Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
VARIABLE NEIGHBORHOOD
PREDICTION OF TEMPORAL
COLLECTIVE PROFILES
Presentation for EuroIoTA ’16
Speaker: Keun-Woo Lim
Telecom Paristech
24-11-2016
Brief Overview
 What do we do in this work?
 Analysis of temporal collective profiles (time-series)
 Use of mobile datasets (cellular, Wi-Fi)
 Real–time & Lightweight prediction (online prediction)
 What do we try to achieve?
 Better prediction accuracy
 Lower computational complexity
 Better application & use case
Contents
Contents  Introduction
 Methodology
 Prediction
 Outlier Detection
 Future Work
Introduction
Temporal collective profiles
 Representation of data that aggregate behavior of
group of individuals – over time
 Can be categorized in various ways
 “Daily Profiles”
What are collected?
 Basic telephone calls and SMS?
 However, we want to focus on more specific matters
 Specific application data
 Usage of Internet service
Why do we analyze these data?
 For “online network analysis”
 Real-time prediction of the near-future
 Recognition of sudden changes/outliers
 Timely adaptation
 Use cases
 Resource allocation
 Traffic handling
 Social behavior
Requirements
 Low computational complexity
 Lightweight prediction methods
 Accuracy
 Still have to be accurate
Dataset
 Cellular mobile dataset
 1-week data from 90 lacs in Paris
 More than 500 daily profiles
 Wi-Fi cloud dataset
 122 days (March 1st to June 30th, 2014)
 60 million URL connection logs
(Top 20 mobile applications)
Methodology
What should we do with daily profiles?
 Daily profiles can be:
 Very similar to each other (same day, location, etc.)
 Very different too (outlier, events)
 We use methods to calculate similarity
 Cluster similar profiles
 Distinguish different profiles
Previous work (Offline analysis)1
 Utilization of clustering methods (UPGMA)
 With similarity comparison techniques (DTW, quantiles)
 Not ideal in online data analysis
 Clustering may take long time (𝑂(𝑀2 𝑁3)with DTW)
1K. Lim, S. Secci, L. Tabourier, B. Tebbani, “Characterizing and predicting mobile application usage,”
https://hal.archives-ouvertes.fr/hal-01345824/document
Profile similarity
 We use two examples of similarity measures
(M values in a time-series)
 Euclidean distance (ED) = Θ(M)
 Dynamic time warping (DTW) = Θ(M2)
 For specific dataset containing N profiles,
 ED = Θ(N2M)
 DTW = Θ(N2M2)
to compare all with each other
Weighted graph representation
 Using similarity measures, we acquire a graph
structure of neighbors
 E.g., if ED is used, lower value = more similar
Filtering paths
 Filter neighbors with high distance
 Depending on the value of α, the number of neighbors
change for all profiles
Visualization of graph structure
 Example graph structure for ED – cellular dataset
Variable Neighborhood Prediction
(VNP)
Principle of VNP
 For a new day 𝑥 𝑛(𝑡), we configure
 𝑡0 = 0, 𝑡1 = 0~24, 𝑡2 = 24 (hour)
 Objective
 Observation period = 𝑥 𝑛 𝑡0, 𝑡1
 Create a temporal profile to predict 𝑥 𝑛 𝑡1, 𝑡2
 Find 𝑥 from the observation period
 The closest profile 𝑥, in 𝑥 𝑡0, 𝑡1 and 𝑥 𝑛 𝑡0, 𝑡1
Find the neighbors
 Using closest neighbor 𝑥, we find the group of
neighbors 𝑁 𝑛 to be used for prediction
 For any other profile y of the training set,
 𝑦 ∈ 𝑁𝑛 𝑖𝑖𝑓
𝑠 𝑥 𝑛 𝑡0, 𝑡1 , 𝑦 𝑡0, 𝑡1 ≤ 𝑎 ∙ 𝑠 𝑥 𝑛 𝑡0, 𝑡1 , 𝑥 𝑡0, 𝑡1
Creating the prediction profile
 Using 𝑁 𝑛, formulate the prediction
 𝑥 𝑛 𝑡 =
σ 𝑦∈𝑁 𝑛
𝑠(𝑥 𝑛,𝑦)∙𝑦(𝑡)
σ 𝑦∈𝑁 𝑛
𝑠(𝑥 𝑛,𝑦)
 Simply put, it is the weighted average over the profiles
of its neighborhood
Training Parameter 𝑎
 𝑎 can be tuned to select the optimal number of
neighbors
 Variable neighborhood search to find the 𝑎 that yields
the highest accuracy over time
 E.g. 1.0 < 𝑎 < 10.0
 Drawbacks
 Increase in complexity (recalculate for each 𝑎)
Calculating multiple 𝑡1
 For a more fine-grained prediction, multiple 𝑡1 can
be used in one day
 Repetition of the VNP (e.g. per-hour analysis)
Handling Complexity - VNP
 Computation of calculating neighborhood of target
day per 𝑎 :
 ED = Θ(NM)
 DTW = Θ(NM2)
 Depending on N, this can be large in practice
 Also, in case of multiple 𝑡1 analysis, large M can
also impact
Handling Complexity - Graph
 Can be heavy
 ED = Θ(N2M)
 DTW = Θ(N2M2)
 Luckily, graph representation is only updated once per day
 Although, needed for various M in case of multiple 𝑡1 analysis
 Also, space partitioning can be used to reduce time
 Via Kd-tree
 This can reduce complexity of ED to Θ(log(N)M)
Prediction Analysis
Prediction accuracy analysis
 Prediction through relative error, defined as
 𝜀 =
σ 𝑡=𝑡1
𝑡2 𝑥 𝑛 𝑡 − ෣𝑥 𝑛 𝑡
2
σ 𝑡=𝑡1
𝑡2 𝑥 𝑛 𝑡
2
 Comparison with closest neighbor ( 𝑎 =1), UPGMA
 𝑡1 = 12
cellular data - ED cellular data - DTW
Effect of changing 𝑡1
 Per-hour analysis
 The length of observation period may also effect the performance
of prediction
cellular data - ED cellular data - DTW
Time consumption
 The required time can be acceptable for both methods in a
per-hour analysis.
 However, need caution for DTW when many profiles are used
cellular data - ED cellular data - DTW
Distribution of α
 The distribution of optimal α is focused in range [1,2], allowing
us to easily limit the range of α
 Distribution of neighbors is heterogeneous, but most are < 20
Conclusion & Future work
Conclusion & Future work
 We have proposed a methodology for online
prediction of mobile time-series datasets
 Acceptable time for our current dataset
 Can be used for other time-series datasets in various
IoT environment
 Further studies include
 Testing in a bigger scale dataset
Any Questions?
Appendix – Wi-Fi data prediction
Wifi data - ED Wifi data - DTW

More Related Content

Variable neighborhood Prediction of temporal collective profiles by Keun-Woo Lim, Telecom ParisTech

  • 1. VARIABLE NEIGHBORHOOD PREDICTION OF TEMPORAL COLLECTIVE PROFILES Presentation for EuroIoTA ’16 Speaker: Keun-Woo Lim Telecom Paristech 24-11-2016
  • 2. Brief Overview  What do we do in this work?  Analysis of temporal collective profiles (time-series)  Use of mobile datasets (cellular, Wi-Fi)  Real–time & Lightweight prediction (online prediction)  What do we try to achieve?  Better prediction accuracy  Lower computational complexity  Better application & use case
  • 3. Contents Contents  Introduction  Methodology  Prediction  Outlier Detection  Future Work
  • 5. Temporal collective profiles  Representation of data that aggregate behavior of group of individuals – over time  Can be categorized in various ways  “Daily Profiles”
  • 6. What are collected?  Basic telephone calls and SMS?  However, we want to focus on more specific matters  Specific application data  Usage of Internet service
  • 7. Why do we analyze these data?  For “online network analysis”  Real-time prediction of the near-future  Recognition of sudden changes/outliers  Timely adaptation  Use cases  Resource allocation  Traffic handling  Social behavior
  • 8. Requirements  Low computational complexity  Lightweight prediction methods  Accuracy  Still have to be accurate
  • 9. Dataset  Cellular mobile dataset  1-week data from 90 lacs in Paris  More than 500 daily profiles  Wi-Fi cloud dataset  122 days (March 1st to June 30th, 2014)  60 million URL connection logs (Top 20 mobile applications)
  • 11. What should we do with daily profiles?  Daily profiles can be:  Very similar to each other (same day, location, etc.)  Very different too (outlier, events)  We use methods to calculate similarity  Cluster similar profiles  Distinguish different profiles
  • 12. Previous work (Offline analysis)1  Utilization of clustering methods (UPGMA)  With similarity comparison techniques (DTW, quantiles)  Not ideal in online data analysis  Clustering may take long time (𝑂(𝑀2 𝑁3)with DTW) 1K. Lim, S. Secci, L. Tabourier, B. Tebbani, “Characterizing and predicting mobile application usage,” https://hal.archives-ouvertes.fr/hal-01345824/document
  • 13. Profile similarity  We use two examples of similarity measures (M values in a time-series)  Euclidean distance (ED) = Θ(M)  Dynamic time warping (DTW) = Θ(M2)  For specific dataset containing N profiles,  ED = Θ(N2M)  DTW = Θ(N2M2) to compare all with each other
  • 14. Weighted graph representation  Using similarity measures, we acquire a graph structure of neighbors  E.g., if ED is used, lower value = more similar
  • 15. Filtering paths  Filter neighbors with high distance  Depending on the value of α, the number of neighbors change for all profiles
  • 16. Visualization of graph structure  Example graph structure for ED – cellular dataset
  • 18. Principle of VNP  For a new day 𝑥 𝑛(𝑡), we configure  𝑡0 = 0, 𝑡1 = 0~24, 𝑡2 = 24 (hour)  Objective  Observation period = 𝑥 𝑛 𝑡0, 𝑡1  Create a temporal profile to predict 𝑥 𝑛 𝑡1, 𝑡2  Find 𝑥 from the observation period  The closest profile 𝑥, in 𝑥 𝑡0, 𝑡1 and 𝑥 𝑛 𝑡0, 𝑡1
  • 19. Find the neighbors  Using closest neighbor 𝑥, we find the group of neighbors 𝑁 𝑛 to be used for prediction  For any other profile y of the training set,  𝑦 ∈ 𝑁𝑛 𝑖𝑖𝑓 𝑠 𝑥 𝑛 𝑡0, 𝑡1 , 𝑦 𝑡0, 𝑡1 ≤ 𝑎 ∙ 𝑠 𝑥 𝑛 𝑡0, 𝑡1 , 𝑥 𝑡0, 𝑡1
  • 20. Creating the prediction profile  Using 𝑁 𝑛, formulate the prediction  𝑥 𝑛 𝑡 = σ 𝑦∈𝑁 𝑛 𝑠(𝑥 𝑛,𝑦)∙𝑦(𝑡) σ 𝑦∈𝑁 𝑛 𝑠(𝑥 𝑛,𝑦)  Simply put, it is the weighted average over the profiles of its neighborhood
  • 21. Training Parameter 𝑎  𝑎 can be tuned to select the optimal number of neighbors  Variable neighborhood search to find the 𝑎 that yields the highest accuracy over time  E.g. 1.0 < 𝑎 < 10.0  Drawbacks  Increase in complexity (recalculate for each 𝑎)
  • 22. Calculating multiple 𝑡1  For a more fine-grained prediction, multiple 𝑡1 can be used in one day  Repetition of the VNP (e.g. per-hour analysis)
  • 23. Handling Complexity - VNP  Computation of calculating neighborhood of target day per 𝑎 :  ED = Θ(NM)  DTW = Θ(NM2)  Depending on N, this can be large in practice  Also, in case of multiple 𝑡1 analysis, large M can also impact
  • 24. Handling Complexity - Graph  Can be heavy  ED = Θ(N2M)  DTW = Θ(N2M2)  Luckily, graph representation is only updated once per day  Although, needed for various M in case of multiple 𝑡1 analysis  Also, space partitioning can be used to reduce time  Via Kd-tree  This can reduce complexity of ED to Θ(log(N)M)
  • 26. Prediction accuracy analysis  Prediction through relative error, defined as  𝜀 = σ 𝑡=𝑡1 𝑡2 𝑥 𝑛 𝑡 − ෣𝑥 𝑛 𝑡 2 σ 𝑡=𝑡1 𝑡2 𝑥 𝑛 𝑡 2  Comparison with closest neighbor ( 𝑎 =1), UPGMA  𝑡1 = 12 cellular data - ED cellular data - DTW
  • 27. Effect of changing 𝑡1  Per-hour analysis  The length of observation period may also effect the performance of prediction cellular data - ED cellular data - DTW
  • 28. Time consumption  The required time can be acceptable for both methods in a per-hour analysis.  However, need caution for DTW when many profiles are used cellular data - ED cellular data - DTW
  • 29. Distribution of α  The distribution of optimal α is focused in range [1,2], allowing us to easily limit the range of α  Distribution of neighbors is heterogeneous, but most are < 20
  • 31. Conclusion & Future work  We have proposed a methodology for online prediction of mobile time-series datasets  Acceptable time for our current dataset  Can be used for other time-series datasets in various IoT environment  Further studies include  Testing in a bigger scale dataset
  • 33. Appendix – Wi-Fi data prediction Wifi data - ED Wifi data - DTW