This document discusses SeViAnno 2.0, a web-enabled collaborative semantic video annotation system. It presents the motivation and background of multimedia annotation tools. SeViAnno 2.0 has a 3-tier architecture that is cloud-enabled, scalable, and allows rapid development. It utilizes multimedia metadata web services and a user interface for collaborative tagging. Near real-time collaboration is supported through data structure dependencies and update propagation protocols. Future work includes developing a WebRTC infrastructure and operational transformation algorithms for distributed collaborative semantic annotations.
1 of 13
More Related Content
SeViAnno 2.0: Web-Enabled CollaborativeSemantic Video Annotation Beyond the Obvious
1. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-1
TeLLNet
Learning
Layers
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
SeViAnno 2.0: Web-Enabled Collaborative
Semantic Video Annotation Beyond the
Obvious
Petru Nicolaescu & Ralf Klamma
RWTH Aachen University
Advanced Community Information Systems (ACIS)
{lastname}@dbis.rwth-aachen.de
2. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-2
TeLLNet
Learning
Layers
Responsive
Open
Community
Information
Systems
Community
Visualization
and
Simulation
Community
Analytics
Community
Support
WebAnalytics
WebEngineering
Advanced Community
Information Systems (ACIS)
Requirements
Engineering
3. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-3
TeLLNet
Learning
Layers
Agenda
Motivation
Background
A Web information system for video annotation
– Collaborative
– Near real-time
– Cloud-enabled
SeViAnno 2.0: design and implementation
Conclusions and outlook
4. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-4
TeLLNet
Learning
Layers
Motivation or
„We kill people based on metadata“ (David Cole)
Good tools for automatic multimedia annotation
available „for special domains“
Good single user tools for multimedia annotation
Beyond the obvious: (Web) tagging the non-visible
Collaborative multimedia annotation
Decoupled infrastructure
+
+
-
-
-
5. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-5
TeLLNet
Learning
Layers
Related Work
SVCAT
VideoAnnEx
videoANT
M-OntoMat 2.0
SeViAnno 2.0
Tool Platform Usage Tagging Method
Desktop Web-based Single user Collaborative Manual Automatic
++ ++ + ++
++ ++ + ++
++ ++ ++
++ ++ ++
++ ++ ++
M-OntoMat 2.0
+ Via-tool
SVCAT
VideoAnnEx
videoANT
6. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-6
TeLLNet
Learning
Layers
EU FP7 Learning Layers Project
How can we scale up video
tagging to support informal
learning at the work place
Objectives
– Mobile creation of videos
with learning materials
(physical-digital world)
– Tag the non-obvious for
informal learning in
communities (social media
layer)
– Scaffold meaningful learning
by exploiting semantic
tagging information (social
semantic layer)
Two regional clusters
– Construction (Germany)
– Healthcare (UK) http://learning-layers.eu/
7. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-7
TeLLNet
Learning
Layers
Decoupled Multimedia Annotation
Information System Architecture
3-tier architecture
Cloud-enabled
solutions
Advantages
– Separation of
concerns
– Scalability
– Rapid development &
deployment
– Application
customization
8. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-8
TeLLNet
Learning
Layers
Multimedia Metadata Web Services
Tethys (former i5Cloud)
LAS
SeViAnno MPEG-7
Metadata Services
Connectors
(REST, HTTP, Ajax)
User Management
Object Management
Session Management
Cloud Video Transcoder
Tethys Data Storage
Video Transcoding
Scaling Management
Cloud Video Upload
ROLE SDK
NRT
Collaboration
Widget/Space
Management
Streaming
Server
10. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-10
TeLLNet
Learning
Layers
Near Real-Time (NRT) Collaboration
Data structure dependent
– Tree-like data structures with operational transformations
– e.g. XML-based (MPEG-7)
NRT updates propagation
– Underlying infrastructure and used protocols (e.g. XMPP)
Preserving data consistency and user intention
– NRT video operations
– Concurrent updates
11. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-11
TeLLNet
Learning
Layers
Space (shared by multiple users)
SeViAnno 2.0 & ROLE Framework
Web application (composed of widgets)
Widget (collaborative web
component)
EU FP7 ROLE Project
http://role-sandbox.eu/
12. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-12
TeLLNet
Learning
Layers
User Interface Distribution
Limited space and
interaction
possibilities
Trend to using
multiple personal
devices
Lack of tools and
methodologies for
Web-based DUIs
13. Lehrstuhl Informatik 5
(Information Systems)
Prof. Dr. M. Jarke
I5-NiKl-0714-13
TeLLNet
Learning
Layers
Conclusion and Future Work
Open Source Development and Cloud Deployment
(ask for details)
Strong and scalable service infrastructure
(Distributed) Web widget and mobile interfaces
Challenges
– WebRTC infrastructure for update propagation
– Operational transformation algorithms for collaborative
semantic annotations
– Parallel video processing in the cloud (MapReduce)
– OpenID Connect (OIDC) for security and privacy