (l), Int32 (r)) => Int32 (l + r)
case (Real32(l), Real32(r)) => Real32(l + r)
// ...
}
Object Oriented
sealed trait Operand
case class Int32(value: Int) extends Operand {
def add(other: Int) = Int32(value + other)
def subtract(other: Int) = Int32(value - other)
// ...
}
case class Real32(value: Float) extends Operand {
def add(other: Float) = Real32(value + other)
def subtract(other: Float) = Real32(value - other)
// ...
}
TYPE CLASSES TO THE RESCUE
What’s a Type Class?
• A type class:
– Enables ad-hoc polymorphism
– Statically typed (i.e. type-safe)
– Borrowed from Haskell
• Solves the expression problem:
– Behavior can be extended
– … at compile-time
– ... after the fact
– … without changing/recompiling
existing code
Example #1: Equality
• Scala inherits legacy aspects of Java
– This includes AnyRef.equals:
def equals( other: AnyRef ): Boolean
– So the following compiles:
3.14159265359 == "pi" // Evaluates to false
• What if we wanted to implement type-safe equality?
– Let’s define a type-safe isEqual function:
isEqual( 3.14159265359, "pi” ) // Does not compile!
What’s in a Type Class?
• Three components are
required:
– A signature
– Implementations for
supported types
– A function that requires
a type class This is where things get hairy.
Slight Digression
• A method in Scala can have multiple parameter lists:
def someMethod( x: Int )( y: String )( z: Double ): Unit = {
println( s"x=$x, y=$y, z=$z" )
}
scala> someMethod( 10 )( "abc" )( scala.math.Pi )
x=10, y=abc, z=3.141592653589793
• There are multiple uses for this, but the most important is…
Scala Implicits
• The last parameter list of a method can be marked implicit
• Implicit parameters are filled in by the compiler
– In effect, you require evidence of the compiler
– … such as the existence of a type class in scope
– You can also specify parameters explicitly, if needed
Putting it together
• Let’s define our type class:
trait Equality[ L, R ] {
def equals( left: L, right: R ): Boolean
}
• … and our isEqual function:
def isEqual[ L, R ]( left: L, right: R )
( implicit ev: Equality[ L, R ] ): Boolean =
ev.equals( left, right )
This is where the magic happens
Still missing something!
• We have no implementations of the Equality trait, so nothing works!
scala> isEqual( 3, 3 )
<console>:10: error: could not find implicit value for parameter ev:
Equality[Int,Int]
• We need to implement Equality[ T, T ]:
implicit def sameTypeEquality[ T ] = new Equality[ T, T ] {
def equals( left: T, right: T ) = left.equals( right )
}
• And now it works:
scala> isEqual( 3, 3 )
res1: Boolean = true
Ad-hoc Polymorphism
• Now we’ve met our original goal:
scala> isEqual( 3.14159265359, "pi" )
<console>:11: error: could not find implicit value for parameter ev: Equality[Double,String]
• But what if we wanted to equate doubles and strings?
• Well then, let’s add another implementation!
implicit object DoubleEqualsString extends Equality[ Double, String ] {
def equals( left: Double, right: String ) = left.toString == right
}
• Et voila, no recompilation or code changes needed:
scala> isEqual( 3.14159265359, "pi" )
res5: Boolean = false
QUESTIONS SO FAR
Example #2: Sort Me, Maybe
• Let’s implement a sort
function (e.g. bubble sort)
• With one caveat:
– It should operate on any type
– … for which an ordering exists
• Obviously, we’ll use type
classes!
Possible Solution
trait Ordering[ T ] { def isLessThan( left: T, right: T ): Boolean }
def sort[ T ]( items: Seq[ T ] )( implicit ord: Ordering[ T ] ): Seq[ T ] = {
val buffer = mutable.ArrayBuffer( items:_* )
for ( i <- 0 until items.size;
j <- ( i + 1 ) until items.size )
if ( ord.isLessThan( buffer( j ), buffer( i ) ) ) {
val temp = buffer( i )
buffer( i ) = buffer( j )
buffer( j ) = temp
}
buffer
}
Possible Solution, cont.
• Sample implementation for integers:
implicit object IntOrdering extends Ordering[ Int ] {
def isLessThan( left: Int, right: Int ) = left < right
}
val numbers = Seq( 4, 1, 10, 8, 14, 2 )
Assert( sort( numbers ) == Seq( 1, 2, 4, 8, 10, 14 ) )
Possible Solution, cont.
• Sample implementation for a domain entity:
case class Person( name: String, age: Int )
implicit object PersonOrdering extends Ordering[ Person ] {
def isLessThan( left: Person, right: Person ) =
left.age < right.age
}
val haim = Person( "Haim", 12 )
val dafna = Person( "Dafna", 20 )
val ofer = Person( "Ofer", 1 )
assert( sort( Seq( haim, dafna, ofer ) ) ==
Seq( ofer, haim, dafna ) )
Implicit Search Order
Current Scope
• Defined implicits
• Explicit imports
• Wildcard imports
Companion
• … of T
• … of supertypes of T
Outer Scope
• Enclosing class
REAL WORLD EXAMPLES, PLEASE?
Example #3: Server Pipeline
• REST is good, but annoying to write. Let’s simplify:
case class DTO( message: String )
class MyServlet extends NicerHttpServlet {
private val counter = new AtomicInteger( 0 )
get( "/service" ) {
counter.incrementAndGet()
DTO( "hello, world!" )
}
get( "/count" ) {
counter.get()
}
}
Uses return value;
no direct response manipulation
Example #3: Server Pipeline
• What’s in a server?
– Routing
– Rendering
– Error handling
• Let’s focus on rendering:
trait ResponseRenderer[ T ] {
def render( value : T,
request : HttpServletRequest,
response: HttpServletResponse ): Unit
}
Example #3: Server Pipeline
• A couple of basic renderers:
implicit object StringRenderer extends ResponseRenderer[ String ] {
def render( value: String, request: HttpServletRequest, response: HttpServletResponse ) = {
val w = response.getWriter
try w.write( value )
finally w.close()
}
}
implicit object IntRenderer extends ResponseRenderer[ Int ] {
def render( value: Int, request: HttpServletRequest, response: HttpServletResponse ) =
implicitly[ ResponseRenderer[ String ] ].render( value.toString, request, response )
}
Example #3: Server Pipeline
• Putting it together:
trait NicerHttpServlet extends HttpServlet {
private trait Handler {
type Response
def result: Response
def renderer: ResponseRenderer[ Response ]
}
private var handlers: Map[ String, Handler ] = Map.empty
protected def get[ T : ResponseRenderer ]( url: String )( thunk: => T ) =
handlers += url -> new Handler {
type Response = T
def result = thunk
def renderer = implicitly[ ResponseRenderer[ T ] ]
}
Example #3: Server Pipeline
• And finally:
override def doGet( req: HttpServletRequest, resp: HttpServletResponse ) =
handlers.get( req.getRequestURI ) match {
case None =>
resp.sendError( HttpServletResponse.SC_NOT_FOUND )
case Some( handler ) =>
try handler.renderer.render( handler.result, req, resp )
catch { case e: Exception =>
resp.sendError( HttpServletResponse.SC_INTERNAL_SERVER_ERROR )
}
}
PHEW.
Take a deep breath
Example #4: JSON Serialization
• Assume we already have a good model for JSON
• How do we add type-safe serialization?
JsonValue
JsonObject JsonArray
JsonBoolean JsonInt
JsonDouble JsonNull
JsonField
Example #4: JSON Serialization
• Let’s start with a typeclass:
trait JsonSerializer[ T ] {
def serialize( value: T ): JsonValue
def deserialize( value: JsonValue ): T
}
• And the corresponding library signature:
def serialize[ T ]( instance: T )( implicit ser: JsonSerializer[ T ] ) =
ser.serialize( instance )
def deserialize[ T ]( json: JsonValue )( implicit ser: JsonSerializer[ T ] ) =
ser.deserialize( json )
Example #4: JSON Serialization
• Define a few basic serializers…
implicit object BooleanSerializer extends JsonSerializer[ Boolean ] {
def serialize( value: Boolean ) = JsonBoolean( value )
def deserialize( value: JsonValue ) = value match {
case JsonBoolean( bool ) => bool
case other => error( other )
}
}
implicit object StringSerializer extends JsonSerializer[ String ] {
def serialize( value: String ) = JsonString( value )
def deserialize( value: JsonValue ) = value match {
case JsonString( string ) => string
case other => error( other )
}
}
Example #4: JSON Serialization
• We can also handle nested structures
– The compiler resolves typeclasses recursively!
• For example, Option[ T ] :
implicit def optionSerializer[ T ]( implicit ser: JsonSerializer[ T ] ) =
new JsonSerializer[ Option[ T ] ] {
def serialize( value: Option[ T ] ) =
value map ser.serialize getOrElse JsonNull
def deserialize( value: JsonValue ) = value match {
case JsonNull => None
case other => Some( ser.deserialize( other ) )
}
}
Require a serializer for T
… and delegate to it
Example #4: JSON Serialization
• What about an arbitrary type?
case class Person( name: String, surname: String, age: Int )
implicit object PersonSerializer extends JsonSerializer[ Person ] {
def serialize( value: Person ) = JsonObject(
JsonField( "name", serialize( value.name ) ),
JsonField( "surname", serialize( value.surname ) ),
JsonField( "age", serialize( value.age ) )
)
def deserialize( value: JsonValue ) = value match {
case obj: JsonObject =>
Person(
name = deserialize[ String ]( obj  "name" ),
surname = deserialize[ String ]( obj  "surname" ),
age = deserialize[ Int ]( obj  "age" )
)
case _ => error( value )
}
}
Summary
• We added serialization for Person after the fact without…
– … modifying the serialization framework
– … modifying the domain object
• We did not compromise:
– … type safety or performance
– … modularity or encapsulation
• This applies everywhere!
clients of either are unaffected!
… and we’re done
• Thank you for your time!
• Questions/comments?
– tomer@tomergabel.com
– @tomerg
– http://www.tomergabel.com
• Code samples:
– http://git.io/aWc9eQ

More Related Content

Scala Back to Basics: Type Classes

  • 1. Back to Basics: Type Classes Tomer Gabel, Wix August, 2014
  • 2. THE EXPRESSION PROBLEM “Define a datatype by cases, where one can add new cases to the datatype and new functions over the datatype, without recompiling existing code, and while retaining static type safety (e.g., no casts).” -- Philip Wadler
  • 3. Let’s Build a Calculator • Operators: – Addition (+) – Subtraction (-) – Multiplication (*) – Division (/) – Remainder (%) • Types: – Integers (32-bit signed) – Longs (64-bit signed) – Floats (32-bit IEEE 754) – Longs (64-bit IEEE 754)
  • 4. Two Views of the Same Problem Pattern Matching sealed trait Operand case class Int32(value: Int) extends Operand case class Real32(value: Float) extends Operand // ... def addition[T <: Operand](left: T, right: T): T = (left, right) match { case (Int32 (l), Int32 (r)) => Int32 (l + r) case (Real32(l), Real32(r)) => Real32(l + r) // ... } Object Oriented sealed trait Operand case class Int32(value: Int) extends Operand { def add(other: Int) = Int32(value + other) def subtract(other: Int) = Int32(value - other) // ... } case class Real32(value: Float) extends Operand { def add(other: Float) = Real32(value + other) def subtract(other: Float) = Real32(value - other) // ... }
  • 5. Two Views of the Same Problem Pattern Matching sealed trait Operand case class Int32(value: Int) extends Operand case class Real32(value: Float) extends Operand // ... def addition[T <: Operand](left: T, right: T): T = (left, right) match { case (Int32 (l), Int32 (r)) => Int32 (l + r) case (Real32(l), Real32(r)) => Real32(l + r) // ... } Object Oriented sealed trait Operand case class Int32(value: Int) extends Operand { def add(other: Int) = Int32(value + other) def subtract(other: Int) = Int32(value - other) // ... } case class Real32(value: Float) extends Operand { def add(other: Float) = Real32(value + other) def subtract(other: Float) = Real32(value - other) // ... }
  • 6. Two Views of the Same Problem Pattern Matching sealed trait Operand case class Int32(value: Int) extends Operand case class Real32(value: Float) extends Operand // ... def addition[T <: Operand](left: T, right: T): T = (left, right) match { case (Int32 (l), Int32 (r)) => Int32 (l + r) case (Real32(l), Real32(r)) => Real32(l + r) // ... } Object Oriented sealed trait Operand case class Int32(value: Int) extends Operand { def add(other: Int) = Int32(value + other) def subtract(other: Int) = Int32(value - other) // ... } case class Real32(value: Float) extends Operand { def add(other: Float) = Real32(value + other) def subtract(other: Float) = Real32(value - other) // ... }
  • 7. TYPE CLASSES TO THE RESCUE
  • 8. What’s a Type Class? • A type class: – Enables ad-hoc polymorphism – Statically typed (i.e. type-safe) – Borrowed from Haskell • Solves the expression problem: – Behavior can be extended – … at compile-time – ... after the fact – … without changing/recompiling existing code
  • 9. Example #1: Equality • Scala inherits legacy aspects of Java – This includes AnyRef.equals: def equals( other: AnyRef ): Boolean – So the following compiles: 3.14159265359 == "pi" // Evaluates to false • What if we wanted to implement type-safe equality? – Let’s define a type-safe isEqual function: isEqual( 3.14159265359, "pi” ) // Does not compile!
  • 10. What’s in a Type Class? • Three components are required: – A signature – Implementations for supported types – A function that requires a type class This is where things get hairy.
  • 11. Slight Digression • A method in Scala can have multiple parameter lists: def someMethod( x: Int )( y: String )( z: Double ): Unit = { println( s"x=$x, y=$y, z=$z" ) } scala> someMethod( 10 )( "abc" )( scala.math.Pi ) x=10, y=abc, z=3.141592653589793 • There are multiple uses for this, but the most important is…
  • 12. Scala Implicits • The last parameter list of a method can be marked implicit • Implicit parameters are filled in by the compiler – In effect, you require evidence of the compiler – … such as the existence of a type class in scope – You can also specify parameters explicitly, if needed
  • 13. Putting it together • Let’s define our type class: trait Equality[ L, R ] { def equals( left: L, right: R ): Boolean } • … and our isEqual function: def isEqual[ L, R ]( left: L, right: R ) ( implicit ev: Equality[ L, R ] ): Boolean = ev.equals( left, right ) This is where the magic happens
  • 14. Still missing something! • We have no implementations of the Equality trait, so nothing works! scala> isEqual( 3, 3 ) <console>:10: error: could not find implicit value for parameter ev: Equality[Int,Int] • We need to implement Equality[ T, T ]: implicit def sameTypeEquality[ T ] = new Equality[ T, T ] { def equals( left: T, right: T ) = left.equals( right ) } • And now it works: scala> isEqual( 3, 3 ) res1: Boolean = true
  • 15. Ad-hoc Polymorphism • Now we’ve met our original goal: scala> isEqual( 3.14159265359, "pi" ) <console>:11: error: could not find implicit value for parameter ev: Equality[Double,String] • But what if we wanted to equate doubles and strings? • Well then, let’s add another implementation! implicit object DoubleEqualsString extends Equality[ Double, String ] { def equals( left: Double, right: String ) = left.toString == right } • Et voila, no recompilation or code changes needed: scala> isEqual( 3.14159265359, "pi" ) res5: Boolean = false
  • 17. Example #2: Sort Me, Maybe • Let’s implement a sort function (e.g. bubble sort) • With one caveat: – It should operate on any type – … for which an ordering exists • Obviously, we’ll use type classes!
  • 18. Possible Solution trait Ordering[ T ] { def isLessThan( left: T, right: T ): Boolean } def sort[ T ]( items: Seq[ T ] )( implicit ord: Ordering[ T ] ): Seq[ T ] = { val buffer = mutable.ArrayBuffer( items:_* ) for ( i <- 0 until items.size; j <- ( i + 1 ) until items.size ) if ( ord.isLessThan( buffer( j ), buffer( i ) ) ) { val temp = buffer( i ) buffer( i ) = buffer( j ) buffer( j ) = temp } buffer }
  • 19. Possible Solution, cont. • Sample implementation for integers: implicit object IntOrdering extends Ordering[ Int ] { def isLessThan( left: Int, right: Int ) = left < right } val numbers = Seq( 4, 1, 10, 8, 14, 2 ) Assert( sort( numbers ) == Seq( 1, 2, 4, 8, 10, 14 ) )
  • 20. Possible Solution, cont. • Sample implementation for a domain entity: case class Person( name: String, age: Int ) implicit object PersonOrdering extends Ordering[ Person ] { def isLessThan( left: Person, right: Person ) = left.age < right.age } val haim = Person( "Haim", 12 ) val dafna = Person( "Dafna", 20 ) val ofer = Person( "Ofer", 1 ) assert( sort( Seq( haim, dafna, ofer ) ) == Seq( ofer, haim, dafna ) )
  • 21. Implicit Search Order Current Scope • Defined implicits • Explicit imports • Wildcard imports Companion • … of T • … of supertypes of T Outer Scope • Enclosing class
  • 23. Example #3: Server Pipeline • REST is good, but annoying to write. Let’s simplify: case class DTO( message: String ) class MyServlet extends NicerHttpServlet { private val counter = new AtomicInteger( 0 ) get( "/service" ) { counter.incrementAndGet() DTO( "hello, world!" ) } get( "/count" ) { counter.get() } } Uses return value; no direct response manipulation
  • 24. Example #3: Server Pipeline • What’s in a server? – Routing – Rendering – Error handling • Let’s focus on rendering: trait ResponseRenderer[ T ] { def render( value : T, request : HttpServletRequest, response: HttpServletResponse ): Unit }
  • 25. Example #3: Server Pipeline • A couple of basic renderers: implicit object StringRenderer extends ResponseRenderer[ String ] { def render( value: String, request: HttpServletRequest, response: HttpServletResponse ) = { val w = response.getWriter try w.write( value ) finally w.close() } } implicit object IntRenderer extends ResponseRenderer[ Int ] { def render( value: Int, request: HttpServletRequest, response: HttpServletResponse ) = implicitly[ ResponseRenderer[ String ] ].render( value.toString, request, response ) }
  • 26. Example #3: Server Pipeline • Putting it together: trait NicerHttpServlet extends HttpServlet { private trait Handler { type Response def result: Response def renderer: ResponseRenderer[ Response ] } private var handlers: Map[ String, Handler ] = Map.empty protected def get[ T : ResponseRenderer ]( url: String )( thunk: => T ) = handlers += url -> new Handler { type Response = T def result = thunk def renderer = implicitly[ ResponseRenderer[ T ] ] }
  • 27. Example #3: Server Pipeline • And finally: override def doGet( req: HttpServletRequest, resp: HttpServletResponse ) = handlers.get( req.getRequestURI ) match { case None => resp.sendError( HttpServletResponse.SC_NOT_FOUND ) case Some( handler ) => try handler.renderer.render( handler.result, req, resp ) catch { case e: Exception => resp.sendError( HttpServletResponse.SC_INTERNAL_SERVER_ERROR ) } }
  • 29. Example #4: JSON Serialization • Assume we already have a good model for JSON • How do we add type-safe serialization? JsonValue JsonObject JsonArray JsonBoolean JsonInt JsonDouble JsonNull JsonField
  • 30. Example #4: JSON Serialization • Let’s start with a typeclass: trait JsonSerializer[ T ] { def serialize( value: T ): JsonValue def deserialize( value: JsonValue ): T } • And the corresponding library signature: def serialize[ T ]( instance: T )( implicit ser: JsonSerializer[ T ] ) = ser.serialize( instance ) def deserialize[ T ]( json: JsonValue )( implicit ser: JsonSerializer[ T ] ) = ser.deserialize( json )
  • 31. Example #4: JSON Serialization • Define a few basic serializers… implicit object BooleanSerializer extends JsonSerializer[ Boolean ] { def serialize( value: Boolean ) = JsonBoolean( value ) def deserialize( value: JsonValue ) = value match { case JsonBoolean( bool ) => bool case other => error( other ) } } implicit object StringSerializer extends JsonSerializer[ String ] { def serialize( value: String ) = JsonString( value ) def deserialize( value: JsonValue ) = value match { case JsonString( string ) => string case other => error( other ) } }
  • 32. Example #4: JSON Serialization • We can also handle nested structures – The compiler resolves typeclasses recursively! • For example, Option[ T ] : implicit def optionSerializer[ T ]( implicit ser: JsonSerializer[ T ] ) = new JsonSerializer[ Option[ T ] ] { def serialize( value: Option[ T ] ) = value map ser.serialize getOrElse JsonNull def deserialize( value: JsonValue ) = value match { case JsonNull => None case other => Some( ser.deserialize( other ) ) } } Require a serializer for T … and delegate to it
  • 33. Example #4: JSON Serialization • What about an arbitrary type? case class Person( name: String, surname: String, age: Int ) implicit object PersonSerializer extends JsonSerializer[ Person ] { def serialize( value: Person ) = JsonObject( JsonField( "name", serialize( value.name ) ), JsonField( "surname", serialize( value.surname ) ), JsonField( "age", serialize( value.age ) ) ) def deserialize( value: JsonValue ) = value match { case obj: JsonObject => Person( name = deserialize[ String ]( obj "name" ), surname = deserialize[ String ]( obj "surname" ), age = deserialize[ Int ]( obj "age" ) ) case _ => error( value ) } }
  • 34. Summary • We added serialization for Person after the fact without… – … modifying the serialization framework – … modifying the domain object • We did not compromise: – … type safety or performance – … modularity or encapsulation • This applies everywhere! clients of either are unaffected!
  • 35. … and we’re done • Thank you for your time! • Questions/comments? – tomer@tomergabel.com – @tomerg – http://www.tomergabel.com • Code samples: – http://git.io/aWc9eQ

Editor's Notes

  1. Source: http://en.wikipedia.org/wiki/Expression_problem