Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

微分とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 高等数学 > 微分 > 微分の意味・解説 

び‐ぶん【微分】

読み方:びぶん

[名](スル)

ある関数導関数求めること。

ある関数表される曲線の、ある点における接線傾き、すなわち変化率極限値として求めること。その傾き微分係数といい、関数fx)の導関数f′(x)とすると、xaにおける関数fx)の微分係数f′(a)で表される。ここで微分してf′(x)になる関数fx)を逆の演算として求めることを積分とよび、fx)はf′(x)の不定積分となる。

[補説] これら微分と積分互いに逆の演算であるという関係性微分積分学の基本定理とよばれ、17世紀後半ニュートンライプニッツによって独立して導かれ、やがて解析学という数学一大分野発展した。とくに物理現象多く微分方程式によって記述され、それらを解くことによって時間とともに変化する数量見積もったり、現象予測したりできる。このように、微分は積分とともに現代においてさまざまな現象数学的に記述するための重要な手法となっている。


微分

関数 f(x) で、x の値 a に微分係数(a)対応させるとき、これを f(x)導関数といい、関数 f´(x) で表す。導関数求めることを微分するという。


微分

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/25 14:24 UTC 版)

函数のグラフ(黒線)と函数が描く曲線接線(赤線)。接線の傾きは接点上の函数の微分係数に等しい。

数学における実変数函数英語版微分係数微分商または(どうかんすう、: derivative)は、別の量(独立変数)に依存して決まる、ある量(関数の値あるいは従属変数)の変化の度合いを測るものであり、これらを求めることを(びぶん、: differentiationするという。微分演算の結果である微分係数や導関数も用語の濫用でしばしば微分と呼ばれる。

概要

微分は解析学分野(特に微分積分学分野)の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。

一変数函数の適当に選んだ入力値における微分係数は、その点におけるグラフ接線傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。

微分は実多変数函数英語版にも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型写像と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。

導函数を求める過程を微分あるいは微分法、微分演算(: differentiation)と言い、その逆の過程(原始函数を求めること)を反微分という。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である[1]

引数が変更されたときの関数のスイングのように、微分の直感的なアイデアを与えるアニメーション。

1変数関数の微分法

直観的な説明

初めに最も簡単な場合を扱う。すなわち、実数値の変数を1個もち、値も1個の実数であるような関数 f(x)(または単に f とも書く)を微分することを考える。「微分する」というのは、より正確には、微分係数英語版または導関数のいずれかを求めることを意味している。

説明を単純にするため、f(x) はすべての実数 x に対して定義されているとしよう。すると各々の実数 a に対して、fa における微分係数と呼ばれる数がある(定義されない場合もあるが、ここでは理想的な状況のみを想定して説明する)。これを f′(a) で表す。また、実数 a に対して微分係数 f′(a) を対応させる関数 f のことを f の導関数という。

微分係数 f′(a) とは何であるか直観的に説明するには、いくつかの方法がある。

  1. 微分係数 f′(a) とは、関数 fグラフx = a において(すなわち点 (a, f(a)) において)接線をひいたときの、その接線の傾きのことである。
  2. 微分係数 f′(a) とは、変数 x の値の変化に伴う f(x) の変化を考えたときの、x = a における f(x) の瞬間変化率のことである。
  3. 微分係数 f′(a) とは、関数 f のグラフの x = a 付近を(すなわち点 (a, f(a)) 付近を)限りなく拡大していったときに、グラフが直線に近づいて見える場合における、その直線の傾きのことである。

これらはいずれも、論理的に厳密な定義とはいえない。それは、「接線」や「瞬間変化率」について厳密な定義が与えられていないし、またグラフを「限りなく拡大する」ということの意味も定かではないからである。

ごく単純な関数については、上記の説明が微分係数の具体的な値について十分な示唆を与えるのは確かだ。たとえば一次関数 f(x) = Ax + B を考えると、そのグラフは直線なので、「x = a における接線」もその直線自身であると考えるのが妥当だろう。直線 y = Ax + B の傾きは A だから、微分係数 f′(a) の値も A とすべきだと考えられる。また、二次関数についても、グラフの接線の概念を微分とは無関係に定義して、その傾きを求めることはできる。だが、ほとんどの関数にはこのような手法は通用しないから、一般的な定義を与えるためには新しい考えが必要である。

極限としての変化率
Figure 1. (x, f(x)) における接線
Figure 2. 二点 (x, f(x)) および (x+h, f(x+h)) の定める、曲線 y= f(x)割線英語版
Figure 3. 割線の極限としての接線
Figure 4. 割線の極限としての接線(アニメーション)

厳密な定式化

一点における微分可能性と微分係数

関数 f(x) が開区間

絶対値関数は x = 0 において連続だが、割線の傾きが左側で −1、右側で 1 だから微分可能でない。

一方で、関数がある一点で連続だったとしても、そこで微分可能でないことがある。

  • 絶対値関数 f(x) = |x| x = 0 において連続だが、この点で微分可能でない。h > 0 のときは (0, 0), (h, f(h)) を通る割線の傾きは 1 だが、h < 0 のときは −1 である。この例では、グラフは x = 0 においてカスプ(尖点)をもつという言い方をする。
  • 関数 f(x) = x1/3x = 0 において連続だが、この点で微分可能でない。(0, 0), (h, f(h)) を通る割線の傾きは、h → 0 のとき正の無限大に発散するからである。この例は、グラフが滑らかにつながっているからといって微分可能とはかぎらないことを示している。

実用上現れる関数の大半は、ほとんど至るところで微分可能である。微分積分学の歴史英語版の初期には、多くの数学者は連続関数はほとんど至るところで微分可能であると考えていた。この仮定は緩やかな条件、たとえば単調写像リプシッツ連続などのもとでは確かに満たされる。しかし1872年にワイエルシュトラスは、至るところ連続だが、至るところ微分不可能な関数の例を与えた(ワイエルシュトラス関数)。1931年にステファン・バナフは、連続関数全体のなす空間において、少なくとも1点で微分可能な関数全体のなす集合が痩せている(meager)ことを示した[2]。くだけた言い方をすれば、ほとんどあらゆる連続関数がすべての点で微分不可能なのである。

高階微分

関数 f が区間 I導関数 f をもち、それがさらに I で微分可能なとき、f の導関数を f の2階導関数とよび f で表す。より一般に、関数 f が区間 In 回繰り返して微分できるとき、fIn 回微分可能であるといい、n 回微分して得られる関数を n 階導関数といって f (n) で表す。

fn 回微分可能であって、さらに n 階導関数 f (n) が連続であるとき、fn 回連続微分可能である(または C n 級である)という。何回でも微分可能な関数は無限回微分可能である(または C 級である)という。C 級関数のことを滑らかな関数ということもある(ただしこの語の用法は必ずしも一定していず、たとえば単に微分可能であることを指して滑らかであるという場合もある)。

微分と関数の増減・凹凸

導関数の符号と関数の増減

微分可能な関数 f(x) について、導関数 f′(x) が正の値をとる区間では、f(x) の値は単調増加する(より詳しくいえば、狭義単調増加する)。導関数 f′(x) が負の値をとる区間では f(x) の値は単調減少する。導関数 f′(x) の値がつねに 0 であるような区間では、関数 f(x) の値は一定である。

2階導関数の符号と関数の凹凸

2階微分可能な関数 f(x) について、2階導関数 f′′(x) が正の値をとる区間では、関数 f(x) は凸(下に凸)である。f′′(x) が負の値をとる区間では関数 f(x) は凹(上に凸)である。

関数 f(x)x = a の前後で凸から凹に、あるいは凹から凸に切り替わるとき、点 (a, f(a))f(x) のグラフの変曲点であるという[3]。2階微分可能な関数 f(x) については、これは2階導関数 f′′(x) の符号が切り替わる x の値に対応する点ということができる。

多項式近似への応用

関数 f が開区間 In − 1 階微分可能で、n − 1 階導関数 f(n − 1)x = a で微分可能なとき、f(n − 1)x = a における微分係数を f(n)(a) とすれば

脚注

注釈

  1. ^ ここでベクトル値関数の極限は、2乗ノルム、絶対値ノルムなど、どんなノルムを用いて定めても同じことである。
  2. ^ アーボガストが導入したのは変数記号を伴わない Df のような記法だった[4]。その後、多変数関数の微分を扱うために変数記号を付した Dxf のような記法がド・モルガンコーシーにより用いられるようになった[5][6]

出典

  1. ^ 本項に述べる微分法は多くの情報源を持つ非常によく確立された数学の分野である。本項に書かれているような内容の大半は Apostol 1967, Apostol 1969, Spivak 1994 に含まれる。
  2. ^ Banach 1931.
  3. ^ Apostol 1967, §4.18.
  4. ^ a b Cajori 1923.
  5. ^ de Morgan 1836, pp. 267–268.
  6. ^ Cauchy 1840, p. 5.

参考文献

関連文献

印刷物

  • Anton, Howard; Bivens, Irl; Davis, Stephen (February 2, 2005), Calculus: Early Transcendentals Single and Multivariable (8th ed.), New York: Wiley, ISBN 978-0-471-47244-5 
  • Courant, Richard; John, Fritz (December 22, 1998), Introduction to Calculus and Analysis, Vol. 1, Springer-Verlag, ISBN 978-3-540-65058-4 
  • Eves, Howard (January 2, 1990), An Introduction to the History of Mathematics (6th ed.), Brooks Cole, ISBN 978-0-03-029558-4 
  • Larson, Ron; Hostetler, Robert P.; Edwards, Bruce H. (February 28, 2006), Calculus: Early Transcendental Functions (4th ed.), Houghton Mifflin Company, ISBN 978-0-618-60624-5 
  • Stewart, James (December 24, 2002), Calculus (5th ed.), Brooks Cole, ISBN 978-0-534-39339-7 
  • Thompson, Silvanus P. (September 8, 1998), Calculus Made Easy (Revised, Updated, Expanded ed.), New York: St. Martin's Press, ISBN 978-0-312-18548-0 

オンライン本

ウェブサイト


微分

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/02 01:23 UTC 版)

直交曲線座標」の記事における「微分」の解説

ある点からの無限小変位見てみると、明らかに以下が成り立つ d r = ∑ i ∂ r ∂ q i d q i = ∑ i e i d q i {\displaystyle d\mathbf {r} =\sum _{i}{\frac {\partial \mathbf {r} }{\partial q^{i}}}\,dq^{i}=\sum _{i}\mathbf {e} _{i}\,dq^{i}} 定義によれば関数勾配は以下を満たさなければならない(この定義はƒが任意のテンソルであっても真である)。 d f = ∇ f ⋅ d rd f = ∇ f ⋅ ∑ i e i d q i {\displaystyle df=\nabla f\cdot d\mathbf {r} \quad \Rightarrow \quad df=\nabla f\cdot \sum _{i}\mathbf {e} _{i}\,dq^{i}} 従って、ナブラ演算子は必ず、以下を満たさねばならないことになる。 ∇ = ∑ i e i ∂ ∂ q i {\displaystyle \nabla =\sum _{i}\mathbf {e} ^{i}{\frac {\partial }{\partial q^{i}}}} これは、これは直交曲線座標限らない一般的な曲線座標場合にも当てはまる。勾配ラプラシアンのような演算子は、この演算子適切に適用することで得られるのである

※この「微分」の解説は、「直交曲線座標」の解説の一部です。
「微分」を含む「直交曲線座標」の記事については、「直交曲線座標」の概要を参照ください。

ウィキペディア小見出し辞書の「微分」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

微分

出典:『Wiktionary』 (2021/11/27 01:08 UTC 版)

名詞

 びぶん

  1. ある関数導関数求めること。
  2. ある関数y=f(x)において、xの微小変化対するyの変化割合

発音(?)

び↗ぶん

対義語

関連語

翻訳

動詞

活用

サ行変格活用
微分-する

「微分」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



微分と同じ種類の言葉


品詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「微分」の関連用語










微分のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



微分のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
数理検定協会数理検定協会
Copyright©2024 数理検定協会 All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの微分 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの直交曲線座標 (改訂履歴)、グランドポテンシャル (改訂履歴)、時間尺度微分積分学 (改訂履歴)、微分法 (改訂履歴)、atan2 (改訂履歴)、超実数 (改訂履歴)、双球座標系 (改訂履歴)、円柱座標変換 (改訂履歴)、階乗冪 (改訂履歴)、零写像 (改訂履歴)、一様収束 (改訂履歴)、行列式 (改訂履歴)、指数関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Text is available under Creative Commons Attribution-ShareAlike (CC-BY-SA) and/or GNU Free Documentation License (GFDL).
Weblioに掲載されている「Wiktionary日本語版(日本語カテゴリ)」の記事は、Wiktionaryの微分 (改訂履歴)の記事を複製、再配布したものにあたり、Creative Commons Attribution-ShareAlike (CC-BY-SA)もしくはGNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2024 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2024 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2024 GRAS Group, Inc.RSS