Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
1
Set Theory
Rosen 6th ed., §2.1-2.2
2
Introduction to Set Theory
• A set is a structure, representing an
unordered collection (group, plurality) of
zero or more distinct (different) objects.
• Set theory deals with operations between,
relations among, and statements about sets.
3
Basic notations for sets
• For sets, we’ll use variables S, T, U, …
• We can denote a set S in writing by listing all of its
elements in curly braces:
– {a, b, c} is the set of whatever 3 objects are denoted by
a, b, c.
• Set builder notation: For any proposition P(x) over
any universe of discourse, {x|P(x)} is the set of all
x such that P(x).
e.g., {x | x is an integer where x>0 and x<5 }
4
Basic properties of sets
• Sets are inherently unordered:
– No matter what objects a, b, and c denote,
{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}.
• All elements are distinct (unequal);
multiple listings make no difference!
– {a, b, c} = {a, a, b, a, b, c, c, c, c}.
– This set contains at most 3 elements!
5
Definition of Set Equality
• Two sets are declared to be equal if and only if
they contain exactly the same elements.
• In particular, it does not matter how the set is
defined or denoted.
• For example: The set {1, 2, 3, 4} =
{x | x is an integer where x>0 and x<5 } =
{x | x is a positive integer whose square
is >0 and <25}
6
Infinite Sets
• Conceptually, sets may be infinite (i.e., not
finite, without end, unending).
• Symbols for some special infinite sets:
N = {0, 1, 2, …} The natural numbers.
Z = {…, -2, -1, 0, 1, 2, …} The integers.
R = The “real” numbers, such as
374.1828471929498181917281943125…
• Infinite sets come in different sizes!
7
Venn Diagrams
8
Basic Set Relations: Member of
• xS (“x is in S”) is the proposition that object x is
an lement or member of set S.
– e.g. 3N, “a”{x | x is a letter of the alphabet}
• Can define set equality in terms of  relation:
S,T: S=T  (x: xS  xT)
“Two sets are equal iff they have all the same
members.”
• xS : (xS) “x is not in S”
9
The Empty Set
•  (“null”, “the empty set”) is the unique set
that contains no elements whatsoever.
•  = {} = {x|False}
• No matter the domain of discourse,
we have the axiom
x: x.
10
Subset and Superset Relations
• ST (“S is a subset of T”) means that every
element of S is also an element of T.
• ST  x (xS  xT)
• S, SS.
• ST (“S is a superset of T”) means TS.
• Note S=T  ST ST.
• means (ST), i.e. x(xS  xT)
T
S /

11
Proper (Strict) Subsets & Supersets
• ST (“S is a proper subset of T”) means that
ST but . Similar for ST.
S
T /

S
T
Venn Diagram equivalent of ST
Example:
{1,2} 
{1,2,3}
12
Sets Are Objects, Too!
• The objects that are elements of a set may
themselves be sets.
• E.g. let S={x | x  {1,2,3}}
then S={,
{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3}}
• Note that 1  {1}  {{1}} !!!!
13
Cardinality and Finiteness
• |S| (read “the cardinality of S”) is a measure
of how many different elements S has.
• E.g., ||=0, |{1,2,3}| = 3, |{a,b}| = 2,
|{{1,2,3},{4,5}}| = ____
• We say S is infinite if it is not finite.
• What are some infinite sets we’ve seen?
14
The Power Set Operation
• The power set P(S) of a set S is the set of all
subsets of S. P(S) = {x | xS}.
• E.g. P({a,b}) = {, {a}, {b}, {a,b}}.
• Sometimes P(S) is written 2S.
Note that for finite S, |P(S)| = 2|S|.
• It turns out that |P(N)| > |N|.
There are different sizes of infinite sets!
15
Ordered n-tuples
• For nN, an ordered n-tuple or a sequence
of length n is written (a1, a2, …, an). The
first element is a1, etc.
• These are like sets, except that duplicates
matter, and the order makes a difference.
• Note (1, 2)  (2, 1)  (2, 1, 1).
• Empty sequence, singlets, pairs, triples,
quadruples, quintuples, …, n-tuples.
16
Cartesian Products of Sets
• For sets A, B, their Cartesian product
AB : {(a, b) | aA  bB }.
• E.g. {a,b}{1,2} = {(a,1),(a,2),(b,1),(b,2)}
• Note that for finite A, B, |AB|=|A||B|.
• Note that the Cartesian product is not
commutative: AB: AB =BA.
• Extends to A1  A2  …  An...
17
The Union Operator
• For sets A, B, their union AB is the set
containing all elements that are either in A,
or (“”) in B (or, of course, in both).
• Formally, A,B: AB = {x | xA  xB}.
• Note that AB contains all the elements of
A and it contains all the elements of B:
A, B: (AB  A)  (AB  B)
18
• {a,b,c}{2,3} = {a,b,c,2,3}
• {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
Union Examples
19
The Intersection Operator
• For sets A, B, their intersection AB is the
set containing all elements that are
simultaneously in A and (“”) in B.
• Formally, A,B: AB{x | xA  xB}.
• Note that AB is a subset of A and it is a
subset of B:
A, B: (AB  A)  (AB  B)
20
• {a,b,c}{2,3} = ___
• {2,4,6}{3,4,5} = ______
Intersection Examples

{4}
21
Disjointedness
• Two sets A, B are called
disjoint (i.e., unjoined)
iff their intersection is
empty. (AB=)
• Example: the set of even
integers is disjoint with
the set of odd integers.
Help, I’ve
been
disjointed!
22
Inclusion-Exclusion Principle
• How many elements are in AB?
|AB| = |A|  |B|  |AB|
• Example:
{2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
23
Set Difference
• For sets A, B, the difference of A and B,
written AB, is the set of all elements that
are in A but not B.
• A  B : x  xA  xB
 x   xA  xB  
• Also called:
The complement of B with respect to A.
24
Set Difference Examples
• {1,2,3,4,5,6}  {2,3,5,7,9,11} =
___________
• Z  N  {… , -1, 0, 1, 2, … }  {0, 1, … }
= {x | x is an integer but not a nat. #}
= {x | x is a negative integer}
= {… , -3, -2, -1}
{1,4,6}
25
Set Difference - Venn Diagram
• A-B is what’s left after B
“takes a bite out of A”
Set A Set B
Set
AB
Chomp!
26
Set Complements
• The universe of discourse can itself be
considered a set, call it U.
• The complement of A, written , is the
complement of A w.r.t. U, i.e., it is UA.
• E.g., If U=N,
A
,...}
7
,
6
,
4
,
2
,
1
,
0
{
}
5
,
3
{ 
27
More on Set Complements
• An equivalent definition, when U is clear:
}
|
{ A
x
x
A 

A
U
A
28
Set Identities
• Identity: A=A AU=A
• Domination: AU=U A=
• Idempotent: AA = A = AA
• Double complement:
• Commutative: AB=BA AB=BA
• Associative: A(BC)=(AB)C
A(BC)=(AB)C
A
A 
)
(
29
DeMorgan’s Law for Sets
• Exactly analogous to (and derivable from)
DeMorgan’s Law for propositions.
B
A
B
A
B
A
B
A






30
Proving Set Identities
To prove statements about sets, of the form
E1 = E2 (where Es are set expressions), here
are three useful techniques:
• Prove E1  E2 and E2  E1 separately.
• Use logical equivalences.
• Use a membership table.
31
Method 1: Mutual subsets
Example: Show A(BC)=(AB)(AC).
• Show A(BC)(AB)(AC).
– Assume xA(BC), & show x(AB)(AC).
– We know that xA, and either xB or xC.
• Case 1: xB. Then xAB, so x(AB)(AC).
• Case 2: xC. Then xAC , so x(AB)(AC).
– Therefore, x(AB)(AC).
– Therefore, A(BC)(AB)(AC).
• Show (AB)(AC)  A(BC). …
32
Method 3: Membership Tables
• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships
in constituent sets.
• Use “1” to indicate membership in the
derived set, “0” for non-membership.
• Prove equivalence with identical columns.
33
Membership Table Example
Prove (AB)B = AB.
A
A B
B A
A
B
B (
(A
A
B
B)
)
B
B A
A
B
B
0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 0 0
34
Membership Table Exercise
Prove (AB)C = (AC)(BC).
A B C A
A
B
B (
(A
A
B
B)
)
C
C A
A
C
C B
B
C
C (
(A
A
C
C)
)
(
(B
B
C
C)
)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
35
Generalized Union
• Binary union operator: AB
• n-ary union:
AA2…An : ((…((A1 A2) …) An)
(grouping & order is irrelevant)
• “Big U” notation:
• Or for infinite sets of sets:

n
i
i
A
1


X
A
A

36
Generalized Intersection
• Binary intersection operator: AB
• n-ary intersection:
AA2…An((…((A1A2)…)An)
(grouping & order is irrelevant)
• “Big Arch” notation:
• Or for infinite sets of sets:

n
i
i
A
1


X
A
A


More Related Content

SetTheory.ppt

  • 1. 1 Set Theory Rosen 6th ed., §2.1-2.2
  • 2. 2 Introduction to Set Theory • A set is a structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects. • Set theory deals with operations between, relations among, and statements about sets.
  • 3. 3 Basic notations for sets • For sets, we’ll use variables S, T, U, … • We can denote a set S in writing by listing all of its elements in curly braces: – {a, b, c} is the set of whatever 3 objects are denoted by a, b, c. • Set builder notation: For any proposition P(x) over any universe of discourse, {x|P(x)} is the set of all x such that P(x). e.g., {x | x is an integer where x>0 and x<5 }
  • 4. 4 Basic properties of sets • Sets are inherently unordered: – No matter what objects a, b, and c denote, {a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}. • All elements are distinct (unequal); multiple listings make no difference! – {a, b, c} = {a, a, b, a, b, c, c, c, c}. – This set contains at most 3 elements!
  • 5. 5 Definition of Set Equality • Two sets are declared to be equal if and only if they contain exactly the same elements. • In particular, it does not matter how the set is defined or denoted. • For example: The set {1, 2, 3, 4} = {x | x is an integer where x>0 and x<5 } = {x | x is a positive integer whose square is >0 and <25}
  • 6. 6 Infinite Sets • Conceptually, sets may be infinite (i.e., not finite, without end, unending). • Symbols for some special infinite sets: N = {0, 1, 2, …} The natural numbers. Z = {…, -2, -1, 0, 1, 2, …} The integers. R = The “real” numbers, such as 374.1828471929498181917281943125… • Infinite sets come in different sizes!
  • 8. 8 Basic Set Relations: Member of • xS (“x is in S”) is the proposition that object x is an lement or member of set S. – e.g. 3N, “a”{x | x is a letter of the alphabet} • Can define set equality in terms of  relation: S,T: S=T  (x: xS  xT) “Two sets are equal iff they have all the same members.” • xS : (xS) “x is not in S”
  • 9. 9 The Empty Set •  (“null”, “the empty set”) is the unique set that contains no elements whatsoever. •  = {} = {x|False} • No matter the domain of discourse, we have the axiom x: x.
  • 10. 10 Subset and Superset Relations • ST (“S is a subset of T”) means that every element of S is also an element of T. • ST  x (xS  xT) • S, SS. • ST (“S is a superset of T”) means TS. • Note S=T  ST ST. • means (ST), i.e. x(xS  xT) T S / 
  • 11. 11 Proper (Strict) Subsets & Supersets • ST (“S is a proper subset of T”) means that ST but . Similar for ST. S T /  S T Venn Diagram equivalent of ST Example: {1,2}  {1,2,3}
  • 12. 12 Sets Are Objects, Too! • The objects that are elements of a set may themselves be sets. • E.g. let S={x | x  {1,2,3}} then S={, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} • Note that 1  {1}  {{1}} !!!!
  • 13. 13 Cardinality and Finiteness • |S| (read “the cardinality of S”) is a measure of how many different elements S has. • E.g., ||=0, |{1,2,3}| = 3, |{a,b}| = 2, |{{1,2,3},{4,5}}| = ____ • We say S is infinite if it is not finite. • What are some infinite sets we’ve seen?
  • 14. 14 The Power Set Operation • The power set P(S) of a set S is the set of all subsets of S. P(S) = {x | xS}. • E.g. P({a,b}) = {, {a}, {b}, {a,b}}. • Sometimes P(S) is written 2S. Note that for finite S, |P(S)| = 2|S|. • It turns out that |P(N)| > |N|. There are different sizes of infinite sets!
  • 15. 15 Ordered n-tuples • For nN, an ordered n-tuple or a sequence of length n is written (a1, a2, …, an). The first element is a1, etc. • These are like sets, except that duplicates matter, and the order makes a difference. • Note (1, 2)  (2, 1)  (2, 1, 1). • Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.
  • 16. 16 Cartesian Products of Sets • For sets A, B, their Cartesian product AB : {(a, b) | aA  bB }. • E.g. {a,b}{1,2} = {(a,1),(a,2),(b,1),(b,2)} • Note that for finite A, B, |AB|=|A||B|. • Note that the Cartesian product is not commutative: AB: AB =BA. • Extends to A1  A2  …  An...
  • 17. 17 The Union Operator • For sets A, B, their union AB is the set containing all elements that are either in A, or (“”) in B (or, of course, in both). • Formally, A,B: AB = {x | xA  xB}. • Note that AB contains all the elements of A and it contains all the elements of B: A, B: (AB  A)  (AB  B)
  • 18. 18 • {a,b,c}{2,3} = {a,b,c,2,3} • {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7} Union Examples
  • 19. 19 The Intersection Operator • For sets A, B, their intersection AB is the set containing all elements that are simultaneously in A and (“”) in B. • Formally, A,B: AB{x | xA  xB}. • Note that AB is a subset of A and it is a subset of B: A, B: (AB  A)  (AB  B)
  • 20. 20 • {a,b,c}{2,3} = ___ • {2,4,6}{3,4,5} = ______ Intersection Examples  {4}
  • 21. 21 Disjointedness • Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. (AB=) • Example: the set of even integers is disjoint with the set of odd integers. Help, I’ve been disjointed!
  • 22. 22 Inclusion-Exclusion Principle • How many elements are in AB? |AB| = |A|  |B|  |AB| • Example: {2,3,5}{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
  • 23. 23 Set Difference • For sets A, B, the difference of A and B, written AB, is the set of all elements that are in A but not B. • A  B : x  xA  xB  x   xA  xB   • Also called: The complement of B with respect to A.
  • 24. 24 Set Difference Examples • {1,2,3,4,5,6}  {2,3,5,7,9,11} = ___________ • Z  N  {… , -1, 0, 1, 2, … }  {0, 1, … } = {x | x is an integer but not a nat. #} = {x | x is a negative integer} = {… , -3, -2, -1} {1,4,6}
  • 25. 25 Set Difference - Venn Diagram • A-B is what’s left after B “takes a bite out of A” Set A Set B Set AB Chomp!
  • 26. 26 Set Complements • The universe of discourse can itself be considered a set, call it U. • The complement of A, written , is the complement of A w.r.t. U, i.e., it is UA. • E.g., If U=N, A ,...} 7 , 6 , 4 , 2 , 1 , 0 { } 5 , 3 { 
  • 27. 27 More on Set Complements • An equivalent definition, when U is clear: } | { A x x A   A U A
  • 28. 28 Set Identities • Identity: A=A AU=A • Domination: AU=U A= • Idempotent: AA = A = AA • Double complement: • Commutative: AB=BA AB=BA • Associative: A(BC)=(AB)C A(BC)=(AB)C A A  ) (
  • 29. 29 DeMorgan’s Law for Sets • Exactly analogous to (and derivable from) DeMorgan’s Law for propositions. B A B A B A B A      
  • 30. 30 Proving Set Identities To prove statements about sets, of the form E1 = E2 (where Es are set expressions), here are three useful techniques: • Prove E1  E2 and E2  E1 separately. • Use logical equivalences. • Use a membership table.
  • 31. 31 Method 1: Mutual subsets Example: Show A(BC)=(AB)(AC). • Show A(BC)(AB)(AC). – Assume xA(BC), & show x(AB)(AC). – We know that xA, and either xB or xC. • Case 1: xB. Then xAB, so x(AB)(AC). • Case 2: xC. Then xAC , so x(AB)(AC). – Therefore, x(AB)(AC). – Therefore, A(BC)(AB)(AC). • Show (AB)(AC)  A(BC). …
  • 32. 32 Method 3: Membership Tables • Just like truth tables for propositional logic. • Columns for different set expressions. • Rows for all combinations of memberships in constituent sets. • Use “1” to indicate membership in the derived set, “0” for non-membership. • Prove equivalence with identical columns.
  • 33. 33 Membership Table Example Prove (AB)B = AB. A A B B A A B B ( (A A B B) ) B B A A B B 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0
  • 34. 34 Membership Table Exercise Prove (AB)C = (AC)(BC). A B C A A B B ( (A A B B) ) C C A A C C B B C C ( (A A C C) ) ( (B B C C) ) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
  • 35. 35 Generalized Union • Binary union operator: AB • n-ary union: AA2…An : ((…((A1 A2) …) An) (grouping & order is irrelevant) • “Big U” notation: • Or for infinite sets of sets:  n i i A 1   X A A 
  • 36. 36 Generalized Intersection • Binary intersection operator: AB • n-ary intersection: AA2…An((…((A1A2)…)An) (grouping & order is irrelevant) • “Big Arch” notation: • Or for infinite sets of sets:  n i i A 1   X A A 

Editor's Notes

  1. 2022-09-04
  2. 2022-09-04
  3. 2022-09-04
  4. 2022-09-04
  5. 2022-09-04
  6. 2022-09-04
  7. 2022-09-04
  8. 2022-09-04
  9. 2022-09-04
  10. 2022-09-04
  11. 2022-09-04
  12. 2022-09-04