Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
TUNING LINUX, WINDOWS AND
FIREBIRD FOR HEAVY WORKLOAD
Alex Kovyazin,
IBSurgeon
Firebird Tour 2017: Performance Optimization
Prague, Bad Sassendorf, Moscow
Firebird 2017 Tour: Performance Optimization
• Firebird Tour 2017 is organized by Firebird Project,
IBSurgeon and IBPhoenix, and devoted to Firebird
Performance
• The Platinum sponsor is Moscow Exchange
• Tour's locations and dates:
• October 3, 2017 – Prague, Czech Republic
• October 5, 2017 – Bad Sassendorf, Germany
• November 3, 2017 – Moscow, Russia
• Platinum Sponsor
• Sponsor of
• «Firebird 2.5 SQL Language Reference»
• «Firebird 3.0 SQL Language Reference»
• «Firebird 3.0 Developer Guide»
• «Firebird 3.0 Operations Guide»
• Sponsor of Firebird 2017 Tour seminars
• www.moex.com
• Replication, Recovery and
Optimization for Firebird
and InterBase since 2002
• Platinum Sponsor of
Firebird Foundation
• Based in Moscow, Russia
www.ib-aid.com
Agenda
• Real customers with big databases
• Hardware they use
• OS tuning
• CPU
• RAM
• IO
• Network
• Firebird configuration
Customer 1: http://klinikabudzdorov.ru
• BudZdorov
• Medical centers and
hospitals in Moscow,
Saint-Petersburg and
major cities in Russia
• 17 departments
• 365 days per year, from 8-
00 to 21-00
ERP with Firebird in BudZdrorov
Central
Database
Replica of
Central
Database
Department’s serverCentral server
Standby for central server
Department’s
DB
Replica dept server
Department’s
DB
17departments
BudZdorov: Central database
• Size = 453 Gb
• Daily users = from 700 to 1800 (peak)
• Hardware server
• OS = Linux CentOS 6.7
• Firebird 2.5 Classic + HQbird
• Client-server, connected through optic with departments
• With async replica on the separate server
Tuning Linux Windows and Firebird for Heavy Workload
Average users ~900
Customer 2: Customer revoked permission to publish
information 
• Customer #2
• Repair services for
xxxxx across Russia
• 365 days per year,
24x7, with 1 hour
maintenance every
day

Customer #2: Central Database
• Size = 250Gb
• Daily users from 500 to 1000 (peak)
• Hardware server
• Windows 2012R2
• Firebird 3
• Middleware (web)
Performance problems – as usual
• Long running active transactions
• Garbage collection is blocked for hours and even days
• Badly written SQLs in applications
• Peaks of load
• People are mostly sick during the winter
• Railroad has peak of loads
• Anti-failure approach
• Replica with 1 minute delay
Tuning goals
1. Tune for throughput first, then, if possible, for response
time
1. During the day users are Ok with performance
2. Problems occur only during periods of high load
2. Tune OS to get appropriate results from the powerful
hardware
General requirements for high load server
1. Not a Primary/Backup Controller/Small Business Server (Windows)
2. No Exchange (store.exe and MSSQL inside) or Sharepoint (MSSQL
inside) or dedicated MSSQL
• Each MSSQL should be restricted in memory usage
3. Not a File Server/Print Server/Terminal Server/Web server
4. If it is virtual machine, it should be really fast
5. If there is your middleware - does it benefit from being on the same
server (i.e., local protocol)?
1. If not, put it on another server
2. If yes, make sure to allocate resources
Dedicated server means dedicated!
HARDWARE
Hardware configuration in BudZdorov
• Server model: HP ProLiant DL380p Gen8 2x Xeon(R) CPU E5v2 @
2.60GHz
• 2 processors* 6 physical cores * 2 HyperThreading = 24 cores
• RAM 384Gb
• Disks:
• RAID10 array on SSDs – 680Gb – for database
• Tmpfs on SSD -158Gb
• SAN on SAS15k - 1.8Tb
• External mounted backup partition for 1.4Tb
• Network
• BroadCom NetXtreme BCM5719 Gigabit Ethernet PCIe
Hardware configuration in Customer#2
• Server model: Dell PowerEdge R810, 2x Xeon(R) CPU E5-2630
v4
• 24 cores
• RAM 256Gb
• Disks:
• RAID1 array on SSDs – 480Gb – for database
• OS on SAS15K - 160Gb
• Network
• Broadcom 57810, 10Gb/sec
TUNING OS/HARDWARE
CPU
• How to improve CPU utilization?
• How can we improve distribution of load between cores?
CPU at Linux
• irqbalance
• yum install -y irqbalance && chkconfig irqbalance on &&
service irqbalance start
• Result: better CPU load distribution, increased throughput
CPU at Windows
• Windows: only CPU_AFFINITY in Firebird configuration
• Result: some cores can be excluded from Firebird usage
(reserved for middleware/other services), less conflicts,
slightly better throughput
RAM Tuning
• How to effectively use available RAM?
• How to avoid swapping?
• Firebird settings:
• DefaultDBCachePages – page buffers cache
• FileCacheSystemThreshold – limit to use/not use file cache
• TempCacheLimit – memory space for sorting
Paged Memory
File Cache/File Buffers and Page Cache
Tuning RAM: 3 types of memory
Database fileDatabase file
Page Buffers
Kernel
Paged Memory
File Cache
RAM in case of Big Databases and Big Caches
Database fileDatabase file
Page Buffers
Kernel
Competition
OS Memory Manager vs Firebird
• If Page Buffers is more than Paged Memory, OS Memory
Manager tries to send it to swap
• Race for resources between Paged Memory and File
Cache leads to swapping
Tuning RAM on Linux
• On Linux RedHat/CentOS file cache is not limited by
default
vm.pagecache = 100 #default
• For Classic – it is more or less fine, since it uses file cache
heavily
• For SuperServer it is not great, since SS 3.0 can use many
page buffers
Recommendation is to limit file cache to 40-50%:
vm.pagecache = 50
Tuning RAM on Linux
• We know that database should be kept in RAM: need to reduce
swapping!
• vm.swappiness = 10
• vm.dirty_ratio = 60
• vm.dirty_background_ratio = 2
• vm.min_free_kbytes = 1048576
Tuning RAM at Windows
•Windows Memory Manager has the following
default scenario of using RAM:
50% paged memory
41% file cache
9% kernel
•Memory distribution can be changed in registry/role
settings
Tip: use RAMMap tool to
see memory allocation
Recommendations for RAM on Windows
• Page Buffers must be < Paged Memory (50% of RAM by
default)
• %% can be changed on Windows level
• File Cache should be On
• For Classic and SuperClassic without exceptions
• For SuperServer with databases with size more than RAM > 2x
• File Cache should be enough to keep frequently requested
parts of database
• Firebird by default has file cache enabled: condition is
DefaultDBCachePages < FileSystemCacheThreshold
When can we disable File Cache?
• File Cache can be
disabled for SuperServer
for
• Read Only databases
• For database which fits
into Page Buffers with very
low % of writes
• For databases on SSD
with small % of writes
• Test it!
Paging file tuning
• In case of balanced settings for Page Buffers and enabled
File Cache, and in case of RAM > 32Gb, page file can be
limited to 16Gb.
• Page file will work fast on SSD – but not on the SSD with
database!
• Monitor life span of SSD!
Linux: general recommendations
• Centos
• Linux version 2.6.32-642.13.1.el6.x86_64 (mockbuild@c1bm.rdu2.centos.org)
(gcc version 4.4.7 20120313 (Red Hat 4.4.7-17) (GCC) ) #1 SMP Wed Jan 11
20:56:24 UTC 2017 – not so good, better choose newer OS version
• Use fresh and popular Linux distributions: Ubuntu 16+ Server and
CentOS 7+
• Use server version of Linux distributions – it has already tuned
limits for number of open files
Linux: file and process limits
# increase max user processes ulimit
(-u) 1291632
# Increase size of file handles and inode
cache
fs.file-max = 2097152
Process forking is set to unlimited
• [root@mskv-cbd-new limits.d]# cat
/etc/security/limits.d/90-nproc.conf
• * soft nproc unlimited
• root soft nproc unlimited
• [root@mskv-cbd-new security]# sed -e 's/^[ t]*//'
/etc/security/limits.conf | grep "^[^#;]" | sort
• firebird - nofile 32768
• * soft core unlimited
/etc/xinetd.conf – the most important
# cps = 25 30 ==> configures xinetd to allow
#no more than 25 connections PER SECOND to any given
service. If this limit is reached, the service is
retired for 30 seconds.
cps = 1500 10
# Sets the maximum number of requests xinetd can
handle at once.
instances = UNLIMITED
# per_source — Defines the maximum number of
#instances for a service per source IP address
per_source = UNLIMITED
IO
•For RAID
•Write-Back
•Enable cache
•Setup ratio Reads/Writes according your load
•BBU!
• SSD!
IO on Linux: File System and Barriers
• Ext4
Since we have RAID and Enterprise SSDs with power loss
protection(and high quality hardware):
Barrier = 0 (disabled)
Disk IO on BudZdorov
• SSDs deliver high speed: 242Mb/sec
IO on Windows
• Enable disk cache (it does not work on Primary Disk
Controller)
Temp space on RAM/SSD?
• TempCacheLimit – by default it is very low, increase it!
• Temp files are created in %TEMP% or /tmp or in
TempDirectories
• Big TempCacheLimit allows to avoid temp files
• However, we still need big TempDirectories to
create/restore indices
Network
# Increase number of incoming connections
net.core.somaxconn = 4096
# Increase number of incoming connections backlog
net.core.netdev_max_backlog = 65536
# Increase the maximum amount of option memory buffers
net.core.optmem_max = 25165824
# Increase the tcp-time-wait buckets pool to prevent simple DOS attacks
net.ipv4.tcp_max_tw_buckets = 1440000
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_tw_reuse = 1
Network
#Number of times SYNACKs for passive TCP connection.
net.ipv4.tcp_synack_retries = 2
#Allowed local port range
net.ipv4.ip_local_port_range = 2000 65535
#Protect Against TCP Time-Wait
net.ipv4.tcp_rfc1337 = 1
#Decrease the time default value for tcp_fin_timeout connection
net.ipv4.tcp_fin_timeout = 15
#Decrease the time default value for connections to keep alive
net.ipv4.tcp_keepalive_time = 300
net.ipv4.tcp_keepalive_probes = 5
net.ipv4.tcp_keepalive_intvl = 15
Network
net.ipv4.tcp_congestion_control=htcp
net.ipv4.tcp_no_metrics_save=1
net.ipv4.tcp_moderate_rcvbuf=1
net.ipv4.tcp_slow_start_after_idle=0
net.core.rmem_default = 65536
net.core.wmem_default = 65536
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_mem = 50576 64768 98152
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
Network queues
# For 24 CPU and 4 RX queues on NIC
cat > /root/scripts/rps_boot.sh && chmod +x /root/scripts/rps_boot.sh
bash -c 'echo 00000f > /sys/class/net/eth0/queues/rx-0/rps_cpus'
bash -c 'echo 0000f0 > /sys/class/net/eth0/queues/rx-1/rps_cpus'
bash -c 'echo 000f00 > /sys/class/net/eth0/queues/rx-2/rps_cpus'
bash -c 'echo 00f000 > /sys/class/net/eth0/queues/rx-3/rps_cpus'
bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-0/rps_flow_cnt'
bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-1/rps_flow_cnt'
bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-2/rps_flow_cnt'
bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-3/rps_flow_cnt'
#ethtool -G eth0 rx 2047
Network on Windows
• Remove unused network protocols
• Set the correct order of NICs
• Results: well, no big difference
Results from network tuning on Linux
• Much better throughput (users do not claim :)
• Significant decrease of Load Average
• Better distribution of load between CPUs
Conclusion for Linux configuration
• Use server distribution
• Use fresh version (CentOS 7+, Ubuntu Srv 16+)
• xinetd configuration is critical (due to Classic)
• Tune limits for process files, memory, file cache, and network
Conclusion for Windows Tuning
1. Main focus is on RAM tuning
2. CPU tuning is through CPU Affinity restrictions
3. Don’t forget to disable useless services/applications
4. In general Windows has far less parameters to tune, and
they are not clear
Misc Windows Tuning tips
• Enable High Performance Power Plan
• Enable background processes priority
• Disable useless services
• Prefetch/Fetch On/Off – no differences
• Desktop Heap for Classic for non Local System account
FIREBIRD CONFIGURATION
Firebird at BudZdorov
• Firebird Classic 2.5
• Why not SuperClassic?
• It is slow for more than 800 connections
• No plans to fix it, since Firebird 3 SuperServer must be used
firebird.conf
• [root@mskv-cbd-new ~]# cat /opt/firebird/firebird.conf
DefaultDbCachePages = 1024
TempCacheLimit = 67108864
TempDirectories = /dev/shm;/3par-vv1/fb_tmp;/tmp
LockHashSlots = 49009
LockMemSize = 82048576
TcpRemoteBufferSize = 1448
TempCacheLimit tips
• Default firebird.conf
• TempBlockSize = 1048576
• May increase to 2 or 3mln bytes, but not to 16mb
• TempCacheLimit = 67108864
• SuperServer and SuperClassic. Classic = 8mb.
• TempDirectories = c:temp;d:temp…
• Increase TempCacheLimit for SuperServer and SuperClassic!
Maintenance and backups
• Automatic sweep is disabled
• All connections are disconnected at 0-00
• Manual sweep is at 00-05
• Verified backup (gbak) – every day at 1am
• Replication works as a standby
Summary for 2.5
• 1500 connections and 453Gb is a acceptable load for the
Firebird 2.5
• Firebird and Linux should be tuned
• Maintenance is the key: sweep, restart of connections,
backups
• Replication is mandatory for protection, since
backup/restore takes 18 hours
Firebird at Customer#2
Firebird 3.0.2
DefaultDbCachePages = 2M
FileCacheSystemThreshold=50M
TempCacheLimit = 9G
LockHashSlots = 21001
LockMemSize = 82048576
Summary
• Firebird 3.0.2 get the biggest benefit from huge number of
page buffer (properly configured)
• Good design (short write) transactions eliminate need for
everyday restarts
Useful links
• Collection of optimized Firebird configuration files
https://ib-aid.com/en/optimized-firebird-configuration/
• Firebird Hardware Guide
https://ib-aid.com/en/articles/firebird-hardware-guide/
• 45 Ways To Speed Up Firebird
• https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird-
database/
Thank you!
• Questions?
• www.ib-aid.com
• ak@ib-aid.com

More Related Content

What's hot (14)

Top 8 Types of Toy Guns for Kids to Play
Top 8 Types of Toy Guns for Kids to PlayTop 8 Types of Toy Guns for Kids to Play
Top 8 Types of Toy Guns for Kids to Play
Tactical Edge
 
Hinario ccb parte 2
Hinario ccb parte 2Hinario ccb parte 2
Hinario ccb parte 2
jairo oliveira
 
TAROT-RIDER-WAITE .pdf
TAROT-RIDER-WAITE .pdfTAROT-RIDER-WAITE .pdf
TAROT-RIDER-WAITE .pdf
artemaior
 
Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016
Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016
Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016
Zabbix
 
Lenovo system management solutions
Lenovo system management solutionsLenovo system management solutions
Lenovo system management solutions
inside-BigData.com
 
Annie Leibovitz
Annie LeibovitzAnnie Leibovitz
Annie Leibovitz
complementoindirecto
 
LIVRO GRATUITO SCRUM X KANBAN
LIVRO GRATUITO SCRUM X KANBAN LIVRO GRATUITO SCRUM X KANBAN
LIVRO GRATUITO SCRUM X KANBAN
Fernando Palma
 
VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...
VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...
VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...
VMworld
 
καστράτο η πιο σκύλα γάτα
καστράτο   η πιο σκύλα γάτακαστράτο   η πιο σκύλα γάτα
καστράτο η πιο σκύλα γάτα
pinnokio.gr
 
Linux field-update-2015
Linux field-update-2015Linux field-update-2015
Linux field-update-2015
Chris Simmonds
 
Sistem pendingin
Sistem pendinginSistem pendingin
Sistem pendingin
Indra Indra
 
ATADO BASICO INTERMEDIO Y AVANZADO
ATADO BASICO INTERMEDIO Y AVANZADOATADO BASICO INTERMEDIO Y AVANZADO
ATADO BASICO INTERMEDIO Y AVANZADO
HugoRafael
 
RS485 LoRaWANコンバーター RS485-LN英文マニュアル
RS485  LoRaWANコンバーター RS485-LN英文マニュアルRS485  LoRaWANコンバーター RS485-LN英文マニュアル
RS485 LoRaWANコンバーター RS485-LN英文マニュアル
CRI Japan, Inc.
 
1003 pljackasi sa gatlingom
1003  pljackasi sa gatlingom1003  pljackasi sa gatlingom
1003 pljackasi sa gatlingom
Milenko Gavric
 
Top 8 Types of Toy Guns for Kids to Play
Top 8 Types of Toy Guns for Kids to PlayTop 8 Types of Toy Guns for Kids to Play
Top 8 Types of Toy Guns for Kids to Play
Tactical Edge
 
TAROT-RIDER-WAITE .pdf
TAROT-RIDER-WAITE .pdfTAROT-RIDER-WAITE .pdf
TAROT-RIDER-WAITE .pdf
artemaior
 
Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016
Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016
Alexander Naydenko - Nagios to Zabbix Migration | ZabConf2016
Zabbix
 
Lenovo system management solutions
Lenovo system management solutionsLenovo system management solutions
Lenovo system management solutions
inside-BigData.com
 
LIVRO GRATUITO SCRUM X KANBAN
LIVRO GRATUITO SCRUM X KANBAN LIVRO GRATUITO SCRUM X KANBAN
LIVRO GRATUITO SCRUM X KANBAN
Fernando Palma
 
VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...
VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...
VMworld 2013: ESXi Native Networking Driver Model - Delivering on Simplicity ...
VMworld
 
καστράτο η πιο σκύλα γάτα
καστράτο   η πιο σκύλα γάτακαστράτο   η πιο σκύλα γάτα
καστράτο η πιο σκύλα γάτα
pinnokio.gr
 
Linux field-update-2015
Linux field-update-2015Linux field-update-2015
Linux field-update-2015
Chris Simmonds
 
Sistem pendingin
Sistem pendinginSistem pendingin
Sistem pendingin
Indra Indra
 
ATADO BASICO INTERMEDIO Y AVANZADO
ATADO BASICO INTERMEDIO Y AVANZADOATADO BASICO INTERMEDIO Y AVANZADO
ATADO BASICO INTERMEDIO Y AVANZADO
HugoRafael
 
RS485 LoRaWANコンバーター RS485-LN英文マニュアル
RS485  LoRaWANコンバーター RS485-LN英文マニュアルRS485  LoRaWANコンバーター RS485-LN英文マニュアル
RS485 LoRaWANコンバーター RS485-LN英文マニュアル
CRI Japan, Inc.
 
1003 pljackasi sa gatlingom
1003  pljackasi sa gatlingom1003  pljackasi sa gatlingom
1003 pljackasi sa gatlingom
Milenko Gavric
 

Similar to Tuning Linux Windows and Firebird for Heavy Workload (20)

MySQL Performance Tuning London Meetup June 2017
MySQL Performance Tuning London Meetup June 2017MySQL Performance Tuning London Meetup June 2017
MySQL Performance Tuning London Meetup June 2017
Ivan Zoratti
 
Deployment Strategy
Deployment StrategyDeployment Strategy
Deployment Strategy
MongoDB
 
Maximizing performance via tuning and optimization
Maximizing performance via tuning and optimizationMaximizing performance via tuning and optimization
Maximizing performance via tuning and optimization
MariaDB plc
 
Maximizing performance via tuning and optimization
Maximizing performance via tuning and optimizationMaximizing performance via tuning and optimization
Maximizing performance via tuning and optimization
MariaDB plc
 
EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...
EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...
EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...
Nexcess.net LLC
 
Taking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout SessionTaking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout Session
Splunk
 
Deployment Strategies
Deployment StrategiesDeployment Strategies
Deployment Strategies
MongoDB
 
Storage and performance- Batch processing, Whiptail
Storage and performance- Batch processing, WhiptailStorage and performance- Batch processing, Whiptail
Storage and performance- Batch processing, Whiptail
Internet World
 
Capacity Planning
Capacity PlanningCapacity Planning
Capacity Planning
MongoDB
 
Windows Server 2012 R2 Software-Defined Storage
Windows Server 2012 R2 Software-Defined StorageWindows Server 2012 R2 Software-Defined Storage
Windows Server 2012 R2 Software-Defined Storage
Aidan Finn
 
Oracle Performance On Linux X86 systems
Oracle  Performance On Linux  X86 systems Oracle  Performance On Linux  X86 systems
Oracle Performance On Linux X86 systems
Baruch Osoveskiy
 
MongoDB and Amazon Web Services: Storage Options for MongoDB Deployments
MongoDB and Amazon Web Services: Storage Options for MongoDB DeploymentsMongoDB and Amazon Web Services: Storage Options for MongoDB Deployments
MongoDB and Amazon Web Services: Storage Options for MongoDB Deployments
MongoDB
 
Red Hat Ceph Storage Acceleration Utilizing Flash Technology
Red Hat Ceph Storage Acceleration Utilizing Flash Technology Red Hat Ceph Storage Acceleration Utilizing Flash Technology
Red Hat Ceph Storage Acceleration Utilizing Flash Technology
Red_Hat_Storage
 
Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)
Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)
Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)
Lars Marowsky-Brée
 
Storage talk
Storage talkStorage talk
Storage talk
christkv
 
Cloud computing UNIT 2.1 presentation in
Cloud computing UNIT 2.1 presentation inCloud computing UNIT 2.1 presentation in
Cloud computing UNIT 2.1 presentation in
RahulBhole12
 
Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)
MongoDB
 
Drupal performance
Drupal performanceDrupal performance
Drupal performance
Piyuesh Kumar
 
Deploying ssd in the data center 2014
Deploying ssd in the data center 2014Deploying ssd in the data center 2014
Deploying ssd in the data center 2014
Howard Marks
 
Using flash on the server side
Using flash on the server sideUsing flash on the server side
Using flash on the server side
Howard Marks
 
MySQL Performance Tuning London Meetup June 2017
MySQL Performance Tuning London Meetup June 2017MySQL Performance Tuning London Meetup June 2017
MySQL Performance Tuning London Meetup June 2017
Ivan Zoratti
 
Deployment Strategy
Deployment StrategyDeployment Strategy
Deployment Strategy
MongoDB
 
Maximizing performance via tuning and optimization
Maximizing performance via tuning and optimizationMaximizing performance via tuning and optimization
Maximizing performance via tuning and optimization
MariaDB plc
 
Maximizing performance via tuning and optimization
Maximizing performance via tuning and optimizationMaximizing performance via tuning and optimization
Maximizing performance via tuning and optimization
MariaDB plc
 
EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...
EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...
EECI 2013 - ExpressionEngine Performance & Optimization - Laying a Solid Foun...
Nexcess.net LLC
 
Taking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout SessionTaking Splunk to the Next Level - Architecture Breakout Session
Taking Splunk to the Next Level - Architecture Breakout Session
Splunk
 
Deployment Strategies
Deployment StrategiesDeployment Strategies
Deployment Strategies
MongoDB
 
Storage and performance- Batch processing, Whiptail
Storage and performance- Batch processing, WhiptailStorage and performance- Batch processing, Whiptail
Storage and performance- Batch processing, Whiptail
Internet World
 
Capacity Planning
Capacity PlanningCapacity Planning
Capacity Planning
MongoDB
 
Windows Server 2012 R2 Software-Defined Storage
Windows Server 2012 R2 Software-Defined StorageWindows Server 2012 R2 Software-Defined Storage
Windows Server 2012 R2 Software-Defined Storage
Aidan Finn
 
Oracle Performance On Linux X86 systems
Oracle  Performance On Linux  X86 systems Oracle  Performance On Linux  X86 systems
Oracle Performance On Linux X86 systems
Baruch Osoveskiy
 
MongoDB and Amazon Web Services: Storage Options for MongoDB Deployments
MongoDB and Amazon Web Services: Storage Options for MongoDB DeploymentsMongoDB and Amazon Web Services: Storage Options for MongoDB Deployments
MongoDB and Amazon Web Services: Storage Options for MongoDB Deployments
MongoDB
 
Red Hat Ceph Storage Acceleration Utilizing Flash Technology
Red Hat Ceph Storage Acceleration Utilizing Flash Technology Red Hat Ceph Storage Acceleration Utilizing Flash Technology
Red Hat Ceph Storage Acceleration Utilizing Flash Technology
Red_Hat_Storage
 
Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)
Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)
Modeling, estimating, and predicting Ceph (Linux Foundation - Vault 2015)
Lars Marowsky-Brée
 
Storage talk
Storage talkStorage talk
Storage talk
christkv
 
Cloud computing UNIT 2.1 presentation in
Cloud computing UNIT 2.1 presentation inCloud computing UNIT 2.1 presentation in
Cloud computing UNIT 2.1 presentation in
RahulBhole12
 
Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)Deployment Strategies (Mongo Austin)
Deployment Strategies (Mongo Austin)
MongoDB
 
Deploying ssd in the data center 2014
Deploying ssd in the data center 2014Deploying ssd in the data center 2014
Deploying ssd in the data center 2014
Howard Marks
 
Using flash on the server side
Using flash on the server sideUsing flash on the server side
Using flash on the server side
Howard Marks
 

More from Marius Adrian Popa (11)

Python with Firebird: FDB driver 101
Python with Firebird: FDB driver 101Python with Firebird: FDB driver 101
Python with Firebird: FDB driver 101
Marius Adrian Popa
 
The State of the Romanian Game Developers Industry Rgda 2019 report
The State of the Romanian Game Developers Industry Rgda 2019 reportThe State of the Romanian Game Developers Industry Rgda 2019 report
The State of the Romanian Game Developers Industry Rgda 2019 report
Marius Adrian Popa
 
Understanding the firebird optimizer
Understanding the firebird optimizerUnderstanding the firebird optimizer
Understanding the firebird optimizer
Marius Adrian Popa
 
Firebird Advanced Trace API
Firebird Advanced Trace API Firebird Advanced Trace API
Firebird Advanced Trace API
Marius Adrian Popa
 
Firebird 3.0 statistics and plans
Firebird 3.0 statistics and plansFirebird 3.0 statistics and plans
Firebird 3.0 statistics and plans
Marius Adrian Popa
 
Firebird Performance 2.5/3.0.x/4.0
 Firebird Performance 2.5/3.0.x/4.0 Firebird Performance 2.5/3.0.x/4.0
Firebird Performance 2.5/3.0.x/4.0
Marius Adrian Popa
 
Django firebird project
Django firebird projectDjango firebird project
Django firebird project
Marius Adrian Popa
 
Proiectul django firebird
Proiectul django firebirdProiectul django firebird
Proiectul django firebird
Marius Adrian Popa
 
Python with Firebird: FDB driver 101
Python with Firebird: FDB driver 101Python with Firebird: FDB driver 101
Python with Firebird: FDB driver 101
Marius Adrian Popa
 
The State of the Romanian Game Developers Industry Rgda 2019 report
The State of the Romanian Game Developers Industry Rgda 2019 reportThe State of the Romanian Game Developers Industry Rgda 2019 report
The State of the Romanian Game Developers Industry Rgda 2019 report
Marius Adrian Popa
 
Understanding the firebird optimizer
Understanding the firebird optimizerUnderstanding the firebird optimizer
Understanding the firebird optimizer
Marius Adrian Popa
 
Firebird 3.0 statistics and plans
Firebird 3.0 statistics and plansFirebird 3.0 statistics and plans
Firebird 3.0 statistics and plans
Marius Adrian Popa
 
Firebird Performance 2.5/3.0.x/4.0
 Firebird Performance 2.5/3.0.x/4.0 Firebird Performance 2.5/3.0.x/4.0
Firebird Performance 2.5/3.0.x/4.0
Marius Adrian Popa
 

Recently uploaded (20)

data mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmglegdata mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmgleg
1052LaxmanrajS
 
Data-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptxData-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptx
hfebxtveyjxavhx
 
LESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptxLESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptx
trishflores3
 
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
 
iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
 
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
taqyed
 
Hot Lead Prediction Analytics Use Case - Smarten
Hot Lead Prediction Analytics Use Case - SmartenHot Lead Prediction Analytics Use Case - Smarten
Hot Lead Prediction Analytics Use Case - Smarten
Smarten Augmented Analytics
 
Introduction to database and analysis software’s suitable for.pptx
Introduction to database and analysis software’s suitable for.pptxIntroduction to database and analysis software’s suitable for.pptx
Introduction to database and analysis software’s suitable for.pptx
nabinparajuli9
 
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
Timothy Spann
 
The truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptxThe truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptx
andyprosser3
 
Class 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptxClass 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptx
angelananalucky
 
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
taqyed
 
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdfValkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Dave Stokes
 
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
suchanadatta3
 
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
 
Design Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AIDesign Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AI
aaronmwinters
 
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media AudiogahwhwhjwjwjwjjwjwjwhwhwjwhwhwMedia Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
carbsmichael
 
5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf
javiertec21
 
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
taqyed
 
+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt
aaarashsaadati
 
data mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmglegdata mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmgleg
1052LaxmanrajS
 
Data-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptxData-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptx
hfebxtveyjxavhx
 
LESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptxLESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptx
trishflores3
 
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
 
iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
 
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
taqyed
 
Hot Lead Prediction Analytics Use Case - Smarten
Hot Lead Prediction Analytics Use Case - SmartenHot Lead Prediction Analytics Use Case - Smarten
Hot Lead Prediction Analytics Use Case - Smarten
Smarten Augmented Analytics
 
Introduction to database and analysis software’s suitable for.pptx
Introduction to database and analysis software’s suitable for.pptxIntroduction to database and analysis software’s suitable for.pptx
Introduction to database and analysis software’s suitable for.pptx
nabinparajuli9
 
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
Timothy Spann
 
The truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptxThe truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptx
andyprosser3
 
Class 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptxClass 3-Workforce profile updated P.pptx
Class 3-Workforce profile updated P.pptx
angelananalucky
 
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
taqyed
 
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdfValkey 101 - SCaLE 22x March 2025 Stokes.pdf
Valkey 101 - SCaLE 22x March 2025 Stokes.pdf
Dave Stokes
 
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
suchanadatta3
 
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
 
Design Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AIDesign Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AI
aaronmwinters
 
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media AudiogahwhwhjwjwjwjjwjwjwhwhwjwhwhwMedia Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
carbsmichael
 
5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-allSlides_1_2022_DanMc.pdf
javiertec21
 
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
taqyed
 
+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt
aaarashsaadati
 

Tuning Linux Windows and Firebird for Heavy Workload

  • 1. TUNING LINUX, WINDOWS AND FIREBIRD FOR HEAVY WORKLOAD Alex Kovyazin, IBSurgeon Firebird Tour 2017: Performance Optimization Prague, Bad Sassendorf, Moscow
  • 2. Firebird 2017 Tour: Performance Optimization • Firebird Tour 2017 is organized by Firebird Project, IBSurgeon and IBPhoenix, and devoted to Firebird Performance • The Platinum sponsor is Moscow Exchange • Tour's locations and dates: • October 3, 2017 – Prague, Czech Republic • October 5, 2017 – Bad Sassendorf, Germany • November 3, 2017 – Moscow, Russia
  • 3. • Platinum Sponsor • Sponsor of • «Firebird 2.5 SQL Language Reference» • «Firebird 3.0 SQL Language Reference» • «Firebird 3.0 Developer Guide» • «Firebird 3.0 Operations Guide» • Sponsor of Firebird 2017 Tour seminars • www.moex.com
  • 4. • Replication, Recovery and Optimization for Firebird and InterBase since 2002 • Platinum Sponsor of Firebird Foundation • Based in Moscow, Russia www.ib-aid.com
  • 5. Agenda • Real customers with big databases • Hardware they use • OS tuning • CPU • RAM • IO • Network • Firebird configuration
  • 6. Customer 1: http://klinikabudzdorov.ru • BudZdorov • Medical centers and hospitals in Moscow, Saint-Petersburg and major cities in Russia • 17 departments • 365 days per year, from 8- 00 to 21-00
  • 7. ERP with Firebird in BudZdrorov Central Database Replica of Central Database Department’s serverCentral server Standby for central server Department’s DB Replica dept server Department’s DB 17departments
  • 8. BudZdorov: Central database • Size = 453 Gb • Daily users = from 700 to 1800 (peak) • Hardware server • OS = Linux CentOS 6.7 • Firebird 2.5 Classic + HQbird • Client-server, connected through optic with departments • With async replica on the separate server
  • 11. Customer 2: Customer revoked permission to publish information  • Customer #2 • Repair services for xxxxx across Russia • 365 days per year, 24x7, with 1 hour maintenance every day 
  • 12. Customer #2: Central Database • Size = 250Gb • Daily users from 500 to 1000 (peak) • Hardware server • Windows 2012R2 • Firebird 3 • Middleware (web)
  • 13. Performance problems – as usual • Long running active transactions • Garbage collection is blocked for hours and even days • Badly written SQLs in applications • Peaks of load • People are mostly sick during the winter • Railroad has peak of loads • Anti-failure approach • Replica with 1 minute delay
  • 14. Tuning goals 1. Tune for throughput first, then, if possible, for response time 1. During the day users are Ok with performance 2. Problems occur only during periods of high load 2. Tune OS to get appropriate results from the powerful hardware
  • 15. General requirements for high load server 1. Not a Primary/Backup Controller/Small Business Server (Windows) 2. No Exchange (store.exe and MSSQL inside) or Sharepoint (MSSQL inside) or dedicated MSSQL • Each MSSQL should be restricted in memory usage 3. Not a File Server/Print Server/Terminal Server/Web server 4. If it is virtual machine, it should be really fast 5. If there is your middleware - does it benefit from being on the same server (i.e., local protocol)? 1. If not, put it on another server 2. If yes, make sure to allocate resources Dedicated server means dedicated!
  • 17. Hardware configuration in BudZdorov • Server model: HP ProLiant DL380p Gen8 2x Xeon(R) CPU E5v2 @ 2.60GHz • 2 processors* 6 physical cores * 2 HyperThreading = 24 cores • RAM 384Gb • Disks: • RAID10 array on SSDs – 680Gb – for database • Tmpfs on SSD -158Gb • SAN on SAS15k - 1.8Tb • External mounted backup partition for 1.4Tb • Network • BroadCom NetXtreme BCM5719 Gigabit Ethernet PCIe
  • 18. Hardware configuration in Customer#2 • Server model: Dell PowerEdge R810, 2x Xeon(R) CPU E5-2630 v4 • 24 cores • RAM 256Gb • Disks: • RAID1 array on SSDs – 480Gb – for database • OS on SAS15K - 160Gb • Network • Broadcom 57810, 10Gb/sec
  • 20. CPU • How to improve CPU utilization? • How can we improve distribution of load between cores?
  • 21. CPU at Linux • irqbalance • yum install -y irqbalance && chkconfig irqbalance on && service irqbalance start • Result: better CPU load distribution, increased throughput
  • 22. CPU at Windows • Windows: only CPU_AFFINITY in Firebird configuration • Result: some cores can be excluded from Firebird usage (reserved for middleware/other services), less conflicts, slightly better throughput
  • 23. RAM Tuning • How to effectively use available RAM? • How to avoid swapping? • Firebird settings: • DefaultDBCachePages – page buffers cache • FileCacheSystemThreshold – limit to use/not use file cache • TempCacheLimit – memory space for sorting
  • 24. Paged Memory File Cache/File Buffers and Page Cache Tuning RAM: 3 types of memory Database fileDatabase file Page Buffers Kernel
  • 25. Paged Memory File Cache RAM in case of Big Databases and Big Caches Database fileDatabase file Page Buffers Kernel Competition
  • 26. OS Memory Manager vs Firebird • If Page Buffers is more than Paged Memory, OS Memory Manager tries to send it to swap • Race for resources between Paged Memory and File Cache leads to swapping
  • 27. Tuning RAM on Linux • On Linux RedHat/CentOS file cache is not limited by default vm.pagecache = 100 #default • For Classic – it is more or less fine, since it uses file cache heavily • For SuperServer it is not great, since SS 3.0 can use many page buffers Recommendation is to limit file cache to 40-50%: vm.pagecache = 50
  • 28. Tuning RAM on Linux • We know that database should be kept in RAM: need to reduce swapping! • vm.swappiness = 10 • vm.dirty_ratio = 60 • vm.dirty_background_ratio = 2 • vm.min_free_kbytes = 1048576
  • 29. Tuning RAM at Windows •Windows Memory Manager has the following default scenario of using RAM: 50% paged memory 41% file cache 9% kernel •Memory distribution can be changed in registry/role settings Tip: use RAMMap tool to see memory allocation
  • 30. Recommendations for RAM on Windows • Page Buffers must be < Paged Memory (50% of RAM by default) • %% can be changed on Windows level • File Cache should be On • For Classic and SuperClassic without exceptions • For SuperServer with databases with size more than RAM > 2x • File Cache should be enough to keep frequently requested parts of database • Firebird by default has file cache enabled: condition is DefaultDBCachePages < FileSystemCacheThreshold
  • 31. When can we disable File Cache? • File Cache can be disabled for SuperServer for • Read Only databases • For database which fits into Page Buffers with very low % of writes • For databases on SSD with small % of writes • Test it!
  • 32. Paging file tuning • In case of balanced settings for Page Buffers and enabled File Cache, and in case of RAM > 32Gb, page file can be limited to 16Gb. • Page file will work fast on SSD – but not on the SSD with database! • Monitor life span of SSD!
  • 33. Linux: general recommendations • Centos • Linux version 2.6.32-642.13.1.el6.x86_64 (mockbuild@c1bm.rdu2.centos.org) (gcc version 4.4.7 20120313 (Red Hat 4.4.7-17) (GCC) ) #1 SMP Wed Jan 11 20:56:24 UTC 2017 – not so good, better choose newer OS version • Use fresh and popular Linux distributions: Ubuntu 16+ Server and CentOS 7+ • Use server version of Linux distributions – it has already tuned limits for number of open files
  • 34. Linux: file and process limits # increase max user processes ulimit (-u) 1291632 # Increase size of file handles and inode cache fs.file-max = 2097152
  • 35. Process forking is set to unlimited • [root@mskv-cbd-new limits.d]# cat /etc/security/limits.d/90-nproc.conf • * soft nproc unlimited • root soft nproc unlimited • [root@mskv-cbd-new security]# sed -e 's/^[ t]*//' /etc/security/limits.conf | grep "^[^#;]" | sort • firebird - nofile 32768 • * soft core unlimited
  • 36. /etc/xinetd.conf – the most important # cps = 25 30 ==> configures xinetd to allow #no more than 25 connections PER SECOND to any given service. If this limit is reached, the service is retired for 30 seconds. cps = 1500 10 # Sets the maximum number of requests xinetd can handle at once. instances = UNLIMITED # per_source — Defines the maximum number of #instances for a service per source IP address per_source = UNLIMITED
  • 37. IO •For RAID •Write-Back •Enable cache •Setup ratio Reads/Writes according your load •BBU! • SSD!
  • 38. IO on Linux: File System and Barriers • Ext4 Since we have RAID and Enterprise SSDs with power loss protection(and high quality hardware): Barrier = 0 (disabled)
  • 39. Disk IO on BudZdorov • SSDs deliver high speed: 242Mb/sec
  • 40. IO on Windows • Enable disk cache (it does not work on Primary Disk Controller)
  • 41. Temp space on RAM/SSD? • TempCacheLimit – by default it is very low, increase it! • Temp files are created in %TEMP% or /tmp or in TempDirectories • Big TempCacheLimit allows to avoid temp files • However, we still need big TempDirectories to create/restore indices
  • 42. Network # Increase number of incoming connections net.core.somaxconn = 4096 # Increase number of incoming connections backlog net.core.netdev_max_backlog = 65536 # Increase the maximum amount of option memory buffers net.core.optmem_max = 25165824 # Increase the tcp-time-wait buckets pool to prevent simple DOS attacks net.ipv4.tcp_max_tw_buckets = 1440000 net.ipv4.tcp_tw_recycle = 1 net.ipv4.tcp_tw_reuse = 1
  • 43. Network #Number of times SYNACKs for passive TCP connection. net.ipv4.tcp_synack_retries = 2 #Allowed local port range net.ipv4.ip_local_port_range = 2000 65535 #Protect Against TCP Time-Wait net.ipv4.tcp_rfc1337 = 1 #Decrease the time default value for tcp_fin_timeout connection net.ipv4.tcp_fin_timeout = 15 #Decrease the time default value for connections to keep alive net.ipv4.tcp_keepalive_time = 300 net.ipv4.tcp_keepalive_probes = 5 net.ipv4.tcp_keepalive_intvl = 15
  • 44. Network net.ipv4.tcp_congestion_control=htcp net.ipv4.tcp_no_metrics_save=1 net.ipv4.tcp_moderate_rcvbuf=1 net.ipv4.tcp_slow_start_after_idle=0 net.core.rmem_default = 65536 net.core.wmem_default = 65536 net.core.rmem_max = 16777216 net.core.wmem_max = 16777216 net.ipv4.tcp_mem = 50576 64768 98152 net.ipv4.tcp_rmem = 4096 87380 16777216 net.ipv4.tcp_wmem = 4096 65536 16777216
  • 45. Network queues # For 24 CPU and 4 RX queues on NIC cat > /root/scripts/rps_boot.sh && chmod +x /root/scripts/rps_boot.sh bash -c 'echo 00000f > /sys/class/net/eth0/queues/rx-0/rps_cpus' bash -c 'echo 0000f0 > /sys/class/net/eth0/queues/rx-1/rps_cpus' bash -c 'echo 000f00 > /sys/class/net/eth0/queues/rx-2/rps_cpus' bash -c 'echo 00f000 > /sys/class/net/eth0/queues/rx-3/rps_cpus' bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-0/rps_flow_cnt' bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-1/rps_flow_cnt' bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-2/rps_flow_cnt' bash -c 'echo 8192 > /sys/class/net/eth0/queues/rx-3/rps_flow_cnt' #ethtool -G eth0 rx 2047
  • 46. Network on Windows • Remove unused network protocols • Set the correct order of NICs • Results: well, no big difference
  • 47. Results from network tuning on Linux • Much better throughput (users do not claim :) • Significant decrease of Load Average • Better distribution of load between CPUs
  • 48. Conclusion for Linux configuration • Use server distribution • Use fresh version (CentOS 7+, Ubuntu Srv 16+) • xinetd configuration is critical (due to Classic) • Tune limits for process files, memory, file cache, and network
  • 49. Conclusion for Windows Tuning 1. Main focus is on RAM tuning 2. CPU tuning is through CPU Affinity restrictions 3. Don’t forget to disable useless services/applications 4. In general Windows has far less parameters to tune, and they are not clear
  • 50. Misc Windows Tuning tips • Enable High Performance Power Plan • Enable background processes priority • Disable useless services • Prefetch/Fetch On/Off – no differences • Desktop Heap for Classic for non Local System account
  • 52. Firebird at BudZdorov • Firebird Classic 2.5 • Why not SuperClassic? • It is slow for more than 800 connections • No plans to fix it, since Firebird 3 SuperServer must be used
  • 53. firebird.conf • [root@mskv-cbd-new ~]# cat /opt/firebird/firebird.conf DefaultDbCachePages = 1024 TempCacheLimit = 67108864 TempDirectories = /dev/shm;/3par-vv1/fb_tmp;/tmp LockHashSlots = 49009 LockMemSize = 82048576 TcpRemoteBufferSize = 1448
  • 54. TempCacheLimit tips • Default firebird.conf • TempBlockSize = 1048576 • May increase to 2 or 3mln bytes, but not to 16mb • TempCacheLimit = 67108864 • SuperServer and SuperClassic. Classic = 8mb. • TempDirectories = c:temp;d:temp… • Increase TempCacheLimit for SuperServer and SuperClassic!
  • 55. Maintenance and backups • Automatic sweep is disabled • All connections are disconnected at 0-00 • Manual sweep is at 00-05 • Verified backup (gbak) – every day at 1am • Replication works as a standby
  • 56. Summary for 2.5 • 1500 connections and 453Gb is a acceptable load for the Firebird 2.5 • Firebird and Linux should be tuned • Maintenance is the key: sweep, restart of connections, backups • Replication is mandatory for protection, since backup/restore takes 18 hours
  • 57. Firebird at Customer#2 Firebird 3.0.2 DefaultDbCachePages = 2M FileCacheSystemThreshold=50M TempCacheLimit = 9G LockHashSlots = 21001 LockMemSize = 82048576
  • 58. Summary • Firebird 3.0.2 get the biggest benefit from huge number of page buffer (properly configured) • Good design (short write) transactions eliminate need for everyday restarts
  • 59. Useful links • Collection of optimized Firebird configuration files https://ib-aid.com/en/optimized-firebird-configuration/ • Firebird Hardware Guide https://ib-aid.com/en/articles/firebird-hardware-guide/ • 45 Ways To Speed Up Firebird • https://ib-aid.com/en/articles/45-ways-to-speed-up-firebird- database/
  • 60. Thank you! • Questions? • www.ib-aid.com • ak@ib-aid.com