Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo

1

Heat Exchangers
Shima Effatpanahi
Saman Akhtarmanesh
Obeid Aghaie
1

2

Heat Exchangers
 Bath type
 Shell-and-Tube Exchangers
Baffles, Tubes, Tube Pitch, Shells, Options, Classification, Selection
of Types, Placement of Fluid, TEMA Classes and Tube Materials,
Sizing
 Double-Pipe Exchangers
 Plate-and-Frame Exchangers
 Fired Heater
 Heat Recovery Units
 Aerial Coolers
 An example of heat exchanger problem
 Softwares for design
2

3

:
.
.
3

4

a.Shell and Tube()
b.Bath Type
c.Plate & Frame
d.Air cooler
e.Direct Fire
f.Double Pipe
:
4

5

Bath type Heat Exchangers


..
5

6

Emulsion Heater-Treater.
6

7

))Concentric-Tube Heat Exchangers
Parallel Flow Counter flow
7

8

))Concentric-Tube Heat Exchangers
1mq U A T∆=
( )
1 2
1
1 21n /
m
T T
T
T T
∆ ∆
∆
∆ ∆
−
=
8

9

Parallel-Flow Heat Exchanger:
1 ,1 ,1
, ,
h c
h i c i
T T T
T T
∆ ≡ −
= −
2 ,2 ,2
, ,
h c
h o c o
T T T
T T
∆ ≡ −
= −
9

10

• Counter-Flow Heat Exchanger:
1 ,1 ,1
, ,
h c
h i c o
T T T
T T
∆ ≡ −
= −
2 ,2 ,2
, ,
h c
h o c i
T T T
T T
∆ ≡ −
= −
10

11

U.A
Tc,o
Th,o
1mq U A T∆=
( )
1 2
1
1 21n /
m
T T
T
T T
∆ ∆
∆
∆ ∆
−
=
1 , 1 ,m CF m PFT T∆ ∆>
11

12

TubeShell

TEMA )Tubular Exchanger Manufacturers Association).
))Shell and Tube
12

13

Shell and Tube Exchanger :
1.Shell
2.Tube Sheets
3.Channels or Heads
4.Channel Covers
5.Transverse Baffles
One Shell Pass and One Tube Pass
13

14

TubelaminarTube
TubePass PartitionBonnet
14

15

Shell and Tube Exchanger
15

16

Baffles)):
•Pass Partition Baffles
•Transverse Baffles
•Impingement Baffles
•Longitudinal Baffles
16

17

17
Pass Partition Baffles

18

Transverse Baffles
18

19

Orifice baffles
19

20

Longitudinal Baffles
20

21

‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬)Tube Pitch(
tube sheet
21

22

‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬)Tube Pitch(
•
•co
45d
22

23

Shell & Tube
23

24

TEMAShell & Tube3
Front HeadRear Head
24

25

Shell & Tube
•Tube SheetFront HeadAE”23Tube16
SIZE 23-192 TYPE AES
25

26

26
Shell & Tube

27

:‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬
‫اااا‬ ‫اااا‬ ‫اا‬ ‫اااا‬ ‫اا‬ ‫اا‬ ‫ااااا‬
:‫ااا‬ ‫اااا‬ ‫اااا‬ ‫اااا‬ ‫اااا‬ ‫اااا‬
•
•
•
•
‫اااا‬ ‫اااا‬ ‫اا‬ ‫اااا‬ ‫اا‬ ‫اااا‬ ‫ااااا‬
‫اااا‬ ‫اااا‬ ‫اااا‬ ‫اااا‬ ‫ااااا‬:
•
•
•
•
•
27

28

heat Duty
Sizing
q = Ṁ C ∆T
q = N U A’ (LMTD) L
28

29

Sizing
LMTD:
1
29

30

Sizing
2
N= required number of tubes
q= heat duty,BTU/hr
U= overall heat transfer coefficient,BTU/hr-ft-F
LMTD= corrected log mean temperature difference,F
L=Tube Length,ft
A´=tube external surface area per foot of length,ft2/ft
30

31

Fired Heater
1- Direct-fired combustion equipment
2- Indirect-fired combustion equipment
31

32

Direct-fired combustion equipment
flame(radiationconvection.
:
 Rotary kilns
 Open-hearth furnaces
32

33

• Rotary kilns • Open-hearth furnaces
33

34

Indirect-fired combustion equipment
flame(
:
•Steam boilers
•Vaporizers
•Heat exchangers
•Melting pots
34

35

:
conduction
fired heater
35

36

fired-heaterheating coil
1.Vertical fired heater
2.Horizontal fired heater
36

37

Vertical fired heaterVertical fired heater
fired-heater
heater
0.5to 200 MMBtu/hr
37

38

Horizontal fired heater
fired-heater
heater
5to 250 MMBtu/hr
38

39

)‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬‫ا‬heat recovery unit(
9001200aerial cooler(


39

40

) ‫ااااا‬ ‫اااا‬ ‫ااا‬ ‫ااا‬ ‫اا‬sizing‫اا‬ (
‫اااا‬ ‫ا‬ ‫اااا‬ ‫ااااااا‬ ‫اااا‬
‫ااا‬ ‫اا‬ ‫ااا‬ ‫ااااا‬ ‫اااااااا‬
: ‫ااا‬ ‫ااااا‬
1)
2)
3)
4)
5)load
6)load(
7)back pressure
8)
40

41

aerial cooler(




41

42

air coole
dischar)suction(
forced draf
induced draf
42

43

air cooled
.
43

44


1)Louvers
2)Fan variable speed drives
3)Blade pitch
4)Recirculation of process fluid
44

45

heat duty
1)
2)over cool
plug
)lube oil(
45

46

)‫ااا‬ ‫اااا‬ ‫اا‬seawater cooler‫اا‬ (
‫اااااا‬ ‫اا‬ ‫اااا‬ ‫ااااا‬ ‫اااا‬
‫اا‬ ‫اا‬ ‫ااااا‬ ‫ااااا‬ ‫ااا‬
‫ااااا‬ ‫اا‬ ‫اا‬ ‫ااااا‬ ‫ااااا‬
‫اا‬ ‫اا‬ ‫ااا‬ ‫ااا‬ ‫ااا‬ ‫ااااا‬
‫اااا‬175‫اا‬ ‫اااااااا‬ ‫اااا‬
‫اااا‬100‫اااااا‬ ‫اااا‬.
46

47

:
:
• T2 = 100 0
F
• P2 = 990 psig
• Water vapor in gas = 28
lb/MMsccf
• Seawater T3 = 75 0
F
• Limit temperature rise to 10
0
F
• Use 1-in . OD 10 BWG tubes
on 1 1
/4 –in
:
• 100MMscf at 0.67 SG (from
table 2-10)
• 6000 bopd at 0.77 SG
• 15 bbl/ MMscf
• T1 =175 0
F
• P1 =1000 psig
• Water vapor in gas = 60
lb/MMscf
47

48

Problem:
1. Calculate water flow rate in outlet and water vapor
condensed.
2. Calculate heat duty.
3. Determine seawater circulation rate.
4. Pick a type of exchanger and number of tubes
required.
48

49

Solution:
1. Calculate free water and water vapor flow rates.
• Water flow rate in inlet:
Free water = (100 MMscfd)(15 bbl/MMscfd) = 1,500 bwpd
• Water flow rate in outlet:
Free water = 1,500 bwpd
• Water vapor condensed:
• Water flo rate in outlet:
  9 bwpd + 1500 bwpd = 1509 bwpd
(60 28) 100
* 3200 /
lb MMscf
lb d
MMscf D
−
=
1
3200 * 9
350
lb bbl
bwpd
d lb
=
49

50

2. Calculate heat duty
• a. Gas duty
• T1 = 635°R
• T2 = 560°R
• Tav=597.5°R
• Pc = 680 psia (Table 2-10)
• PR = P/PC=1.47
• Tr = 375°R (Table 2-10)
• TR = Tav/Tc = 1.59
• qg = 41.7(∆T)CgQg
• Cg = 2.64 [29 * SG * C +
∆Cp]
• C = 0.528 Btu/lb°F (Figure 2-
14)
• ∆CP = 1.6 Btu/lb-mol 0
F (figure 2-
15)
S = 0.67 (table 2-10)
Cg =2.64[(29)(0.67)(0.528)+1.6]
Cg = 31.3
qg = 41.7(100-175)(31.3)(100)
= -9789000 Btu/hr
•  
50

51

• b. condensate duty
qo = 14.6(SG)( ∆T)COQO
Co = 0.535 Btu/lb 0
F (figure 2-
13)
qo = 14.6(0.77)(100175)(0.535)
(6000)
qo = -2707000 Btu/hr
 
• c. free water duty
qw= 14.6(∆T)Qw
qw= 14.6(100-175)(1509)
qw= 1652000 Btu/hr
• d. water latent duty
q1h = w*λ
w = 3200 lb/d (1d/24hr)=
133 lb/hr
λ = -996.3 Btu/lb (table 2-
6,170 0
F)
q1h = (133)(-996.3) =
-133000Btu/hr
• e . total heat duty
q= -9879000 -2707000
-1652000 -133000
q= -14281000 Btu/hr
51

52

3. water circulation rate :
• qw= 14.6(T2-T1)Qw
• Qw = qw/14.6(T2-T1)
• Limit ∆T for water to 10 0
F to limit scale
Qw = 14.3 * 106
/14.6(10)
Qw = 97945 bwpd = 2858 gpm
 
 
52

53

4. Heat exchanger type and number of tubes
Choose TEMA R because of large size.
Select type AFL because of low temperature change and
LMTD correction factor.
53

54

The water is corrosive and may deposit solids. Therefore, flow
water through tubes and make the tubes 70/30 Cu/Ni. Flow the
gas through the shell.
• Calculate LMTD :
T1
=175 T2
=100
T3
= 75 T4
= 85
∆T1
= 175-85=90
∆T2
= 100-75=25
LMTD = 50.7 0
F
90
25
90 25
loge
LMTD
−
=
Correction factor (figure 3-10)
P= (85-75)/(175-75) = 0.1
R= (175-100)/(85-75)
F = 0.95
LMTD = (50.7)(0.95) = 48.2 0
F
54

55

• Calculation number of tube:
Assume L = 40 ft
A= 0.2618 ft2
/ ft ( table 2-1)
N = 315 tubes
( )
q
N
UA LMTD Lι
=
6
14.3*10
(90)(0.261)(48.2)(40)
N =
55

56

56

57

57

58

58

59

59

60

60

61

61

62

62

63

:
30heat dutycondensatecooler
aerial cooler
63

64

co2H2S
•1020Glycol dehydration
•110950
F1000
F
•aerial cooler)treating(
64

65

:
•
Aspentech Bjac http://www.Aspentech.com
Aspentech HTFS suite http://www.Aspentech.com
Aspentech HTFS + suite http://www.Aspentech.com
HTRI suite http://www.HTRI.net
Compress http://www.Codeware.com
65

66

:
Book:
Surface production operation, volume 2
Heat exchanger design Handbook
:
Site:
www.apiheattransfer.com
www.chemindustry.com
heaterdesign.com
www.heatexchanger.com
66

67

Thanks For
your
Attention
67

More Related Content

مبدل های حرارتی

Editor's Notes

  1. Xavier, my suggestions: point out that this represents production rather than injection, but is a very useful diagram for visualisation of the interaction of sorption, pressure, and multiphase flow, and the concept of relative and effective permeability Acknowledge Koenig as source briefly describe the main features on the diagram Mention that later in the talk you will show the distribution of water saturation and relative permeabilities during an injection process (these are in slides 12 & 13)