Synchrotron radiation is electromagnetic radiation emitted when charged particles travel along a curved path at relativistic speeds. The document discusses the historical background, design, components, and detection of synchrotron radiation. It also outlines the properties, advantages, and applications of synchrotron radiation, which include life sciences research, materials science, medical imaging, and cancer treatment. Synchrotron facilities around the world provide intense beams of synchrotron light for scientific experiments.
1 of 23
More Related Content
Synchrotron radiation
2. S y n c h r o t r o n R a d i a t i o n
Presented By Course Incharge
Muhammad Azhar
Ishfaque Ahmed
Prof. Dr. Saqib Anjum
4. S y n c h r o t r o n R a d i a t i o n
Contents • Introduction
• Historical Background
• World Wide Synchrotron Facilities
• Synchrotron Design & its Essential
Components
• Functions of Essential Components
• Detection of Synchrotron Radiation
• Properties of Synchrotron Radiation
• Advantages of Synchrotron Radiation
• Applications
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
5. S y n c h r o t r o n R a d i a t i o n
Introduction Synchrotron radiation is the electromagnetic radiation
emitted when charge particles travel in curved path.
In Synchrotron the charge particle moves with
constant relativistic speed on a circular arc.
The relativistic speed domain make it different from
Cyclotron.
Ordinary Synchrotron radiation
Bending-Magnet Radiation
SR
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
6. S y n c h r o t r o n R a d i a t i o n
Introduction (Cont.…) A synchrotron produces light by using radio frequency
waves and powerful electro-magnets to accelerate
electrons to nearly the speed of light.
Energy is added to the electrons as they accelerate so
that, when the magnets alter their course, they
naturally emit a very brilliant, highly focused light.
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
7. S y n c h r o t r o n R a d i a t i o n
Historical Background Synchrotron radiation was named after its discovery in a General Electric
synchrotron accelerator built in 1946 and announced in May 1947 by
Frank Elder.
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
8. S y n c h r o t r o n R a d i a t i o n
World Wide
Synchrotron Facilities
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
9. S y n c h r o t r o n R a d i a t i o n
Synchrotron Design
& its Essential
Components
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
10. S y n c h r o t r o n R a d i a t i o n
Functions of Essential
Components
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
1. MICROTRON
An electron gun inside a microtron generates electrons. Radio waves then accelerate the electrons to an
energy level of 22MeV.
11. S y n c h r o t r o n R a d i a t i o n
Functions of Essential
Components
(Cont.…)
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
2. BOOSTER RING
The electrons enter a booster ring where magnets force them to travel in a circular path and radio waves
accelerates electrons to 800 MeV.
12. S y n c h r o t r o n R a d i a t i o n
Functions of Essential
Components
(Cont.…)
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
3. STORAGE RING
The electron beam travels to a storage ring where it races around fo5r hours, reaching 2.5 GeV.
13. S y n c h r o t r o n R a d i a t i o n
Functions of Essential
Components
(Cont.…)
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
3A. BENDING MAGNETS
Bending magnets adjust the path of the electron beam to keep it inside the storage ring.
14. S y n c h r o t r o n R a d i a t i o n
Functions of Essential
Components
(Cont.…)
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
3B. WIGGLERS/UNDULATORS
Magnets called wigglers and undulators force to emit a concentrated beam of light.
15. S y n c h r o t r o n R a d i a t i o n
Functions of Essential
Components
(Cont.…)
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
3C. RADIO-FREQUENCY CAVITIES
Radio-frequency cavities add energy to the circulating electrons to replace the energy that was lost as
light.
16. S y n c h r o t r o n R a d i a t i o n
Functions of Essential
Components
(Cont.…)
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
4. BEAM LINE/ EXPERIMENTAL STATION
The light travel down a beam line, which sends the beam to an experimental station, where optics focus or
filter the light to allow scientist to investigate their samples.
17. S y n c h r o t r o n R a d i a t i o n
Detection of
Synchrotron
Radiation
The synchrotron radiation detected at Experimental Stations
Each Experimental Station has 3-Areas
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
18. S y n c h r o t r o n R a d i a t i o n
Detection of
Synchrotron
Radiation
(Cont...)
Optics Hutch=> As X-ray
beam pass through the
optics hutch it is focused &
filtered
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
Experimental Hutch=> In this
hutch rays strike the mounted
sample. This interaction gives
the detailed structure
Control Cabin=> In control cabin
the scientists control the
experiment, monitor and
analyse the data.
19. S y n c h r o t r o n R a d i a t i o n
Properties of
Synchrotron
Radiation
• High Intensity
• Continuous Spectrum
• Excellent Collimation (Brilliance)
• Low Emittance
• Pulsed-Time Structured
• Polarization
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
20. S y n c h r o t r o n R a d i a t i o n
Advantages of
Synchrotron
Radiation
• An Example. The intensity of synchrotron X-rays is
more than a million times higher that of X-rays from
a conventional X-ray tube. Experiments that took a
month to complete can now be done in only a few
minutes.
• With synchrotron radiation, molecular structures
that once baffled researchers can now be analyzed
precisely, and this progress has opened up many
new research fields over the last few years.
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
21. S y n c h r o t r o n R a d i a t i o n
Applications • Life sciences: protein and large-molecule crystallography
• LIGA based microfabrication
• Drug discovery and research
• X-ray lithography
• Analyzing chemicals to determine their composition
• Observing the reaction of living cells to drugs
• Inorganic material crystallography and microanalysis
• Fluorescence studies
• Semiconductor material analysis and structural studies
• Geological material analysis
• Medical imaging
• Particle therapy to treat some forms of cancer
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
22. S y n c h r o t r o n R a d i a t i o n
References Albert Hofmann, “The Physics of Synchrotron Radiation” Cambridge
University Press, 2004
Herman Winick, “Synchrotron Radiation Sources: A Primer”, World
Scientific Publishing, 1995
C. Kunz, “Synchrotron Radiation: Techniques and Applications”, Springer
Science & Business Media, 1979
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d
23. S y n c h r o t r o n R a d i a t i o n
M u h a m m a d A z h a r N E D U E T I s h f a q u e A h m e d