特殊相対性理論
特殊相対性理論(とくしゅそうたいせいりろん、独: Spezielle Relativitätstheorie、英: Special relativity)は、あらゆる慣性系間の等価性を公理とした物理学の理論である。特殊相対論(とくしゅそうたいろん)とも訳される。特殊相対性理論は一般相対性理論に包含される理論であるが、一般相対論と特殊相対論を特に区別せずに、相対性理論と呼称されることもある。光速に近い速度で相対移動する観測者対について古典力学 (ニュートン力学)は一般に実験事実と整合しないが、特殊相対性理論においては、観測者に固有の(あるいは観測者間の互いの)時間と空間の測量について定式化することで、これらの関係・法則を捉える。
概要
力学において、電磁気学の説くところによれば、観測者あるいは観測対象の慣性運動を伴う実験において、その結果には従来のニュートン力学の示すところと不整合が生じ得る (#特殊相対性理論に至るまでの背景)。アルベルト・アインシュタインは1905年に発表した論文[1]において特殊相対性理論を発表し、電磁気学的現象まで含めた慣性系間の等価性を公理として、以下の帰結を示した。
- ある観測者に対する、時間の経過と空間中の移動速度との関係
- 相対運動する座標系における時間の経過
- 相対運動する座標系における、“ローレンツ収縮”の空間上の形状にかかる効果
- 質量とエネルギーの等価性
特殊相対性理論はニュートン力学では説明できなかった事柄をことごとく説明しており、とりわけ、ニュートン力学が矛盾をきたす光速度に近い速度で運動する物体の力学的挙動に対して、その実験事実によく整合する。こういった経緯から、特殊相対性理論を含む相対性理論は、現代物理学において重要な一体系として支持されている。定性的には、物体に対するエネルギーの放出・吸収にともなったその質量の減少・増加などが確認されている。
その名の通り、特殊相対性理論は一般相対性理論に包含される特殊論である。一般相対性理論が重力をはじめとする外力(あるいは慣性力)のある非慣性系等の定式化を含むものであるのに対して、特殊相対性理論では慣性力のはたらかない状況(たとえば加減速のない状況)、すなわち慣性系を主眼に据えて扱う。慣性系は非慣性系を含むあらゆる座標系の特殊・特別な場合のひとつであるので、本理論はこれを指すために「特殊」の語を冠して特殊相対論と呼称している。
特殊相対性理論に至るまでの背景
ニュートン力学とガリレイの相対性原理
ニュートンは力学を記述するに当たって以下のような、「絶対時間と絶対空間」を定義した。
「 |
| 」 |
すなわち、時間と空間は、そこにある物体の存在や運動に影響を受けないと仮定した[2]。これをもって、我々が日常的直観として抱いている時間や空間に対する根本的感覚を表そうとした[2]。この絶対時間をかかげるニュートン力学においても、あらゆる慣性系は本質的に等価(すなわち相対的)でもある。ニュートン力学では、2つの慣性座標系(慣性系Aおよび慣性系B)における同一点A = (t, x)とB = (t′, x′)を示す関係は、次に示すガリレイ変換によって結ばれている。
(t′, x′) = (t, x − v t)
- ここで t, x は慣性系Aにおける時刻と位置であり、t′, x′ は慣性系Bにおける時刻と位置である。v は、慣性系Aから見た慣性系Bの移動速度である。
狭義の例を示すならば、ある座標系Aに対して等速直線運動する別の座標系Bがあるとして、これら二つの座標系は本質的に等価(相対的)である。すべての基準となる静止座標系といった概念は、上式では規定されておらず、力学の法則はあらゆる慣性系からの観測について本質的に同一である。すなわち、ガリレイ変換によって形式が変わらない。ガリレイ変換におけるニュートンの運動方程式の不変性、すなわち、この変換でつながる座標系間の等価性は、 ガリレオの相対性原理 (Galilean invariance) と呼ばれる[疑問点 ]。ニュートン力学は、少なくとも当時に再現し得た諸実験事実と整合し、その矛盾があらわになる時代を迎えるまで(以下節)、力学の普遍的法則とも捉えられた。
電磁気学/光学の相対性原理との矛盾
19世紀後半になると、当時既に知られていた電磁気学に関するいくつかの基礎方程式群が、ジェームズ・クラーク・マクスウェルにより系統化され、マクスウェル方程式としてあらわされた。マクスウェル方程式の自由空間における解のひとつは電磁波である。この解が示す電磁波の伝播速度は、当時知られていた精度での光速度 c とよく一致した。このため、光と電磁波が同一のものと捉えられ、マクスウェル方程式は、電磁気学の基礎方程式であるのみならず、光の挙動を記述する支配方程式とみなされるようになった。
同時期において光学分野では、光の回折現象が知られていた。これを説明するために、光を波の伝播と見做す光の波動説が見出され、その支持が広まった。光の波動説では、光も空間を伝播する「もの」であるため、光が伝わる媒質であるエーテルなるものが宇宙に満たされているという仮説が、ホイヘンスにより提案された。
光の波動説およびエーテルを前提とした議論では、エーテルに対して静止している理想的な座標系[注 1][注 2]においてマクスウェル方程式は実験事実をよく支持し、有用な基礎物理方程式とみなされた。その一方で、エーテルに対して運動する基準系から見た状況について、次第に関心が寄せられるようになっていった。
ニュートン力学の基礎方程式であるニュートンの運動方程式は、ガリレイ変換による座標変換のもとで本質的には形を変えない。しかし、電磁気学の基礎方程式であるマクスウェル方程式は、ガリレイ変換のもとで形式が本質的に変化してしまう[注 3]。この数式上の変化は、マクスウェル方程式が真に成り立つ慣性系がこの世界のどこかにあり、(形式を変化させずに)マクスウェル方程式が別の慣性系においても成立できる「ガリレイ変換でない新たな座標変換」が必要だと予想された。
ヘルツはこの変形された方程式を運動座標系における電磁場の支配方程式として導出した[4][5]が、Wilson や Röntgen–Eichenwald の実験によって否定された[6][7][8]。当時の電磁気学についての問題提起として、たとえば以下のようなものが挙げられる。
- 光の伝播速度は実験的に光源の速度に依存しないことが判っている。にもかかわらず、その媒質(エーテル)が存在しないとすることは理解しがたい(よって、エーテルがあるに違いない)。
- エーテルの存在を仮定するならば、エーテルに対して静止する「絶対静止系」が存在することになる[注 2]。これは、絶対空間を否定する相対性原理に反し得る。[9]
このような光の速度と観測者・光源の運動(運動する座標間の変換)に関して混迷した状況があり、なんらかの新たな実験及び理論が求められる状況であった。そのようななか、「ガリレイの相対性原理を是とし、光の速度が慣性系に依存する[9]のであれば、様々な異なる慣性系(運動座標系)から光の速度を計測すれば、マクスウェル方程式と一致する"ただ一つの静止基準系"が見つかるであろう」との発想からマイケルソン・モーリーの実験[10]が行われた。
マイケルソン・モーリーの実験
エーテル前提の解釈
マイケルソン・モーリーの実験 (Michelson–Morley experiment)[10]にて、両氏は、地球の公転移動に着目した。実験空間の環境下において、公転運動の進行方向の前後に対してエーテルの「風」が吹くことを想定して、そこで伝播する2経路の光の干渉縞を見ることを通じて、光のエーテル中の伝播速度を精密に測定しようと試みた。これにより、エーテル中における観測者の移動速度(ここでは地球の公転速度)の影響を調べられると考えたのである。これは当時の技術で十分に機能できる手法であった[注 4]。しかしながら、光の速度に有意の差異は認められず、両氏の期待した観測者移動速度の影響(「エーテルの風」の効果)は実験的に支持されなかった。この当時は「観測者の運動の光速度に及ぼす影響について、”予想されていた水準”よりは、無に近いか全く無いものであろう」と結論された。
一方で、上記の実験を支持できる物理体系を見出す試みとして、ヘルツ、フィッツジェラルド、ローレンツ、ポアンカレなど[11][12]の学者は、エーテル説に付け加えて、辻褄合わせのための仮定を付与することで実験事実と理論を整合させようと試みた。例えばローレンツとフィッツジェラルドは各々独立に、運動する物体が「エーテルの風」を受けて収縮するフィッツジェラルド=ローレンツ収縮[13][注 5](ローレンツのエーテル理論)を提示した。フィッツジェラルド=ローレンツ収縮によって、マイケルソン・モーリーの実験では「エーテルの風」の効果がキャンセルされたと説明しており、その際の収縮の度合いを説明する座標変換式(ローレンツ変換、Lorentz transformation[注 6])を定式化した。しかしながら、この座標変換の理解のみでは検証可能性を欠いていた[注 7]。他方で、ローレンツとポアンカレは、時間の流れが観測者によって異なるとする「局所時間」という相対性理論の萌芽ともいえる思索を提起し[注 8]、Wilson や Röntgen–Eichenwald の実験に合致できる電磁場の方程式を導出していた[15]。
以上の理論はいずれも数式上は実験事実と合致しており、現代物理学が支持するアインシュタインの理論とも整合する。すなわち、このような数式を持ち込みさえすれば、従来の物理理論との実験上の矛盾はひとまず解消されるということは、一定の成果ではあった。しかしこれらの理論は、あくまでもエーテル仮説(絶対空間の存在)と光速度不変則(実験事実)の食い違う部分のみを解消する為に導出された解決策に過ぎず、たとえば下記のような疑問について、理論上・実験上の不満を残した。
ガリレイ原理にのっとった解釈
ガリレイ等価原理に則るならば、マイケルソンらの実験結果を整合するように解釈するには、物体の移動速度と位置と時刻の関係について、まったくの未知の法則の発見が必要であることを示すのみである。
結局、以上までの一連の経緯を経て当時の物理学が得たものは、光速は不変という実験事実が分かったこと、および、時間や空間の絶対的均質性といった前提が揺らいだことであった。前提の思想として「絶対空間」や「絶対時間」に拘泥しがちな一方で、「絶対空間」ではないはずの実験環境下で精密測定される光の速度はどれも一定値(有意の差のない範囲で同一・不変)であり、それに整合する一応の理論は構築可能であった。このように、時間・空間に対する思想と実験結果に対する(いわば応急措置的な)理論の間に、ある種の不調和ともとれる状況があった。そういった従来の疑わしい前提を排除したうえで、新たに基礎的な物理法則体系を提唱・検証する必要が生じていた。これを成し遂げたのが、当時アマチュアの物理研究家であったアインシュタインであった。
特殊相対性理論の基礎
アインシュタインは、自身のいくつかの(主に3つの)論文[17] を通して、「特殊相対性理論」を確立した。その大部分は、1つ目の論文「運動物体の電気力学について ON THE ELECTRODYNAMICS OF MOVING BODIES」に記されている。本節では、アインシュタインの「運動物体の電気力学について」を軸に据えつつ、後世の補足・解釈も踏まえながら、特殊相対性理論の基礎となる部分(公理と数学的準備)について説明する。
『運動物体の電気力学について』概要
アインシュタインによる著作「運動物体の電気力学について」は、序文と10個の節からなる。第5節までは「力学」、第6節以降は「電気力学」とそれぞれ題されている。序文の中で「相対性原理」と「光源の運動と無関係に光速は一定である」という2つの前提が示されている。この2条件をもって、”静止物体のためのマクスウェル理論に基づいて運動物体を論ずるのに十分”と述べられている。
指導原理
アインシュタインの原論文における特殊相対性理論では、以下の二つの事柄を指導原理(前提条件、公理)として、その物理学的枠組みが展開されている[18][19]。#特殊相対性理論に至るまでの背景に述べた「エーテルに対して動いていない”特別なひとつの慣性系”が存在するはず」という思想からの脱却である。
- 特殊相対性原理
- 物理法則に関してすべての慣性系は対等である。すなわち、あらゆる慣性系において物理法則を記述する運動方程式は、その形式が不変である。
- 光速度不変の原理
- 真空中の光の速さは光源の運動状態に無関係である。
特殊相対性原理は運動方程式がある種の座標変換に関して共変であるべき、との原理である。なお、アインシュタインの最初の論文では単に「相対性原理」と呼ばれていた。のちに一般相対性理論が世に出てから、それと区別するために「特殊相対性原理」と呼ばれるようになった。 光速度不変の原理は相対性理論構築に必要な最低限の要請をマクスウェル理論から抽出したものであり、物理的に新しい主張を含むのは特殊相対性原理のみである[20]。
なお、現代では光速度不変の原理として以下のような表現を採用する流儀も多い[21][22]。
- 「真空中の光の速さは一定であり、どの慣性系で測定しても同じ値をとる」
しかし、これは本来、特殊相対性原理と(原論文の)光速度不変の原理から、次に記すように演繹される内容である。
- いま、ある慣性系Sと、Sに対して一定方向に速さvで運動する慣性系S'を考える。光速度不変の原理より、慣性系Sにおいては、あらゆる光の速さが光源の運動状態によらず一定値をとる。ここではそれをcとする。同様に、慣性系S'においては、あらゆる光の速さがc'と観測されるとする。このとき、慣性系間の等価性を主張する特殊相対性原理に従うならば、c' = cであることが言える[注 11]。すなわち、「全ての慣性系において、あらゆる光源からの光の速さは一定値cである」という主張は、アインシュタインの原論文の二つの指導原理から導出可能である。このように、光の速さのような物理定数[注 12]は全ての慣性系で同一の値をとることを、特殊相対性原理は含意しているのである[23][24]。
以上の指導原理に加えて、主に次の2つの要請を満たすことを要求としたうえで、特殊相対性理論は構築されている。
- 「特殊相対性理論は、電磁気学(マクスウェル方程式)と整合するべきである」
- 光の支配方程式とされるマクスウェル方程式には、当時は観測者の運動の効果(慣性系から別の動く慣性系への座標変換への対応)が抜けているとされていた。しかし、光速度を不変とする特殊相対性理論の思想的枠組みを取り入れれば、座標変換を考慮に含めても、マクスウェル方程式自体は修正不要であることが示されている(#特殊相対性理論における電磁気学)。
- 「特殊相対性理論の成果は、それまでのニュートン力学と両立すべきである」
- 特殊相対性理論で用いる慣性座標系間の変換則は、非相対論的極限 (v / c → 0) においてガリレイ変換に漸近する(ここで v は2つの慣性座標系間の速度で、c は真空中の光速度である[21])。そのため、この条件下では、ガリレイ変換のもとで不変のニュートン力学との齟齬はないことが示されている。
なお、これら指導原理や諸要請の他にも、従来の物理学から継承される「空間の等質性」や「空間の等方性」といった暗黙の前提は、特殊相対性理論においても基礎とされている。
変換則の形態
以上の指導原理と諸要請・前提を満たすべく、特殊相対性理論においては、2つの慣性系の間の座標変換則を次のように導入する(実際に特殊相対性理論で用いられる座標変換「ローレンツ変換」を導く)。以下では、c を不変の光速度とし、時刻 t の代わりにc を乗じた ct を用いることとして、時間軸と空間軸を統一的に扱って述べる。
今、慣性運動する2人の観測者(すなわち何ら外力のかかっていない観測者)A、Bがある一点ですれ違ったとする。A の慣性系における位置と時刻を表す座標系を (ct, x) 、B の慣性系における位置と時刻を表す座標系を (ct′, x′) とする。ここで、2つの時刻 ct、ct′ は各観測者に独立なものである。すなわち、特殊相対性理論においてここでまさに、絶対時間が放棄されている(二人の観測者に共通の「絶対時間」はどこにも存在しない)[25]。もちろん、位置座標軸も各観測者に独立固有の存在であり、二人の観測者に共通の空間的尺度「絶対空間」もない。なお、以降では便宜上、二人の観測者がすれ違った際に、位置と時刻の起点(一般に原点・ゼロ点)を規定することが多いが、位置と時刻の起点は再現性のある然るべき手段によって適宜取り直してもよい。また、二人の観測者に共通の絶対時間も絶対空間も存在せず不可知である一方で、それぞれの観測者が(何らかの手段で)もう一方の観測者が観測した時刻・位置の値を知ることは一般に妨げられない[注 13]。
ここで、2つの座標系の間の一般的な変換規則の数学表現として、テイラー展開による座標変換規則をまず考える。(ct, x)あるいは (ct′, x′) という表現から示唆されるように、各慣性系での時刻・空間座標の数値の組は4次元の行ベクトル・列ベクトルとして扱える(時刻(1次元)と空間(3次元)をあわせた4次元。下記では縦ベクトル(列ベクトル)の表記を用いる)。一般に座標変換規則は、何らかの定数ベクトル b→ と行列 Λ (この場合では4行4列の行列)とを用いて、次のように記述できる。
時間1次元+空間2次元のミンコフスキー空間を描いた抽象図。
過去光円錐の範囲内において発生した森羅万象の結果が観測者の示す中心点へと集まり、その結果に対する森羅万象が未来光円錐の範囲内へと時間軸に沿って広がっていく様を表現している。空間方向の次元を2に落としたミンコフスキー空間を図示した。図では何らかの慣性系から見たミンコフスキー空間が描かれており、この慣性系に対して静止している観測者 (observer) が原点にいる。この観測系における座標の成分表示を (ct, x, y) とする。
この観測者にとっての時間軸 (ct, 0, 0) は図で「時間」と書かれた軸であり、この観測者にとって時間は時間軸にそって流れる。従って図の上方が未来であり、下方が過去である。観測者が慣性系に対して静止している事を仮定したので、時間が t 秒経つと、観測者のミンコフスキー空間上の位置は (ct, 0, 0) に移る。
一方、この観測者にとって現在にある世界点の集まり(すなわちこの観測者にとっての空間方向)は図の「現在」と書かれた平面であり、この観測者からみた空間方向の座標軸 (0, x, 0), (0, 0, y) が「空間」と書かれた二本の軸である。
世界距離の定義から、原点を通る光の軌跡は
- (ct)2 − x2 − y2 = 0
を満たす。この方程式を満たす世界点の集合は2つの円錐として描かれ、これを光円錐という。図の上にある逆さまの円錐が未来の光円錐 (future light cone) であり、図の下にある円錐が過去の光円錐 (past light cone) である。
原点を通る光の軌跡は、光円錐上にある直線である。観測者は光を使って物をみるので、過去の光円錐の上にある世界点が観測者に見える(もちろん、他の物体に遮られなければ)。
ミンコフスキー空間上の4元ベクトル x→ の終点が(未来もしくは過去の)光円錐の内側にあるとき x→ は時間的であるといい、終点が光円錐の外側にあるとき x→ は空間的であるといい、光円錐上にあるとき x→ は光的であるという。定義より明らかに、以下が成り立つ:x→ が時間的、空間的、光的であるのは、η(x→, x→) がそれぞれ正、負、0のときである。
光円錐上の点 x→ は η(x→, x→) という座標系と無関係な値の符号で特徴づけられるので、4元ベクトルが時間的か、空間的か、光的かは原点を起点するどの慣性座標系からみても不変である事がわかる。特に、光円錐は原点を起点するどの慣性座標系からみても同一である。
慣性座標系の数学的特徴づけ
原点Oを通る観測者から見た慣性座標系を一つ固定すると、前述のようにその慣性座標系における二つの位置ベクトル間のミンコフスキー内積は
ローレンツ変換の図示。(ct,x) を (ct',x) に変換する様子が ζ ≈ +0.66に対して描かれている。 ローレンツ変換の具体的な形を求める為、まずは基底をより解析がしやすいものに置き換える。
基底 e→0, e→1, e→2, e→3 の「空間部分」である e→1, e→2, e→3 の張るミンコフスキー空間上の部分空間を E とし、同様に基底 e′→0, e′→1, e′→2, e′→3 の空間部分である e′→1, e′→2, e′→3 の張るミンコフスキー空間上の部分空間を E′ とする。これらはそれぞれの慣性座標系における空間方向を表している。
e→1, e→2, e→3 を E 内で回転した別の正規直交基底に取り替えても、e→0, e→1, e→2, e→3 と実質的に同じ慣性系を表しているとみなしてよい。そこで (e→1, e→2, e→3), (e′→1, e′→2, e′→3) をそれぞれ E 内、E′ 内で回転することで、ローレンツ変換 φ の行列表示 Λ を簡単な形で表すことを試みる[注 18]。
E と E′ の共通部分 E ∩ E′ を U とすると、U は4次元ベクトル空間上の2つの3次元部分ベクトル空間の共通部分なので、U は2次元(以上)のベクトル空間である。従って E 内で (e→1, e→2, e→3) を回転することで、e→2, e→3 ∈ U としてよく、同様に E′ 内の回転により e′→2, e′→3 ∈ U とできる。最後に U 内で e→'1, e→'2 を回転することで e′→2 = e→2、e′→3 = e→3 としてよい。
これらの基底に対し、(L1)式を満たすローレンツ変換 φ の行列表現を Λ = (Λμν)μν とする。これはすなわち、
ローレンツ収縮。図では時間 ct を w で表している。慣性系 (x',w') に固有長さが l の棒(x' 軸の濃い紫)があり、この棒の時空間上の軌跡が薄紫である。それを別の慣性系 (x,w) で計ると長さが l/γ に縮んで見える。ここで γ はローレンツ因子 1/√1 − (v/c)2 である。慣性系 (x',w') と慣性系 (x,w) とでは棒の測っている箇所が違うことに注意。図の双曲線は原点からの世界距離の2乗 w2 − x2 が −l2 になる箇所。 以下では話を簡単にするため時間1次元+空間1次元の計2次元の場合について述べる。
ある慣性系 (ct′, x′) において静止している剛体について、この慣性系 (ct′, x′) で測った剛体の長さをこの剛体の固有長さと呼ぶ。
今、固有長さ l の棒が慣性系 (ct′, x′) に対して静止しており、これを別の慣性系 (ct, x) から眺めたとする。話を簡単にするため、2つの慣性系の原点はいずれも棒の1つの端点 O に一致しているものとする。
棒は慣性系 (ct′, x′) に対して静止しているので、棒の他方の端点が描く世界線 C は (ct′, l) と t′ でパラメトライズできる。
慣性系 (ct, x) における現在 (0, x) と世界線 C との交わりはローレンツ変換により
- Lorentz, Hendrik Antoon (1904), “Electromagnetic phenomena in a system moving with any velocity smaller than that of light [光速以下の速度で運動する系における電磁現象]” (英語), Proceedings of Royal Netherlands Academy of Arts and Sciences (Royal Netherlands Academy of Arts and Sciences) 6: 809–831, ウィキソースより閲覧。
- H. Poincaré (23 July 1905), “Sur la dynamique de l'électron [電子の動力学について]” (フランス語), Rendiconti del Circolo matematico di Palermo 21: 129–176, ウィキソースより閲覧。
- Albert Einstein; Hermann Minkowski (1920). The principle of relativity; original papers. Meghnad Saha, Satyendranath Bose (translate). OCLC 6308161
- H. J. Hay; J. P. Schiffer; T. E. Cranshaw; P. A. Egelstaff (15 February 1960). “Measurement of the Red Shift in an Accelerated System Using the Mössbauer Effect in Fe57”. Phys. Rev. Lett. (Harwell, England: Atomic Energy Research Establishment) 4 (4): 165–166. doi:10.1103/PhysRevLett.4.165 .
関連項目
関連人物
外部リンク
- (英語) Translation:The Sagnac Effect: An Experimentum Crucis in Favor of the Aether?, ウィキソースより閲覧。
- ブリタニカ国際大百科事典 小項目事典『特殊相対性理論』 - コトバンク
- Special relativity - ブリタニカ百科事典
- special relativityのページへのリンク
「special relativity」の関連用語
special relativityのお隣キーワード 検索ランキング
special relativityのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの特殊相対性理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。ビジネス|業界用語|コンピュータ|電車|自動車・バイク|船|工学|建築・不動産|学問
文化|生活|ヘルスケア|趣味|スポーツ|生物|食品|人名|方言|辞書・百科事典ご利用にあたって便利な機能お問合せ・ご要望会社概要ウェブリオのサービス©2024 GRAS Group, Inc.RSS