Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
24.10.2014 Views

Modeling Techniques - 電力電子 系統與晶片設計實驗室 - 國立交通大學

Modeling Techniques - 電力電子 系統與晶片設計實驗室 - 國立交通大學

Modeling Techniques - 電力電子 系統與晶片設計實驗室 - 國立交通大學

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

台 灣 新 竹 ‧ 交 通 大 學 ‧ 前 瞻 電 力 電 子 中 心 808 實 驗 室 ( 電 力 電 子 系 統 與 晶 片 實 驗 室 )<br />

課 程 名 稱 : 數 位 電 源 控 制 (Digital Power Control)<br />

<strong>Modeling</strong> and Control of DC-DC Converters<br />

直 流 / 直 流 轉 換 器 之 模 型 與 控 制<br />

鄒 應 嶼<br />

教 授<br />

國 立 交 通 大 學<br />

電 機 與 控 制 工 程 研 究 所<br />

2012 年 3 月 12 日<br />

Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

Advanced Power Electronics Center, NCTU, Taiwan


台 灣 新 竹 交 通 大 學 808 實 驗 室 ( 電 力 電 子 系 統 與 晶 片 實 驗 室 )<br />

<strong>Modeling</strong> and Control of DC-DC Converters<br />

Switching power converters<br />

+<br />

+<br />

+ − +<br />

+<br />

−<br />

− − +<br />

−<br />

−<br />

PWM<br />

Modulator<br />

Loop<br />

Compensator<br />

−<br />

+<br />

Switching converter<br />

power input<br />

Load<br />

+<br />

v g (t) +<br />

–<br />

R v(t)<br />

–<br />

feedback<br />

connection<br />

transistor<br />

gate driver<br />

δ( t)<br />

δ (t)<br />

Pulse-width<br />

modulator<br />

v( t)<br />

v c<br />

compensator<br />

G c<br />

( s)<br />

voltage<br />

reference<br />

+ – Hv<br />

vref<br />

dT s<br />

T s<br />

t<br />

t<br />

Controller<br />

Efficiency<br />

Output Impedance<br />

Power Electronic Systems & Chips Lab., NCTU, Taiwan


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 力 電 子 系 統 晶 片 、 數 位 電 源 、DSP 控 制 、 馬 達 與 伺 服 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

DC-DC Converters: <strong>Modeling</strong> <strong>Techniques</strong><br />

鄒 應 嶼<br />

教 授<br />

國 立 交 通 大 學<br />

電 機 與 控 制 工 程 研 究 所<br />

2012 年 3 月 10 日<br />

LAB808<br />

NCTU<br />

Lab808: 電 力 電 子 系 統 與 晶 片 實 驗 室<br />

Power Electronic Systems & Chips, NCTU, TAIWAN<br />

台 灣 新 竹 • 交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />

Filename: \B01 投 影 片 :【1】 電 力 電 子 ( 研 究 所 )\PE-07:【1 基 礎 】02:DC-DC - <strong>Modeling</strong> <strong>Techniques</strong>.ppt<br />

1/107<br />

DC-DC Converters: <strong>Modeling</strong> <strong>Techniques</strong><br />

1. <strong>Modeling</strong> of Switching Converters<br />

2. State-Space Averaging Technique<br />

3. PWM Switch <strong>Modeling</strong> Technique<br />

4. CIECM <strong>Modeling</strong> <strong>Techniques</strong><br />

5. <strong>Modeling</strong> of Current-Mode DC-DC Converters<br />

6. Difficulties with <strong>Modeling</strong> and Control of SPS<br />

2/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

1


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

<strong>Modeling</strong> of Switching Converters<br />

電 力 電 子 系 統 與 晶 片 實 驗 室<br />

Power Electronic Systems & Chips Lab.<br />

交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />

3/107<br />

<strong>Modeling</strong> of Switching Converters<br />

• Why <strong>Modeling</strong> ?<br />

• Classification of <strong>Modeling</strong> <strong>Techniques</strong><br />

• <strong>Modeling</strong> of Switching Power Converters<br />

• State-Space Averaging Technique<br />

• Transfer Functions<br />

• Small-Signal Equivalent Circuit Model<br />

4/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

2


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Objective of <strong>Modeling</strong><br />

Static Characteristics<br />

Objective of <strong>Modeling</strong><br />

Analysis<br />

Simulation<br />

Design<br />

Efficiency<br />

Output Impedance<br />

5/107<br />

Difficulties with <strong>Modeling</strong> of SPS<br />

Nonsmooth Systems (time and state discontinuity)<br />

Nonlinearity due to operating point<br />

Concepts of existence, uniqueness, stability not clearly<br />

defined for systems with discontinuous right half-plan zero<br />

Inherent Nonlinear Dynamic Behavior!<br />

Concept of chaotic dynamics relatively new to power<br />

electronics<br />

Magnetics<br />

Noises and EMI<br />

Thermal and Temperature Distribution<br />

6/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

3


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Working Profile of a Switching Converter<br />

v o<br />

Power-on<br />

i o<br />

Dell power edge 2400 (web/SQL server)<br />

Power-off<br />

Watts<br />

% CPU time<br />

7/107<br />

Static Characteristics of a DC-DC Converter<br />

L<br />

Buck<br />

v i<br />

D<br />

C<br />

v o<br />

L<br />

D<br />

Boost<br />

v i<br />

C<br />

v o<br />

D<br />

Buck-Boost v i L C<br />

v o<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

4


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Operating Region Operating Point Operating Mode?<br />

1.0<br />

V<br />

V<br />

OUT<br />

IN<br />

D = 1.0<br />

0.9<br />

V IN<br />

= constant<br />

0.75<br />

0.50<br />

DCM<br />

CRM<br />

0.7<br />

0.5<br />

CCM<br />

V<br />

OUT(max)<br />

V<br />

IN(min)<br />

0.25<br />

0.3<br />

0.1<br />

V<br />

OUT(min)<br />

V<br />

IN(max)<br />

0<br />

0 0.5 1.0 1.5 2.0<br />

I OUT(min)<br />

I OUT(max)<br />

I<br />

(<br />

I<br />

o<br />

LB, max<br />

)<br />

9/107<br />

Operating Point Steady-State Trajectory<br />

1.0<br />

V o /V i = 1.0<br />

D = 1.0<br />

Itest<br />

0.75<br />

0.9<br />

0.7<br />

I test<br />

2A<br />

R o<br />

= 500Ω<br />

CCM<br />

0.5<br />

0.5<br />

5msec<br />

100msec<br />

0.25<br />

0<br />

0.3<br />

DCM<br />

0.1<br />

20% 40% 50% 60% 80% 90% 100% 110%<br />

If the components are not ideal, its parasitic<br />

parameters will change its static curves. The<br />

illustrated example is obtained with the<br />

following parameters:<br />

R DS(ON) = 50 mΩ<br />

MOSFET reverse diode voltage drop = 0.7V<br />

Diode voltage drop = 0.7V<br />

Inductor ESR = 25mΩ<br />

Capacitor ESR = 2mΩ<br />

10/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

5


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Operating Point Small-Signal Perturbations<br />

1.0<br />

V o /V i = 1.0<br />

D = 1.0<br />

電 流 負 載 的 步 階 切 換 !<br />

0.9<br />

0.75<br />

0.7<br />

CCM<br />

Step Load Change<br />

1A<br />

B<br />

0.5<br />

0.5<br />

Output Voltage<br />

0A<br />

0.3<br />

0.25<br />

DCM<br />

0.1<br />

Inductor Current<br />

0<br />

20% 40% 50% 60% 80% 90% 100% 110%<br />

11/107<br />

Operating Point Frequency Response<br />

Q Y = 7.070<br />

R o<br />

Q B = 3.535<br />

Q A = 1.414<br />

Q X = 0.707<br />

D = 1.0<br />

0.9<br />

OPY<br />

0.7<br />

Q B<br />

= 3.535 Q A<br />

= 1.414<br />

CCM<br />

0.5<br />

Q Y<br />

= 7.07<br />

0.3<br />

OPX<br />

Q X<br />

= 0.707<br />

DCM<br />

0.1<br />

20% 40% 50% 60% 80% 90% 100% 110%<br />

12/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

6


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Operating Region State-Variable Plane<br />

1.0<br />

0.75<br />

0.5<br />

0.25<br />

V o /V i = 1.0<br />

DCM<br />

D = 1.0<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

CCM<br />

則<br />

有<br />

部<br />

分<br />

會<br />

進<br />

入<br />

不<br />

連<br />

續<br />

導<br />

通<br />

工<br />

作<br />

區<br />

。<br />

通<br />

工<br />

作<br />

區<br />

內<br />

,<br />

但<br />

是<br />

從<br />

工<br />

作<br />

點<br />

到<br />

工<br />

作<br />

點<br />

從<br />

工<br />

作<br />

點<br />

到<br />

工<br />

作<br />

點<br />

的<br />

軌<br />

跡<br />

均<br />

在<br />

連<br />

續<br />

導<br />

0<br />

10% 20%<br />

40% 60% 80% 90% 100% 110%<br />

13/107<br />

<strong>Modeling</strong> of Switching Power Converters<br />

• <strong>Modeling</strong> of Voltage-Mode DC-DC Converters<br />

- Power Stage <strong>Modeling</strong><br />

• State-space average model (Middlebrook and C'uk 1977)<br />

• Discrete time-domain model (Lee 1979)<br />

• Equivalent circuit model (Chetty 1981)<br />

• Unified topological model (Pietkiewicz and Tollik, 1987)<br />

• PWM switch model (Voperian 1988)<br />

• Injected-absorbed-current model (Kisovski 1991)<br />

- Error Processor <strong>Modeling</strong> (Chetty 1982)<br />

- Pulsewidth Modulator <strong>Modeling</strong><br />

• Describing function model (Lee 1983)<br />

• Equivalent circuit model (Bello 1981)<br />

- Larger Signal <strong>Modeling</strong> (Vicua 1992)<br />

• <strong>Modeling</strong> of Current-Mode DC-DC Converters<br />

- Equivalent Circuit Model (Chetty 1981)<br />

- y-parameter Model (Middlebrook 1989)<br />

14/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

7


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

<strong>Modeling</strong> <strong>Techniques</strong><br />

State Space Averaging Method<br />

[1] R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter<br />

stages,” IEEE PESC Conf. Rec., pp. 18-34, 1976. [Pioneer Paper]<br />

[2] S. Cuk and R. D. Middlebrook, “A general unified approach to modeling switching DC-to-DC<br />

converters in discontinuous conduction mode,” IEEE PESC Conf. Rec., pp. 36-57, 1977.<br />

<strong>Modeling</strong> of Switching Converters in DCM Operation<br />

[1] D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE<br />

Trans. Power Electron., vol. 6, pp. 476–490, May 1991.<br />

[2] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of PWM<br />

converters operating in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 16, pp.<br />

482-492, July 2001.<br />

R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter stages,”<br />

IEEE PESC Conf. Rec., pp. 18-34, 1976.<br />

15/107<br />

<strong>Modeling</strong> <strong>Techniques</strong> ..<br />

PWM Switch Method<br />

[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I:<br />

Continuous Conduction Mode,” IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496,<br />

May 1990.<br />

[2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II:<br />

Discontinuous Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp.<br />

497-505, May 1990.<br />

Fast Analytical <strong>Techniques</strong> for Electrical and Electronic Circuits,<br />

V. Vorperian, Cambridge Press, 2004.<br />

Vatche Vorperian, (1984) Analysis of resonant converters. Dissertation (Ph.D.), California<br />

Institute of Technology, Advised by S. Cuk.<br />

1. Introduction<br />

2. Transfer functions<br />

3. The extra element theorem<br />

4. The N-extra element theorem<br />

5. Electronic negative feedback<br />

6. High-frequency and microwave circuits<br />

7. Passive filters<br />

8. PWM switching dc-to-dc converters<br />

16/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

8


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

<strong>Modeling</strong> <strong>Techniques</strong> ..<br />

Discrete Time-Domain Method<br />

[1] F. C. Lee, R. P. Iwens, Y. Yu, and J. E. Triner, “Generalized computer-aided discrete time-domain<br />

modeling and analysis of DC-DC converters,” IEEE Trans. IECI, vol. 26, pp. 58-69, May 1979.<br />

Equivalent Circuit Method<br />

[1] P.R.K. Chetty, Switch-Mode Power Supply Design, TAB BOOKS, Inc., 1986.<br />

<strong>Modeling</strong> of Current-Programmed Converter<br />

[1] R. D. Middlebrook, “<strong>Modeling</strong> current programmed buck and boost converters,” IEEE Trans. on<br />

Power Electronics, vol. 4, pp. 36-52, January 1989.<br />

[2] Teuvo Suntio, “Analysis and modeling of peak-current-mode-controlled buck converter in DICM,”<br />

IEEE Trans. on Ind. Electron., vol. 48, no. 1, pp. 127-135, Feb. 2001.<br />

Unified Topological Method<br />

[1] Pietkiewicz, A. and D. Tollik, “Unified topological modeling method of switching dc-dc converters<br />

in duty-ratio programmed mode,” IEEE Trans. on Power Electron., vol. 2, no. 3, pp. 218-226, July<br />

1987.<br />

Injected-Absorbed-Current Method<br />

[1] Kislovski, A. S., R. Redl, and N. O. Sokal, Dynamic Analysis of Switching-Mode DC/DC<br />

Converters, Van Nostrand Reinhold, 1991.<br />

17/107<br />

<strong>Modeling</strong> <strong>Techniques</strong> ..<br />

Small-Signal z-Domain Analysis<br />

[1] D. M.Van de Sype, K. De Gusseme, F.M.L.L. DeBelie, A. P. Van den Bossche, and J. A. Melkebeek,<br />

“Small-signal z -domain analysis of digitally controlled converters,” IEEE Transactions on Power<br />

Electronics, vol. 21, no. 2, pp. 470- 478, March 2006.<br />

[2] D. M.Van de Sype, K. De Gusseme, A. P. Van den Bossche, and J. A. Melkebeek, “Experimental<br />

verification of the z-domain model for digitally controlled converters,” IEEE Power Electronics<br />

Specialists Conference, vol., no., pp.2164-2170, 16-16 June 2005.<br />

[3] Yu-Cheng Lin; Dan Chen; Yen-Tang Wang; Wei-Hsu Chang; “A novel loop gain correction method<br />

for digitally controlled DC-DC power converters,” IEEE Energy Conversion Congress and Exposition<br />

(ECCE) pp.3530-3535, 20-24 Sept. 2009.<br />

Digital Current-Mode Control<br />

[1]Y. S. Jung, “Small-signal model-based design of digital current-mode control,” IEE Proceedings -<br />

Electric Power Applications, vol.152, no.4, pp. 871- 877, 8 July 2005.<br />

[2] S. Chattopadhyay and S. Das, “A digital current-mode control technique for DC–DC converters,”<br />

IEEE Transactions on Power Electronics, vol.21, no.6, pp.1718-1726, Nov. 2006.<br />

18/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

9


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

<strong>Modeling</strong> of DC-DC Converters<br />

Switch-Mode Power Supplies -<br />

SPICE Simulations and Practical<br />

Designs, Christophe Basso,<br />

McGraw-Hill, Feb. 1, 2008.<br />

Fast Analytical <strong>Techniques</strong> for Electrical and Electronic Circuits,<br />

V. Vorperian, Cambridge Press, 2004.<br />

Computer-Aided Analysis<br />

and Design of Switch-Mode<br />

Power Supplies, Yim-Shu<br />

Lee, Marcel Dekker, Inc., Feb.<br />

23, 1993.<br />

Mikko Hankaniemi, Dynamical<br />

Profile of Switched-Mode<br />

Converter – Fact or Fiction?, PhD<br />

Thesis, Tampere University of<br />

Technology, 2007.<br />

SMPS Simulation with SPICE 3,<br />

Steven M. Sandler, McGraw-Hill<br />

Professional, Dec. 1, 1996.<br />

δ()<br />

t<br />

δ (t)<br />

T s dT s<br />

Pulse-width<br />

modulator<br />

t<br />

v( t)<br />

v c<br />

G c ( s)<br />

t<br />

+ – H v<br />

voltage<br />

reference vref<br />

Teuvo Suntio, Dynamic Profile of<br />

Switched-Mode Converter:<br />

<strong>Modeling</strong>, Analysis and Control,<br />

John Wiley, May 2009.<br />

Dynamic Analysis of Switching-Mode<br />

DC/DC Converters, Andre'S. Kislovski,<br />

Richard Redl and Nathan O. Sokal, Van<br />

Nostrand Reinhold, New York, USA, 1991<br />

Complex Behavior of Switching<br />

Power Converters,<br />

Chi Kong Tse, CRC Press, 2004.<br />

PWM Switch <strong>Modeling</strong> of DC-DC Converters<br />

Advances in Averaged Switch <strong>Modeling</strong> and Simulation<br />

Dragan Maksimovic and Robert Erickson<br />

Colorado Power Electronics Center (CoPEC)<br />

IEEE PESC1999 Seminar<br />

The “PWM Switch” in mode transitioning SPICE models<br />

PCIM Germany 2005.<br />

Christophe Basso – On-Semi Application Manager<br />

20/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

10


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Timothy Hegarty, Voltage-mode control<br />

and compensation - Intricacies for buck<br />

regulators, EDN 2008.<br />

Control of DC-DC Converters<br />

Ray Ridley, 30 Years of currentmode<br />

control, 2008.<br />

Robert Mammano, SPS Topology -<br />

voltage Mode versus current-mode,<br />

DN-62 slua119.<br />

Lloyd Dixon, Control loop cookbook,<br />

TI-Unitrode slup113a.<br />

Lloyd Dixon, Average Current<br />

Mode Control of Switching<br />

Power Supplies, 1990.<br />

BUCK Converter Control Cookbook,<br />

Zach Zhang, Alpha & Omega<br />

Semiconductor, Inc. PIC-003.<br />

δ (t)<br />

gate driver<br />

Pulse-width<br />

modulator<br />

v c<br />

compensator<br />

G c ( s)<br />

+ –<br />

H. P. Forghani-Zadeh and G.A. Rincon-Mora,<br />

"Current-sensing techniques for DC-DC converters,"<br />

The IEEE 45th Midwest Symposium on Circuits and<br />

Systems (MWSCAS), Aug. 2002.<br />

δ()<br />

t<br />

T s dT s<br />

t<br />

v( t)<br />

t<br />

voltage<br />

reference vref<br />

J. T. Mossoba and P. T. Krein, "Design and control<br />

of sensorless current mode DC-DC converters,"<br />

IEEE APEC Conf. Rec., 2003.<br />

Brian Lynch, Current-mode vs. voltage-mode<br />

control in synchronous buck converters, TI.<br />

<strong>Modeling</strong> and Control of DC-DC Converters<br />

Define the Source<br />

Output Impedance!<br />

L<br />

L<br />

D<br />

Define the Operating Point!<br />

v i<br />

D<br />

C<br />

v o<br />

v i<br />

C<br />

v o<br />

Define the Load<br />

Disturbance<br />

Z os<br />

v g<br />

v o<br />

i o<br />

v~s<br />

Buck Converter<br />

Boost Converter<br />

V s<br />

d<br />

v i<br />

L<br />

D<br />

C<br />

v o<br />

v i<br />

L 1 C 1<br />

D C 2<br />

v o<br />

R L<br />

~<br />

i d<br />

Define the<br />

Line<br />

Disturbance<br />

<br />

Buck/Boost Converter<br />

PW M<br />

Modulator<br />

digital signal processor<br />

C , uk Converter<br />

Switching power converters<br />

Loop<br />

Compensator<br />

analog signal processor<br />

v R<br />

load<br />

Output voltage<br />

feedback only!<br />

22/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

11


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Small-Signal <strong>Modeling</strong> of a<br />

Buck Converter<br />

1.0<br />

0.75<br />

0.50<br />

0.25<br />

V<br />

V<br />

OUT<br />

IN<br />

V IN<br />

= constant<br />

D = 1.0<br />

0.9<br />

CRM<br />

0.7<br />

CCM<br />

0.5<br />

0.3<br />

DCM<br />

0.1<br />

I<br />

(<br />

I<br />

0<br />

0 0.5 1.0 1.5 2.0<br />

o<br />

LB, max<br />

)<br />

V. Vorperian, "Simplified<br />

Analysis of PWM Converters<br />

Using Model of PWM Switch<br />

Part I: Continuous Conduction<br />

Mode," IEEE Trans. on Aero. and<br />

Elec. Sys., vol. 26, no. 3, pp. 490-496,<br />

May 1990.<br />

V. Vorperian, "Simplified<br />

Analysis of PWM Converters<br />

Using Model of PWM Switch<br />

Part II: Discontinuous<br />

Conduction Mode," IEEE Trans. on<br />

Aero. and Electron. Sys., vol. 26, no. 3,<br />

pp. 497-505, May 1990.<br />

Averaged Switch <strong>Modeling</strong> of<br />

Boundary Conduction Mode DCto-DC<br />

Converters<br />

J, Chen, R. Erickson, and D.<br />

Maksimovic, IECON 2001.<br />

<strong>Modeling</strong> of Switching Converters in DCM Operation<br />

1.0<br />

V<br />

V<br />

OUT<br />

IN<br />

D = 1.0<br />

0.9<br />

V IN<br />

= constant<br />

V. Vorperian, "Simplified<br />

Analysis of PWM Converters<br />

Using Model of PWM Switch<br />

Part II: Discontinuous<br />

Conduction Mode," IEEE Trans. on<br />

Aero. and Electron. Sys., vol. 26, no. 3,<br />

pp. 497-505, May 1990.<br />

0.75<br />

0.50<br />

CRM<br />

0.7<br />

0.5<br />

CCM<br />

D. Maksimovic and S. Cuk, “A<br />

unified analysis of PWM<br />

converters in discontinuous<br />

modes,” IEEE Trans. Power<br />

Electron., vol. 6, pp. 476–490,<br />

May 1991.<br />

0.3<br />

DCM<br />

0.25<br />

0.1<br />

I<br />

(<br />

I<br />

0<br />

0 0.5 1.0 1.5 2.0<br />

o<br />

LB, max<br />

)<br />

J. Sun, D. M. Mitchell, M. F.<br />

Greuel, P. T. Krein, and R. M.<br />

Bass, “Averaged modeling of<br />

PWM converters operating in<br />

discontinuous conduction mode,”<br />

IEEE Trans. Power Electron.,<br />

vol. 16, pp. 482-492, July 2001.<br />

24/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

12


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Systematic View of DC-DC Converters<br />

Selection of Switching Frequency and PWM Strategies<br />

Efficiency<br />

Time Responses<br />

Frequency Responses<br />

Output Impedance<br />

Current Injection Testing<br />

PWM DC-DC Power Conversion and Regulation<br />

v i<br />

v o<br />

v p<br />

v x<br />

D<br />

Z f<br />

Z i<br />

D T ON<br />

=<br />

T ON<br />

T<br />

T<br />

v x<br />

v ref<br />

CLOCK RAMP<br />

26/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

13


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Signal Composition of a PWM DC-DC Converters<br />

v g<br />

$v g<br />

v $v<br />

V<br />

V g<br />

i g<br />

I g<br />

i $i<br />

I<br />

load<br />

$d<br />

$i g<br />

clock ramp<br />

D<br />

v c<br />

$v c<br />

modulatorpower-stage<br />

subsystem<br />

comparator<br />

V c<br />

analog<br />

amplifier<br />

reference<br />

27/107<br />

Frequency Spectrum<br />

output<br />

spectrum<br />

bandpass<br />

filter<br />

frequency<br />

f 2f 3f f s - f f s f s+ f 2f s 3f s<br />

28/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

14


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

AC and DC Quantities in a PWM Switching DC-DC<br />

Converter<br />

v o<br />

$v o<br />

Analysis of Dynamic Responses<br />

V o<br />

I + i$<br />

i<br />

i<br />

v d<br />

i o<br />

$i o<br />

I o<br />

INPUT<br />

V + v$<br />

I<br />

i<br />

L i o<br />

v d C R v o<br />

o<br />

Load<br />

v c $v c<br />

V c<br />

Z f<br />

Z i<br />

v c<br />

v ref<br />

CLOCK RAMP<br />

29/107<br />

Small-Signal <strong>Modeling</strong> of a Switching Power Converter<br />

i = I + iˆ<br />

i<br />

I<br />

i<br />

power stage<br />

L<br />

i = I + iˆ<br />

v = V + v$<br />

o<br />

O<br />

o<br />

o O o<br />

vi = VI +$ vi<br />

C<br />

open<br />

Z<br />

= + $ f<br />

d D d<br />

v c<br />

R L<br />

v o<br />

Z i<br />

$v i<br />

îo<br />

$d<br />

Averaged<br />

Power Stage<br />

The concerned transfer functions under<br />

small perturbations can be measured<br />

under an open loop condition.<br />

$v o<br />

v ref<br />

duty cycle<br />

modulator<br />

error processor<br />

30/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

15


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Definition of<br />

∧<br />

d<br />

power switch gating waveform<br />

vo( t)<br />

io( t)<br />

v t i( )<br />

vˆ<br />

, iˆ<br />

, vˆ<br />

o<br />

small signal perturbation<br />

o<br />

i<br />

V , I , V<br />

O O I<br />

t<br />

t on<br />

T<br />

d(t)<br />

D<br />

dt ()<br />

t<br />

D =<br />

on<br />

T<br />

t<br />

dˆ<br />

x<br />

=<br />

T<br />

V , I , V<br />

O<br />

O<br />

I<br />

t<br />

t x<br />

t<br />

31/107<br />

Small-Signal <strong>Modeling</strong> of Voltage-Mode DC-DC<br />

Converters<br />

$v i<br />

$i o<br />

$ d<br />

Buck<br />

Boost<br />

Buck/Boost<br />

Power Stage<br />

$v o<br />

Pulse<br />

Modulator<br />

$v c<br />

Error<br />

Processor<br />

$v r<br />

32/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

16


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

<strong>Modeling</strong> of Single-Loop DC-DC Converters<br />

$v i v<br />

$i $<br />

o<br />

$d<br />

$ ; $ $ ; $ o<br />

vo<br />

vo<br />

v i d$<br />

i o<br />

$v o<br />

$v i<br />

$i o<br />

$ d<br />

$v c<br />

$v o<br />

G v<br />

K PWM<br />

34/107<br />

v$ = f( v$ , i$ , d $ )<br />

o i o<br />

Z p<br />

G d<br />

-A(s)<br />

K PWM<br />

$v c<br />

A(s)<br />

33/107<br />

Small Signal Transfer Functions<br />

v$<br />

Gv<br />

() s =<br />

v<br />

Z<br />

G<br />

k<br />

p<br />

d<br />

v$<br />

=<br />

i<br />

v $<br />

o<br />

=<br />

d<br />

PWM<br />

o<br />

$<br />

i d $ = 0,$<br />

i o = 0<br />

o<br />

$<br />

o d $ = 0, v$<br />

i = 0<br />

$<br />

v $ i= 0 , i$<br />

o=<br />

0<br />

dˆ<br />

=<br />

ˆ<br />

v c<br />

: Open-loop input-to-output<br />

: Open-loop output impedance<br />

: Control to output transfer function<br />

: PWM modulator gain<br />

KPWM = 1<br />

V p<br />

: PWM dc gain<br />

v$<br />

As () =<br />

v$<br />

c<br />

o<br />

: Compensator gain<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

17


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

<strong>Modeling</strong> of PWM DC-DC Converters<br />

• A dc-to-dc switching regulator incorporating a three-port duty ratio<br />

programmed modulator-power-stage subsystem whose transfer functions are<br />

defined in terms of ratios of small-signal ac quantities (hats) superimposed<br />

upon large-signal dc quantities (capitals).<br />

• The spectrum of the output signal contains the switching frequency, the<br />

control frequency, their respective harmonics, and sidebands.<br />

• The modeling objective is to find, as function of frequency, the loop gain and<br />

the closed properties of the regulator.<br />

• The essential prerequisite is to find the transfer function of the three-port<br />

subsystem of the modulator-power-stage.<br />

35/107<br />

Concerned Transfer Functions<br />

• Control-to-output transfer function<br />

• Line-to-output transfer function (audio susceptibility)<br />

• Reference-to-output transfer function<br />

• Input impedance<br />

• Output impedance<br />

A voltage sourcing power supply should have a low (zero) output<br />

impedance, while a current sourcing power supply should have a high<br />

(infinite) output impedance.<br />

36/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

18


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Closed-Loop Transfer Functions<br />

$v i v<br />

$i $<br />

o<br />

$d<br />

$ ; $ $ ; $ o<br />

vo<br />

vo<br />

v i d$<br />

i o<br />

$v o<br />

$v i<br />

$i o<br />

$ d<br />

$v c<br />

$v o<br />

G v<br />

K PWM<br />

38/107<br />

v$ = f( v$ , i$ , d $ )<br />

o i o<br />

Z p<br />

G d<br />

-A(s)<br />

K PWM<br />

$v c<br />

A(s)<br />

G v,CL (Closed-loop Audio Susceptibility)<br />

v$ = G v$ + G d$<br />

o v i d<br />

d$ =−AK PWM v$<br />

o<br />

v$<br />

v$<br />

o<br />

i<br />

Gv<br />

Gv<br />

= = 1+ GK A 1+<br />

T<br />

d<br />

PWM<br />

Z p,CL (Closed-loop Output Impedance)<br />

v$ = Z i$ + G d$<br />

o p o d<br />

d$ =−AK v$<br />

PWM o<br />

$v<br />

i<br />

o<br />

o<br />

Zp<br />

= 1+<br />

T<br />

Loop Gain: T = A( s)<br />

K<br />

PWM<br />

G d<br />

37/107<br />

Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

State-Space Averaging Technique<br />

電 力 電 子 系 統 與 晶 片 實 驗 室<br />

Power Electronic Systems & Chips Lab.<br />

交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

19


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Averaging <strong>Techniques</strong><br />

• State Space Averaging <strong>Modeling</strong><br />

• Static Analysis<br />

• Small-Signal Model at CCM<br />

• Small-Signal Model at DCM<br />

• Frequency Response Analysis<br />

39/107<br />

Concept of Time Averaging (Low Frequency Response<br />

Behavior)<br />

v o<br />

$v o<br />

V o<br />

Ii<br />

+ i $ i<br />

v d io<br />

$<br />

i o<br />

L<br />

I o<br />

V<br />

I<br />

+ v$<br />

i<br />

i o<br />

v d C R L<br />

v o<br />

v c $v c<br />

V c<br />

Z f<br />

Z i<br />

v c<br />

v ref<br />

CLOCK RAMP<br />

40/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

20


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Linear Approximation of State Space Trajectories<br />

x( t)<br />

x( )<br />

&x= A1⋅ x+ B1⋅u<br />

dT s<br />

x ( )<br />

&x = A ⋅ x+ B ⋅ u<br />

2 2<br />

T s<br />

x( 0)<br />

&x = A⋅ x+ B⋅<br />

u<br />

t<br />

dT s<br />

( 1 − d ) T s<br />

( T on<br />

)<br />

( )<br />

T off<br />

41/107<br />

State-Space Averaging Method (CCM)<br />

During<br />

During<br />

T<br />

T<br />

ON<br />

OFF<br />

⎧x&<br />

= A<br />

1x<br />

+ B<br />

1u<br />

⎨<br />

⎩y<br />

= C<br />

1x<br />

+ E1u<br />

⎧x&<br />

= A<br />

2x<br />

+ B<br />

2u<br />

⎨<br />

⎩ y = C<br />

2x<br />

+ E<br />

2u<br />

When the circuit time constant is far greater than the switching period, the<br />

above equations can be averaged as:<br />

Switch-ON Period<br />

Switch-OFF Period<br />

&x = A x + B u<br />

1 1<br />

y = C x+<br />

E u<br />

1 1<br />

x d 1<br />

+<br />

&x = A x+<br />

B u<br />

2 2<br />

y= C x+<br />

E u<br />

2 2<br />

x d 2<br />

averaging by using state duty ratio weighting<br />

42/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

21


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Averaging Method<br />

x& = ( A d + A d ) x+ ( B d + B d ) u<br />

1 1 2 2 1 1 2 2<br />

y= ( C d + C d ) x+ ( E d + E d ) u<br />

1 1 2 2 1 1 2 2<br />

x = Ax + Bu<br />

y = Cx + Du<br />

where<br />

A = A d + A d<br />

1 1 2 2<br />

B = B d + B d<br />

1 1 2 2<br />

C = C d + C d<br />

1 1 2 2<br />

E = E d + E d<br />

1 1 2 2<br />

43/107<br />

State Averaging by Active Duty Ratios<br />

During<br />

During<br />

T<br />

T<br />

ON<br />

OFF<br />

⎧x&<br />

= A<br />

1x<br />

+ B<br />

1u<br />

⎨<br />

⎩y<br />

= C<br />

1x<br />

+ E<br />

1u<br />

⎧x&<br />

= A<br />

2x<br />

+ B<br />

2u<br />

⎨<br />

⎩ y = C<br />

2x<br />

+ E<br />

2u<br />

When the circuit time constant is far greater than the switching<br />

period, the above equations can be averaged as:<br />

x& = ( A d + A d ) x + ( B d + B d ) u<br />

1 1 2 2 1 1 2 2<br />

y = ( C d + C d ) x + ( E d + E d ) u<br />

1 1 2 2 1 1 2 2<br />

Switch-ON Period<br />

&x = A x + B u<br />

1 1<br />

y = C x + E u<br />

1 1<br />

Switch-OFF Period<br />

d 2<br />

&x = A x + B u<br />

2 2<br />

y = C x+<br />

E u<br />

2 2<br />

x = Ax + Bu<br />

y = Cx + Du<br />

where<br />

A = A d + A d<br />

1 1 2 2<br />

B = B d + B d<br />

1 1 2 2<br />

C = C d + C d<br />

1 1 2 2<br />

E = E d + E d<br />

1 1 2 2<br />

d 1<br />

state averaging by using duty ratio weighting<br />

44/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

22


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Small-Signal Perturbation at a DC Operating Point<br />

Substitute x = X + x$ ; y = Y + y$ ; u = U + u$ ;<br />

d = D + d$ ; d = D − d$<br />

1 1 2 2<br />

d<br />

( X+ x $) = A ( D d$ ) ( D d$ )( $) ( D d$ ) ( D d$ 1 1 + + A<br />

2 2 − X+ x + B<br />

1 1 + + B<br />

2 2 − )( U+<br />

u$)<br />

dt<br />

}<br />

terms = 0<br />

d<br />

X +<br />

dt<br />

dc<br />

d<br />

dt<br />

6444444dc<br />

terms<br />

74=<br />

0<br />

444448<br />

xˆ<br />

= ( A D + A D ) X + ( B D + B D ) U +<br />

1<br />

1<br />

[(<br />

A − A ) X + ( B − B ) U]<br />

1<br />

1<br />

( A D<br />

1<br />

+ A<br />

2<br />

2<br />

2<br />

2<br />

D ) xˆ<br />

+ ( B D<br />

2<br />

( A<br />

141<br />

− A<br />

444<br />

2<br />

) dˆˆ<br />

x + ( B<br />

24444<br />

1<br />

− B<br />

2<br />

) dˆˆ<br />

u<br />

3<br />

1<br />

ignore nonlinear term<br />

1<br />

1<br />

2<br />

1<br />

1<br />

+ B<br />

2<br />

2<br />

dˆ<br />

+<br />

2<br />

2<br />

D ) uˆ<br />

+<br />

Note:<br />

The nonlinear dynamic system is linearized around a selected operating point!<br />

i<br />

45/107<br />

DC Model and AC Model<br />

DC Model<br />

X<br />

= −A −1 BU<br />

−1<br />

Y = ( − CA B+<br />

E)U<br />

AC Model<br />

d<br />

x$ = Ax$ + Bu$ + Fd$<br />

dt<br />

y$ = Cx$ + Eu$ + Gd$<br />

where<br />

A = A D + A D<br />

1 1 2 2<br />

B = B D + B D<br />

1 1 2 2<br />

C= C D + C D<br />

1 1 2 2<br />

E = E D + E D<br />

1 1 2 2<br />

F = ( A − A ) X+ ( B −B ) U<br />

1 2 1 2<br />

G = ( C − C ) X+ ( E −E ) U<br />

1 2 1 2<br />

46/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

23


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Transfer Function Matrix<br />

x(<br />

s)<br />

= ( sI<br />

− A)<br />

−1<br />

= H ( s)<br />

u(<br />

s)<br />

+<br />

u<br />

H d<br />

−1<br />

H ( s) = ( sI−A)<br />

B<br />

u<br />

Bu(<br />

s)<br />

+ ( sI<br />

− A)<br />

( s)<br />

d(<br />

s)<br />

−1<br />

H ( s) = ( sI−A) Fd( s)<br />

d<br />

−1<br />

Fd(<br />

s)<br />

−1 −1<br />

y() s = [ C( sI− A) B+ E]() u s + [ C( sI− A) F+<br />

G]()<br />

d s<br />

= G ()() s u s + G ()() s d s<br />

u<br />

−1<br />

Gu() s = C( sI− A)<br />

B+<br />

E<br />

−1<br />

Gd () s = C( sI− A)<br />

F+<br />

G<br />

d<br />

⎡vo(<br />

s)<br />

⎤ ⎡G<br />

⎢ =<br />

ii<br />

( s)<br />

⎥ ⎢<br />

⎣ ⎦ ⎣G<br />

u11<br />

u21<br />

( s)<br />

( s)<br />

G<br />

G<br />

u12<br />

u22<br />

( s)<br />

⎤⎡vi<br />

( s)<br />

⎤ ⎡G<br />

( s)<br />

⎥⎢<br />

id<br />

( s)<br />

⎥ + ⎢<br />

⎦⎣<br />

⎦ ⎣G<br />

d1<br />

d 2<br />

( s)<br />

⎤<br />

d(<br />

s)<br />

( s)<br />

⎥<br />

⎦<br />

47/107<br />

Open Loop Transfer Functions<br />

• control-to-output (open-loop transfer function):<br />

vo()<br />

s<br />

−1<br />

= Gd<br />

1() s = Gd() s = C( sI− A)<br />

F+<br />

G<br />

1<br />

ds ()<br />

• line-to-output (audio susceptibility):<br />

vo()<br />

s<br />

−1<br />

= Gu<br />

11() s = Gu() s = C( sI− A)<br />

B+<br />

E<br />

11<br />

v () s<br />

i<br />

• output impedance:<br />

vo()<br />

s<br />

= Gu<br />

() s =<br />

u() s = ( s − )<br />

− 1<br />

12<br />

G C I A B+<br />

E<br />

12<br />

i () s<br />

d<br />

1<br />

11<br />

12<br />

48/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

24


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Example: Buck Converter<br />

Step 1. Draw the linear equivalent circuit for each switching state of the converter.<br />

Q L i L<br />

i o<br />

x 1<br />

x 2<br />

r L<br />

R v o<br />

i d<br />

y i 2 i c i R<br />

r<br />

u c<br />

1 v i D<br />

u 2<br />

C v c y 1<br />

Q closed, D open<br />

D closed, Q open<br />

L<br />

r L<br />

i L<br />

i o<br />

i d<br />

L<br />

i L<br />

i o<br />

i d<br />

i i<br />

i c<br />

i R<br />

i c<br />

r L<br />

R v o<br />

i R<br />

i i<br />

50/107<br />

v i R v o<br />

r c<br />

r c<br />

C<br />

v c<br />

C<br />

v c<br />

49/107<br />

Select State Variables<br />

Select the inductor current i L and capacitor voltage v L state variables.<br />

⎡x1<br />

⎤ ⎡ ⎤<br />

⎥ = iL<br />

x=<br />

⎢ ⎢ ⎥<br />

⎣x2<br />

⎦ ⎣v<br />

c⎦<br />

Select the input dc voltage and output disturbance current as input variables.<br />

⎡u1<br />

⎤ ⎡ ⎤<br />

⎥ = vi<br />

u=<br />

⎢ ⎢ ⎥<br />

⎣u<br />

2⎦<br />

⎣i<br />

d⎦<br />

Select the output voltage and input current as output variables.<br />

⎡y1<br />

⎤ ⎡ ⎤<br />

= ⎢ ⎥ = vo<br />

y ⎢ ⎥<br />

⎣y2<br />

⎦ ⎣i<br />

⎦<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

25


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Derive Circuit Equations: State Equations<br />

Step 2. Write the circuit equations for each equivalent circuit in a state-variable format.<br />

r L<br />

i L<br />

i o<br />

i d<br />

Q-ON and D-OFF State:<br />

i i<br />

L<br />

r c<br />

i c<br />

i R<br />

v i<br />

R<br />

v o<br />

C<br />

v c<br />

<br />

<br />

v L di ir rC dv<br />

L<br />

c<br />

i<br />

= +<br />

LL+ C<br />

+ v<br />

dt dt<br />

dvc<br />

rC<br />

C + vC<br />

= ( iL<br />

−iC<br />

−id<br />

) R<br />

dt<br />

dvc<br />

= ( iL<br />

−C<br />

+ id<br />

) R<br />

dt<br />

dvc<br />

= iLR−<br />

RC + idR<br />

dt<br />

C<br />

dvc<br />

( R+ rC<br />

) C = iLR−vC<br />

−idR<br />

dt<br />

dvc<br />

R 1 R<br />

= iL<br />

− vC<br />

− id<br />

dt ( R+<br />

r ) C ( R+<br />

r ) C ( R+<br />

r ) C<br />

C<br />

C<br />

C<br />

51/107<br />

State-Space Average <strong>Modeling</strong>: State Equations<br />

<br />

R 1 R<br />

Replace C dv in with iL<br />

− vC<br />

− i<br />

dtc<br />

d<br />

( R+<br />

r ) ( R+<br />

r ) ( R+<br />

r )<br />

C<br />

C<br />

C<br />

We can obtain:<br />

di<br />

= +<br />

⎛<br />

+ ⎜<br />

⎝<br />

R<br />

L<br />

v<br />

i<br />

L iLrL<br />

rC<br />

iL<br />

vC<br />

id<br />

vC<br />

dt ⎜<br />

+<br />

( R+<br />

rC<br />

) ( R+<br />

rC<br />

) ( R+<br />

rC<br />

)<br />

−<br />

1<br />

−<br />

R<br />

⎞<br />

⎟ ⎠<br />

diL<br />

RrC<br />

rC<br />

RrC<br />

L = vi<br />

−iLr<br />

L<br />

− iL<br />

+ vC<br />

− id<br />

−v<br />

dt ( R+<br />

r ) ( R+<br />

r ) ( R+<br />

r )<br />

C<br />

⎛ Rr ⎞ ⎛<br />

C<br />

=−<br />

⎜ + rL<br />

iL<br />

−<br />

R r<br />

⎟<br />

⎜<br />

⎝ +<br />

C ⎠ ⎝<br />

C<br />

R ⎞ Rr<br />

vC<br />

vi<br />

R r<br />

⎟ + −<br />

+<br />

C ⎠ R+<br />

C<br />

i<br />

C<br />

d<br />

rC<br />

C<br />

diL<br />

1 ⎛ Rr ⎞<br />

C 1 ⎛ R ⎞ 1 1 ⎛ Rr ⎞<br />

C<br />

= − rL<br />

iL<br />

vC<br />

vi<br />

id<br />

dt L<br />

⎜ +<br />

R r<br />

⎟ −<br />

+ −<br />

C<br />

L<br />

⎜<br />

R r<br />

⎟<br />

C<br />

L L<br />

⎜<br />

R r<br />

⎟<br />

⎝ + ⎠ ⎝ + ⎠ ⎝ +<br />

C ⎠<br />

52/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

26


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong>: State Equations<br />

<br />

<br />

i = i<br />

i<br />

o<br />

L<br />

L<br />

v = ( i −i<br />

−i<br />

) R<br />

L<br />

C<br />

= i R−i<br />

R−i<br />

R<br />

C<br />

C<br />

d<br />

d<br />

⎛ R 1 R ⎞<br />

= iLR−<br />

RC<br />

⎜ iL<br />

− vC<br />

− id<br />

idR<br />

( R rC<br />

) C ( R rC<br />

) C ( R rC<br />

) C<br />

⎟−<br />

⎝ + + + ⎠<br />

RrC<br />

R RrC<br />

= iL<br />

+ vC<br />

− id<br />

( R+<br />

r ) ( R+<br />

r ) ( R+<br />

r )<br />

C<br />

C<br />

RrC<br />

R RrC<br />

vo<br />

= iL<br />

+ vC<br />

− id<br />

( R+<br />

r ) ( R+<br />

r ) ( R+<br />

r )<br />

C<br />

C<br />

C<br />

⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />

⎡<br />

C<br />

1 R 1<br />

⎢−<br />

⎜ + r<br />

⎟<br />

L<br />

−<br />

⎜<br />

⎟⎥<br />

⎢<br />

⎡i&<br />

L<br />

⎤<br />

⎢ L⎝<br />

R+<br />

rC<br />

⎠ L⎝R+<br />

r ⎠⎥⎡i<br />

C L ⎤ ⎢<br />

⎥⎢<br />

⎥ + L<br />

⎢ ⎥ =<br />

⎣v&<br />

⎢ ⎛ ⎞ ⎛ ⎞ ⎣ ⎦ ⎢<br />

C⎦<br />

1 R 1 1 vC<br />

⎢<br />

⎜<br />

⎟ −<br />

⎜<br />

⎟⎥<br />

⎢0<br />

⎣ C⎝<br />

R+<br />

rC<br />

⎠ C⎝<br />

R+<br />

rC<br />

⎠⎦<br />

⎣<br />

⎡ RrC<br />

R ⎤ ⎡ RrC<br />

⎤<br />

⎡vo<br />

⎤<br />

⎢<br />

⎥<br />

⎡ ⎤<br />

⎢<br />

−<br />

⎥<br />

⎡ ⎤<br />

⎢ ⎥ =<br />

iL<br />

+ + ⎢ ⎥ + 0 vi<br />

R rC<br />

R rC<br />

R+<br />

rC<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎢ ⎥<br />

⎣i<br />

⎦<br />

⎣vC<br />

⎦<br />

⎣id<br />

⎦<br />

⎣ 1 0 ⎦ ⎣0<br />

0 ⎦<br />

1 ⎛ Rr ⎞⎤<br />

C<br />

−<br />

⎜<br />

⎟⎥<br />

L⎝<br />

R+<br />

r ⎠⎥⎡v<br />

C i⎤<br />

⎛ ⎞⎥<br />

⎢ ⎥<br />

1 R<br />

−<br />

⎣id<br />

⎦<br />

⎜<br />

⎟⎥<br />

C ⎝ R+<br />

rC<br />

⎠⎦<br />

Q-OFF and D-ON<br />

State Equation<br />

53/107<br />

State-Space Average <strong>Modeling</strong>: State Equations<br />

r L<br />

i L<br />

i o<br />

i d<br />

Q-OFF and D-ON State:<br />

i i<br />

L<br />

r c<br />

C<br />

i c<br />

v c<br />

R<br />

i R<br />

v o<br />

<br />

<br />

0= L di + ir + rC dv<br />

L<br />

c<br />

LL C<br />

+ v<br />

dt dt<br />

dvc<br />

rC<br />

C + vC<br />

= ( iL<br />

−iC<br />

−id<br />

) R<br />

dt<br />

dvc<br />

= ( iL<br />

−C<br />

−id<br />

) R<br />

dt<br />

dvc<br />

= iLR−RC<br />

−idR<br />

dt<br />

C<br />

dvc<br />

( R+ rC<br />

) C = iLR−vC<br />

−idR<br />

dt<br />

dvc<br />

R 1 R<br />

= iL<br />

− vC<br />

− i<br />

dt ( R+<br />

r ) C ( R+<br />

r ) C ( R+<br />

r ) C<br />

C<br />

C<br />

C<br />

d<br />

54/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

27


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong>: State Equations<br />

dvc<br />

( R+ rC<br />

) C = iLR−vC<br />

−idR<br />

dt<br />

dvc<br />

R 1 R<br />

= iL<br />

− vC<br />

− id<br />

dt ( R+<br />

r ) C ( R+<br />

r ) C ( R+<br />

r ) C<br />

C<br />

C<br />

C<br />

R 1 R<br />

Replace C dv c<br />

in with iL<br />

− vC<br />

− id<br />

dt<br />

( R+<br />

r ) ( R+<br />

r ) ( R+<br />

r )<br />

We can obtain:<br />

<br />

di<br />

0=<br />

+<br />

C<br />

⎛<br />

+ ⎜<br />

⎝<br />

R<br />

C<br />

−<br />

L<br />

L iLrL<br />

rC<br />

iL<br />

vC<br />

id<br />

vC<br />

dt ⎜<br />

+<br />

( R+<br />

rC<br />

) ( R+<br />

rC<br />

) ( R+<br />

rC<br />

)<br />

1<br />

C<br />

−<br />

R<br />

⎞<br />

⎟ ⎠<br />

diL<br />

RrC<br />

rC<br />

RrC<br />

L =−i<br />

LrL<br />

− iL<br />

+ vC<br />

− id<br />

−v<br />

dt ( R+<br />

r ) ( R+<br />

r ) ( R+<br />

r )<br />

C<br />

⎛ Rr ⎞ ⎛<br />

C<br />

R ⎞ Rr<br />

=−<br />

⎜ + rL<br />

iL<br />

vC<br />

−<br />

R r<br />

⎟ −<br />

⎜<br />

C<br />

R r<br />

⎟<br />

⎝ + ⎠ ⎝ +<br />

C ⎠ R+<br />

C<br />

C<br />

i<br />

C<br />

d<br />

rC<br />

C<br />

diL<br />

1 ⎛ Rr ⎞<br />

C<br />

1 ⎛ R ⎞ 1 ⎛ Rr ⎞<br />

C<br />

=− rL<br />

iL<br />

v<br />

i<br />

Ci<br />

d<br />

dt L<br />

⎜ +<br />

R r<br />

⎟ −<br />

−<br />

C<br />

L<br />

⎜<br />

R r<br />

⎟<br />

C<br />

L<br />

⎜<br />

R r<br />

⎟<br />

⎝ + ⎠ ⎝ + ⎠ ⎝ +<br />

C ⎠<br />

55/107<br />

State-Space Average <strong>Modeling</strong>: State Equations<br />

<br />

<br />

i i = 0<br />

v = ( i − i − i ) R<br />

o<br />

L<br />

L<br />

C<br />

= i R − i R − i R<br />

C<br />

C<br />

d<br />

d<br />

⎛ R 1<br />

= iLR<br />

− RC<br />

⎜ iL<br />

− v<br />

⎝ ( R + rC<br />

) C ( R + rC<br />

) C<br />

RrC<br />

R RrC<br />

= iL<br />

+ vC<br />

− id<br />

( R + r ) ( R + r ) ( R + r )<br />

C<br />

C<br />

C<br />

R ⎞<br />

− id<br />

− id<br />

R<br />

( R rC<br />

) C<br />

⎟<br />

+ ⎠<br />

RrC<br />

R RrC<br />

vo<br />

= iL<br />

+ vC<br />

− id<br />

( R+<br />

r ) ( R+<br />

r ) ( R+<br />

r )<br />

C<br />

C<br />

C<br />

⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />

⎡<br />

C<br />

1 R<br />

⎢−<br />

⎜ + rL<br />

⎟ −<br />

⎜<br />

⎟⎥<br />

⎢0<br />

⎡i&<br />

L<br />

⎤<br />

⎢ ⎝ + ⎠ ⎝ + ⎠⎥⎡<br />

⎤ ⎢<br />

⎥ = L R rC<br />

L R r i<br />

C L<br />

⎢<br />

⎢<br />

⎥⎢<br />

⎥ +<br />

⎣v&<br />

⎛ ⎞ ⎛ ⎞ ⎣ ⎦ ⎢<br />

C⎦<br />

1 R 1 1 vC<br />

⎢<br />

⎜<br />

⎟ −<br />

⎜<br />

⎟⎥<br />

⎢0<br />

⎣ C ⎝ R+<br />

rC<br />

⎠ C ⎝ R+<br />

rC<br />

⎠⎦<br />

⎣<br />

⎡ RrC<br />

R ⎤ ⎡ RrC<br />

⎤<br />

⎡vo<br />

⎤<br />

⎢<br />

⎥<br />

⎡ ⎤<br />

⎢<br />

−<br />

⎥<br />

⎡ ⎤<br />

⎢ ⎥ =<br />

iL<br />

+ + ⎢ ⎥ + 0 vi<br />

R rC<br />

R rC<br />

R + rC<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎢ ⎥<br />

⎣ii<br />

⎦<br />

⎣vC<br />

⎦<br />

⎣id<br />

⎦<br />

⎣ 0 0 ⎦ ⎣0<br />

0 ⎦<br />

1 ⎛ Rr ⎞⎤<br />

C<br />

−<br />

⎜<br />

⎟⎥<br />

L ⎝ R+<br />

r ⎠⎥⎡v<br />

C i⎤<br />

⎛ ⎞⎥⎢<br />

⎥<br />

1 R<br />

−<br />

⎣id<br />

⎦<br />

⎜<br />

⎟⎥<br />

C ⎝ R + rC<br />

⎠⎦<br />

Q-ON and D-OFF<br />

State Equation<br />

56/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

28


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong>: State Equations<br />

Q Conducted:<br />

⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />

⎡<br />

C<br />

1 R 1<br />

⎢−<br />

⎜ + r<br />

⎟<br />

⎜<br />

⎟<br />

L<br />

− ⎥ ⎢<br />

⎡i&<br />

L<br />

⎤<br />

⎢<br />

L⎝<br />

R+<br />

rC<br />

⎠ L⎝<br />

R+<br />

r ⎠⎥⎡i<br />

C L ⎤ ⎢<br />

⎢<br />

⎥⎢<br />

⎥<br />

⎣ ⎦<br />

+ L<br />

⎢ ⎥ =<br />

⎣v&<br />

⎛ ⎞ ⎛ ⎞ ⎢<br />

C⎦<br />

1 R 1 1 vC<br />

⎢<br />

⎜<br />

⎟ −<br />

⎜<br />

⎟⎥<br />

⎢0<br />

⎣ C ⎝ R+<br />

rC<br />

⎠ C ⎝ R+<br />

rC<br />

⎠⎦<br />

⎣<br />

⎡ RrC<br />

R ⎤ ⎡ RrC<br />

⎤<br />

⎡vo<br />

⎤<br />

⎢<br />

⎥<br />

⎡ ⎤<br />

⎢<br />

−<br />

⎥<br />

⎡ ⎤<br />

⎢ ⎥ =<br />

iL<br />

+ + ⎢ ⎥ + 0 vi<br />

R rC<br />

R rC<br />

R+<br />

rC<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎢ ⎥<br />

⎣ii<br />

⎦<br />

⎣vC<br />

⎦<br />

⎣id<br />

⎦<br />

⎣ 1 0 ⎦ ⎣0<br />

0 ⎦<br />

1 ⎛ Rr ⎞⎤<br />

C<br />

−<br />

⎜<br />

⎟⎥<br />

L⎝<br />

R+<br />

r ⎠⎥⎡v<br />

C i⎤<br />

1 ⎛ R ⎞⎥⎢<br />

⎥<br />

−<br />

⎣id<br />

⎦<br />

⎜<br />

⎟⎥<br />

C ⎝ R+<br />

rC<br />

⎠⎦<br />

D Conducted:<br />

⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />

⎡<br />

C<br />

1 R<br />

⎢−<br />

⎜ + rL<br />

⎟ −<br />

⎜<br />

⎟⎥<br />

⎢0<br />

⎡i&<br />

L<br />

⎤<br />

⎢ ⎝ + ⎠ ⎝ + ⎠⎥⎡<br />

⎤ ⎢<br />

⎥ = L R rC<br />

L R r i<br />

C L<br />

⎢<br />

⎢<br />

⎥⎢<br />

⎥ +<br />

⎣v&<br />

⎞ ⎣ ⎦ ⎢<br />

C⎦<br />

1 ⎛ R ⎞ 1 ⎛ 1 vC<br />

⎢<br />

⎜<br />

⎟ −<br />

⎜<br />

⎟⎥<br />

⎢0<br />

⎣ C ⎝ R+<br />

rC<br />

⎠ C ⎝ R+<br />

rC<br />

⎠⎦<br />

⎣<br />

⎡ RrC<br />

R ⎤ ⎡ RrC<br />

⎤<br />

⎡vo<br />

⎤<br />

⎢<br />

⎥<br />

⎡ ⎤<br />

⎢<br />

−<br />

⎥<br />

⎡ ⎤<br />

⎢ ⎥ =<br />

iL<br />

+ + ⎢ ⎥ + 0 vi<br />

R rC<br />

R rC<br />

R+<br />

rC<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎢ ⎥<br />

⎣i<br />

⎦<br />

⎣vC<br />

⎦<br />

⎣id<br />

⎦<br />

⎣ 0 0 ⎦ ⎣0<br />

0 ⎦<br />

1 ⎛ Rr ⎞⎤<br />

C<br />

−<br />

⎜<br />

⎟⎥<br />

L⎝<br />

R+<br />

r ⎠⎥⎡v<br />

C i⎤<br />

⎛ ⎞⎥⎢<br />

⎥<br />

1 R<br />

−<br />

⎣id<br />

⎦<br />

⎜<br />

⎟⎥<br />

C ⎝ R+<br />

rC<br />

⎠⎦<br />

57/107<br />

State-Space Average <strong>Modeling</strong>: State Equations<br />

Q Conducted:<br />

⎡ 1 ⎛ Rr ⎞<br />

C<br />

⎢−<br />

⎜ + rL<br />

⎟<br />

⎢ L ⎝ R + rC<br />

A<br />

⎠<br />

1<br />

=<br />

⎢ 1 ⎛ R ⎞<br />

⎢<br />

⎜<br />

⎟<br />

⎣ C ⎝ R + rC<br />

⎠<br />

⎡ RrC<br />

R ⎤<br />

C = ⎢ + + ⎥<br />

1 R r ,<br />

C<br />

R rC<br />

⎢<br />

⎥<br />

⎣ 1 0 ⎦<br />

1 ⎛ R ⎞⎤<br />

⎡1<br />

1 ⎛ Rr ⎞⎤<br />

C<br />

− ⎜ ⎟⎥<br />

⎢ − ⎜ ⎟⎥<br />

L ⎝ R + rC<br />

⎠⎥<br />

⎢ L L ⎝ R + rC<br />

, B =<br />

⎠⎥<br />

1<br />

1 ⎛ 1 ⎞⎥<br />

⎢ 1 ⎛ R ⎞⎥<br />

−<br />

⎜<br />

⎟⎥<br />

⎢ 0 −<br />

⎜<br />

⎟⎥<br />

C ⎝ R + rC<br />

⎠⎦<br />

⎣ C ⎝ R + rC<br />

⎠⎦<br />

⎡ RrC<br />

⎤<br />

⎢<br />

0 −<br />

E = + ⎥<br />

1 R rC<br />

⎢ ⎥<br />

⎣0<br />

0 ⎦<br />

D Conducted:<br />

⎡ 1 ⎛ Rr ⎞<br />

C<br />

⎢−<br />

⎜ + rL<br />

⎟<br />

⎢ L ⎝ R + rC<br />

A<br />

⎠<br />

2<br />

=<br />

⎢ 1 ⎛ R ⎞<br />

⎢<br />

⎜<br />

⎟<br />

⎣ C ⎝ R + rC<br />

⎠<br />

⎡ RrC<br />

R ⎤<br />

C = ⎢ + + ⎥<br />

2 R r ,<br />

C<br />

R rC<br />

⎢<br />

⎥<br />

⎣ 0 0 ⎦<br />

1 ⎛ R ⎞⎤<br />

⎡ 1 ⎛ Rr ⎞⎤<br />

C<br />

− ⎜ ⎟⎥<br />

⎢0<br />

− ⎜ ⎟⎥<br />

L ⎝ R + rC<br />

⎠⎥<br />

⎢ L ⎝ R + rC<br />

, B =<br />

⎠⎥<br />

2<br />

1 ⎛ 1 ⎞⎥<br />

⎢ 1 ⎛ R ⎞⎥<br />

−<br />

⎜<br />

⎟⎥<br />

⎢0<br />

−<br />

⎜<br />

⎟⎥<br />

C ⎝ R + rC<br />

⎠⎦<br />

⎣ C ⎝ R + rC<br />

⎠⎦<br />

⎡ RrC<br />

⎤<br />

⎢<br />

0 −<br />

E = + ⎥<br />

2 R rC<br />

⎢ ⎥<br />

⎣0<br />

0 ⎦<br />

58/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

29


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong>: Averaging<br />

Step 3. Average each state by using duty ratio as a weighting factor and then combine the<br />

two sets of equations into a single set.<br />

Q : &x = A<br />

1x + B<br />

1u<br />

D : &x = A<br />

2x + B<br />

2u<br />

x d<br />

y = C x + E u 1 + y = C x + E u<br />

1 1<br />

2 2<br />

x d 2<br />

averaging by using state duty ratio weighting<br />

x& = ( A d + A d ) x + ( B d + B d ) u<br />

1 1 2 2 1 1 2 2<br />

y = ( C d + C d ) x + ( E d + E d ) u<br />

1 1 2 2 1 1 2 2<br />

&x = Ax + Bu<br />

y = Cx + Eu<br />

where<br />

A = A d + A d<br />

1 1 2 2<br />

B = B d + B d<br />

1 1 2 2<br />

C = C d + C d<br />

1 1 2 2<br />

E = E d + E d<br />

1 1 2 2<br />

59/107<br />

State-Space Average <strong>Modeling</strong>: Perturbation<br />

Step 4. Perturb the averaged equation set to produce DC and small signal terms and eliminate<br />

nonlinear product terms.<br />

Substitute x= X+ x$ ; y = Y+ y$ ; u= U+<br />

u$ ;<br />

d = + $ ; = − $<br />

1<br />

D1 d d2 D2<br />

d<br />

into the averaged equations (in Steps 3) x& = ( A1d1+ A2d2) x + ( B1d1+<br />

B2d2)<br />

u<br />

y= ( Cd + C d ) x+ ( Ed + E d ) u<br />

d<br />

dt<br />

1 1 2 2 1 1 2 2<br />

( X + xˆ ) = ( A ( D + dˆ)<br />

+ A ( D<br />

− dˆ))(<br />

X + xˆ ) +<br />

( B1(<br />

D1<br />

+ dˆ)<br />

+ B 2(<br />

D2<br />

− dˆ))(<br />

U + uˆ )<br />

= A X A ˆ<br />

1D1<br />

+<br />

1dX<br />

+ A1D1xˆ<br />

+ A1dˆˆ<br />

x +<br />

A X A ˆ<br />

2D2<br />

−<br />

2dX<br />

+ A<br />

2D2xˆ<br />

− A<br />

2d<br />

ˆˆ x +<br />

B U B ˆ<br />

1D1<br />

+<br />

1dU<br />

+ B1D1uˆ<br />

+ B1dˆˆ<br />

u +<br />

B D U − B dˆ<br />

U + B D uˆ<br />

− B dˆˆ<br />

u<br />

2<br />

1<br />

2<br />

1<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

60/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

30


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong>: Perturbation<br />

Perturbation of the State Equations<br />

Operating Point<br />

x 1<br />

New Coordinates<br />

d<br />

( X+ x$ ) = ( A1D1 + A2D2) X+ ( B1D1 + B2D2)<br />

U +<br />

dt<br />

( A D A D ) x$ 1 1<br />

+<br />

2 2<br />

+ ( B1D1 + B2D2)$<br />

u+<br />

( A − A ) X+ ( B − B ) U d$<br />

+<br />

1 2 1 2<br />

( A − A ) d $ x$ + ( B −B ) d $ u$<br />

1 2 1 2<br />

x 1<br />

Y + y$ = ( C ( D + d$ ) + C ( D − d$ ))( X+ x $ ) +<br />

1 1 2 2<br />

( E ( D + d$ ) + E ( D − d$ ))( U + u $ )<br />

1 1 2 2<br />

= ( C D + C D ) X+ ( E D + E D ) U +<br />

1 1 2 2 1 1 2 2<br />

( C D + C D )$ x+ ( C − C ) X + ( E − E ) U d$<br />

+<br />

1 1 2 2 1 2 1 2<br />

( E D + E D )$ u+ ( C − C )$ xd $ + ( E −E ) d $ u$<br />

1 1 2 2 1 2 1 2<br />

ˆx 2<br />

ˆx 1<br />

61/107<br />

State-Space Average <strong>Modeling</strong>: DC Analysis<br />

DC Analysis:<br />

Set all variational terms to zero, we can obtain<br />

0 =<br />

1D1+ 2D2 +<br />

1D1+<br />

2D2<br />

X<br />

( A A ) X ( B B ) U<br />

= AX+<br />

BU<br />

Y= ( CD + C D ) X+ ( ED + E D ) U<br />

= CX+<br />

EU<br />

Therefore<br />

=− −1<br />

1 1 2 2 1 1 2 2<br />

A BU<br />

−1<br />

Y =− ( CA B+<br />

E)U<br />

62/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

31


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong>: DC Model<br />

Eliminate the DC term d X = 0 AX + BU = 0 and Y CX EU<br />

dt = +<br />

We obtain the dc model equation:<br />

D.<br />

C.<br />

⎧<br />

⎛ R ⎞<br />

⎪ 0 = [ − r ]<br />

⎜<br />

⎟<br />

L<br />

+ ( R // rC<br />

) I<br />

L<br />

− V<br />

⎪<br />

⎝ R + rC<br />

⎠<br />

⎪ ⎛ R ⎞ ⎛ 1 ⎞<br />

⎪ 0 =<br />

⎜<br />

⎟I<br />

L<br />

−<br />

⎜<br />

⎟V<br />

C<br />

⎨ ⎝ R + rC<br />

⎠ ⎝ R + rC<br />

⎠<br />

⎪<br />

⎪<br />

⎛ R ⎞<br />

Vo<br />

= ( R // rC<br />

) I<br />

L<br />

− ⎜ ⎟VC<br />

⎪<br />

⎝ R + rC<br />

⎠<br />

⎪<br />

⎩I<br />

S<br />

= DI<br />

L<br />

C<br />

+ V D<br />

i<br />

Comments:<br />

1. DC model gives DC information (steady-state behavior).<br />

2. DC model can be used for loss estimation.<br />

63/107<br />

State-Space Average <strong>Modeling</strong>: AC Model<br />

Neglect the nonlinear product term d $ ⋅ x$ and d$ ⋅ u$<br />

We obtain the ac model (small-signal) equation:<br />

d<br />

x$ = A x$ + Bu$ + Fd$<br />

dt<br />

y$ = Cx$ + Eu$ + Gd$<br />

where<br />

A = A1D1 + A2D2<br />

B = B1D1 + B2D2<br />

C = C1D1 + C2D2<br />

E = E1D1 + E2D2<br />

F = ( A1 − A2) X + ( B1 − B2)<br />

U<br />

G = ( C − C ) X + ( E −E ) U<br />

1 2 1 2<br />

⎧ diˆ<br />

⎛ ⎞<br />

L ⎛ rL<br />

+ R//<br />

rC<br />

⎪<br />

⎟<br />

⎞ R<br />

= −⎜<br />

iˆ<br />

1<br />

+<br />

⎜<br />

⎟vˆ<br />

L<br />

⎪ dt ⎝ L ⎠ L⎝<br />

R+<br />

rC<br />

⎠<br />

⎪<br />

⎛ ⎞ ⎛ ⎞<br />

⎪<br />

dvˆ<br />

C<br />

1 R<br />

= −<br />

⎜<br />

⎟iˆ<br />

1 1<br />

L<br />

−<br />

⎜<br />

⎟vˆ<br />

C<br />

AC . . ⎨ dt C⎝<br />

R+<br />

rC<br />

⎠ L⎝<br />

R+<br />

rC<br />

⎠<br />

⎪<br />

⎪<br />

⎛ R ⎞<br />

vˆ<br />

= R r i +<br />

⎪<br />

⎜<br />

⎟<br />

o<br />

( //<br />

C)ˆ<br />

L<br />

vˆ<br />

C<br />

⎝ R+<br />

rC<br />

⎠<br />

⎪<br />

⎪⎩<br />

iˆ<br />

s<br />

= Diˆ<br />

L<br />

+ ILdˆ<br />

C<br />

⎛ D⎞<br />

⎛Vi<br />

⎞<br />

+ ⎜ ⎟vˆ<br />

+ ⎜ ⎟dˆ<br />

i<br />

⎝ L ⎠ ⎝ L ⎠<br />

Comments:<br />

1. AC model gives small signal information.<br />

2. AC model parameter value depends on dc operating point.<br />

64/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

32


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Time-to-Frequency Transform<br />

Step 5. Transform ac state-space model into frequency domain (Laplace transform, s-domain).<br />

d<br />

x$ = Ax$ + Bu$ + Fd$<br />

dt<br />

y$ = Cx$ + Eu$ + Gd$<br />

In the following, the hat above the variables will be neglected for simplicity. The small signal<br />

(or ac term) of a variable is denoted using lower case letter. Thus, the dynamic equation of a<br />

PWM dc-dc converter can be represented as:<br />

d<br />

x = Ax+ Bu+<br />

Fd<br />

dt<br />

y= Cx+ Eu+<br />

Gd<br />

65/107<br />

Time-to-Frequency Transform<br />

Take Laplace transform:<br />

sx( s) = Ax( s) + Bu( s) + Fd ( s)<br />

y() s = Cx() s + Eu() s + Gd()<br />

s<br />

−1 −1<br />

x() s = ( sI− A) Bu() s + ( sI−<br />

A) Fd()<br />

s<br />

= H ()() s u s + H ()() s d s<br />

u<br />

−1<br />

H () s = ( sI−A)<br />

B<br />

u<br />

−1<br />

H () s = ( sI−A) Fd()<br />

s<br />

d<br />

d<br />

−1 −1<br />

y() s = [ C( sI− A) B+ Eu ]() s + [ C( sI− A) F+<br />

G]()<br />

d s<br />

= G ()() s u s + G ()() s d s<br />

u<br />

−1<br />

G () = C( sI− A)<br />

B+<br />

E<br />

u<br />

s<br />

−1<br />

Gd() s = C( sI− A)<br />

F+<br />

G<br />

d<br />

G ( s)<br />

= C(<br />

sI<br />

− A)<br />

u<br />

−1<br />

⎡Gu<br />

B+<br />

E = ⎢<br />

⎣Gu<br />

11<br />

21<br />

( s)<br />

( s)<br />

G<br />

G<br />

u12<br />

u22<br />

( s)<br />

⎤<br />

( s)<br />

⎥<br />

⎦<br />

66/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

33


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong>: Transfer Functions<br />

Interpretation of the transfer function matrix<br />

Input-to-output voltage gain<br />

(audio susceptibility)<br />

⎡vo⎤<br />

⎡G<br />

⎢<br />

i<br />

⎥ = ⎢<br />

⎣ i ⎦ ⎣G<br />

u11<br />

u21<br />

( s)<br />

( s)<br />

G<br />

G<br />

u12<br />

u22<br />

Output impedance<br />

( s)<br />

⎤⎡vi⎤<br />

⎡G<br />

( s)<br />

⎥⎢<br />

i<br />

⎥ + ⎢<br />

⎦⎣<br />

d ⎦ ⎣G<br />

d1<br />

d 2<br />

( s)<br />

⎤<br />

d<br />

( s)<br />

⎥<br />

⎦<br />

Control-to-output<br />

voltage gain<br />

Input Admittance<br />

Load-to-line current gain<br />

Control-to-input<br />

current gain<br />

67/107<br />

State-Space Average <strong>Modeling</strong>: Transfer Functions<br />

Disturbances<br />

Results<br />

$v i<br />

K PWM<br />

A(s)<br />

$i o<br />

$ d<br />

iˆ<br />

i<br />

vˆ<br />

i<br />

v$<br />

$ ; $ o<br />

v<br />

v i$<br />

i<br />

i<br />

i<br />

;<br />

ˆ<br />

iˆ<br />

o<br />

o<br />

o<br />

i<br />

i<br />

;<br />

ˆ<br />

dˆ<br />

v<br />

; $ o<br />

d$<br />

î i<br />

$v o<br />

Control action<br />

$v c<br />

Loop compensator<br />

68/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

34


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Averaging: Time-to-Frequency Transform<br />

⎡<br />

⎤<br />

⎢<br />

⎥<br />

vˆ<br />

o(<br />

s)<br />

⎢<br />

1+<br />

srC<br />

C<br />

= V<br />

⎥<br />

i<br />

dˆ(<br />

s)<br />

⎢ ⎛<br />

L ⎞<br />

⎥<br />

2 ⎛ R+<br />

r ⎞<br />

C<br />

⎢1+<br />

s⎜rC<br />

C + [ R//<br />

rL<br />

] C + ⎟+ s LC⎜<br />

⎟⎥<br />

⎣ ⎝<br />

R+<br />

rL<br />

⎠ ⎝ R+<br />

rC<br />

+ rL<br />

⎠⎦<br />

⎡<br />

⎤<br />

⎢<br />

⎥<br />

vˆ<br />

o(<br />

s)<br />

⎢<br />

1+<br />

srC<br />

C<br />

= D<br />

⎥<br />

vˆ<br />

⎢ ⎛<br />

⎞ ⎛ + ⎞⎥<br />

i(<br />

s)<br />

L 2 R rC<br />

⎢1+<br />

s⎜rC<br />

C + [ R//<br />

rL<br />

] C + ⎟+ s LC⎜<br />

⎟⎥<br />

⎣ ⎝<br />

R+<br />

rL<br />

⎠ ⎝ R+<br />

rC<br />

+ rL<br />

⎠⎦<br />

vo()<br />

s<br />

Zo()<br />

s = = G<br />

i () s d<br />

d<br />

u12<br />

= 0<br />

vi<br />

= 0<br />

() s<br />

69/107<br />

State-Space Averaging: Time-to-Frequency Transform<br />

Note: In most conditions, because R >>(r L + r C ), the above equations can be approximated as<br />

⎡<br />

⎤<br />

vˆ<br />

⎢<br />

⎥<br />

o(<br />

s)<br />

1+<br />

srC<br />

C<br />

= Vi<br />

⎢<br />

⎥<br />

dˆ(<br />

s)<br />

⎢ ⎛ L ⎞ 2<br />

1+<br />

s⎜<br />

+ ( r<br />

⎥<br />

C<br />

+ rL<br />

) C⎟ + s LC<br />

⎢⎣<br />

⎝ R ⎠ ⎥⎦<br />

⎡<br />

⎤<br />

vˆ<br />

s ⎢ + sr C ⎥<br />

o(<br />

)<br />

1 C<br />

= Vi<br />

⎢<br />

⎥<br />

dˆ(<br />

s)<br />

⎢ ⎛ L ⎞ 2<br />

1+<br />

s⎜<br />

+ ( r + r C ⎟ + s LC⎥<br />

C L)<br />

⎢⎣<br />

⎝ R ⎠ ⎥⎦<br />

v$ o( s)<br />

1+ srC<br />

C<br />

= V<br />

ds $<br />

i 2<br />

() Δs<br />

ω<br />

o<br />

⎡<br />

⎤<br />

vˆ<br />

⎢<br />

⎥<br />

o(<br />

s)<br />

1+<br />

srC<br />

C<br />

= D⎢<br />

⎥<br />

vˆ<br />

⎢ ⎛ L<br />

i(<br />

s)<br />

⎞ 2<br />

1+<br />

s⎜<br />

+ ( r<br />

⎥<br />

C<br />

+ rL<br />

) C⎟ + s LC<br />

⎢⎣<br />

⎝ R ⎠ ⎥⎦<br />

2 ωo<br />

2<br />

Δs<br />

= s + s + ωo<br />

Q<br />

1<br />

ωo<br />

=<br />

LC<br />

1 1<br />

Q =<br />

ω L<br />

o + ( rL<br />

+ rC<br />

) C<br />

R<br />

70/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

35


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

State-Space Average <strong>Modeling</strong><br />

v$ ( s)<br />

v$ o<br />

o<br />

( s)<br />

The small signal control-to-output $ , and line-to-output are transfer<br />

d<br />

functions of two poles and one zero ( s )<br />

v$ i<br />

( s)<br />

( s + z1)<br />

K<br />

( s+ p )( s+<br />

p )<br />

1 2<br />

with its parameters depending upon component values and operating point. p 1 , p 2 can be<br />

complex poles or real poles. But p 1 , p 2 and z 1 all lie on LHP.<br />

Note: The equivalent series resistance of the capacitor will introduce a LHP zero.<br />

71/107<br />

State-Space Averaging: Output Impedance<br />

Output Impedance: Z s<br />

s s<br />

1 + + ( )<br />

v$ o<br />

( s)<br />

ω1Q1 ω1<br />

= R<br />

i$ 2<br />

( s)<br />

Δs<br />

ω<br />

d<br />

o<br />

2<br />

o<br />

vo( s)<br />

−1<br />

() = = c( sI− A)<br />

B+<br />

du<br />

i () s d = 0<br />

d<br />

u=<br />

0<br />

2 ω<br />

o<br />

Δs s<br />

Q s 2<br />

= + + ω<br />

o<br />

1 1 1<br />

ω<br />

o<br />

= ,<br />

Q =<br />

LC<br />

ω L<br />

o + ( rL<br />

+ rC)<br />

C<br />

R<br />

1 rL<br />

1 1<br />

ω1 = ; Q1<br />

=<br />

LC r<br />

L<br />

C<br />

ω1<br />

+ rC<br />

L<br />

r<br />

C<br />

72/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

36


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

<strong>Modeling</strong> of Load Impedance and Disturbances<br />

Z os<br />

PWM<br />

Modulator<br />

v g<br />

v o<br />

v R<br />

v~s<br />

V s<br />

Boost Converter Buck/Boost Converter Buck Converter<br />

R L<br />

~<br />

id<br />

load<br />

Gate<br />

Drive<br />

Loop<br />

Compensator<br />

L<br />

r L<br />

i L<br />

i o<br />

i d<br />

Q<br />

i c<br />

i R<br />

v i<br />

D<br />

r c<br />

C<br />

v c<br />

R<br />

v o<br />

<strong>Modeling</strong> of Source Impedance and Disturbances<br />

Z os<br />

PWM<br />

Modulator<br />

v g<br />

v o<br />

v R<br />

v~s<br />

V s<br />

Boost Converter Buck/Boost Converter Buck Converter<br />

R L<br />

~<br />

id<br />

load<br />

Gate<br />

Drive<br />

Loop<br />

Compensator<br />

L<br />

Protection<br />

F1<br />

Input EMI Filter<br />

Rectifier<br />

V o<br />

G<br />

N<br />

RV1<br />

F2<br />

C y<br />

C x<br />

T y<br />

T x<br />

C y<br />

C x<br />

PWM<br />

Isolation<br />

V SENSE<br />

R. D. Middlebrook, "Input Filter Considerations in Design and Application of Switching Regulators," IEEE Industry<br />

Applications Society Annual Meeting, 1976 Record, pp. 366-382.<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

37


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Dynamic Responses for Step Load Changes<br />

Adaptive voltage<br />

positioning offset<br />

V OFFSET (40mV)<br />

Nominal set<br />

point voltage<br />

V SET (2.0V)<br />

Dynamic voltage<br />

tolerance, V DYN-<br />

(100mV for 2μs)<br />

Initial voltage drop is<br />

mainly due to the product<br />

of the load current step<br />

and ESR of the capacitors.<br />

ΔV = ΔI × ESR.<br />

(ESL effects are ignored)<br />

Output voltage<br />

V OUT (50mV/Div)<br />

Steady state voltage at<br />

high current is<br />

approximately<br />

V SET + V OFFSET − I OUT × R SENSE<br />

Output current transient<br />

step, ΔI = 0 to 14A<br />

(5A/Div)<br />

L = .5μH;<br />

C OUT<br />

= 6×<br />

1500μF Sanyo MV - GX; R = 2.5mΩ<br />

2<br />

SENSE<br />

Intel: VRM (Voltage Regulator Module) and Enterprise Voltage Regulator-Down (EVRD) 11.0<br />

Design Guidelines, Nov. 2006.<br />

75/107<br />

Buck Converter with Load Current Disturbance<br />

Block Diagram Representation<br />

v i<br />

Q<br />

D<br />

L<br />

r L<br />

r c<br />

C<br />

i L<br />

i c<br />

v c<br />

i o<br />

R<br />

v o<br />

i d<br />

i R<br />

i d<br />

ΔI d<br />

i d<br />

i R<br />

1<br />

R<br />

ΔT<br />

Load Current Slew Rate<br />

t<br />

ΔI<br />

d<br />

ΔT<br />

Q<br />

1 i L i C<br />

rC + 1<br />

sL + r L<br />

sC<br />

v o<br />

v i D<br />

i o<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

38


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Control-to-Output Transfer Functions<br />

DC-DC Converters in CCM Operating Mode<br />

v i<br />

D<br />

L<br />

C<br />

v o<br />

• Buck<br />

v$ o()<br />

s 1+<br />

rC<br />

Cs<br />

= V<br />

ds $<br />

i<br />

( ) s 2 1<br />

( ) +<br />

Q s + 1<br />

ω ω<br />

o<br />

o<br />

1<br />

ωo<br />

=<br />

LC<br />

1 1<br />

Q =<br />

ω L<br />

o + ( rL<br />

+ rC<br />

) C<br />

R<br />

v i<br />

L<br />

D<br />

C<br />

v o<br />

• Boost<br />

' 2<br />

v$ o()<br />

s Vi ( 1+ rCs<br />

C<br />

)( 1−sL( D R))<br />

=<br />

$ ' 2<br />

ds () D s 2 1<br />

( ) +<br />

Q s + 1<br />

ω ω<br />

o<br />

o<br />

ω =<br />

o<br />

D<br />

LC<br />

D 1<br />

Q =<br />

ω L r C<br />

o<br />

L<br />

+ + rC<br />

C<br />

D R D<br />

D<br />

• Buck/Boost<br />

' 2<br />

v$ o()<br />

s Vi ( 1+ rCCs)( 1−sDL ( D R))<br />

v i L C v o<br />

=<br />

$ ()<br />

' 2<br />

ds D s 2 1<br />

( ) +<br />

Q s + 1<br />

ω ω<br />

o<br />

o<br />

D<br />

ωo<br />

=<br />

LC<br />

D 1<br />

Q=<br />

ω L r<br />

o<br />

C<br />

+ (<br />

( D ) R D<br />

2<br />

+<br />

rL<br />

2)<br />

C<br />

( D )<br />

77/107<br />

Transfer Functions of Buck Converters<br />

Transfer Function<br />

Transfer Function<br />

v$ o ( s)<br />

1 + rCs C<br />

= V i<br />

d$ 2<br />

( s ) Δs<br />

ω<br />

o<br />

FD<br />

=<br />

Δ<br />

1<br />

i$ L<br />

( s)<br />

V<br />

i<br />

1 + rCs<br />

L<br />

=<br />

d$ 2<br />

( s ) r Δs<br />

ω<br />

L<br />

o<br />

FD<br />

=<br />

Δ<br />

2<br />

v$ o<br />

( s ) 1 + rC<br />

Cs<br />

= D<br />

2<br />

v$ ( s)<br />

Δs<br />

ω<br />

i<br />

o<br />

FU<br />

=<br />

Δ<br />

11<br />

i$ L<br />

( s)<br />

=<br />

v$ ( s)<br />

i<br />

D<br />

R<br />

1 + RCs<br />

2<br />

Δs<br />

ω<br />

o<br />

FU<br />

=<br />

Δ<br />

21<br />

v$ o<br />

( s)<br />

= R<br />

i$ ( s)<br />

d<br />

eq<br />

s s<br />

1 + + ( )<br />

ω<br />

1Q1 ω<br />

1<br />

2<br />

Δs<br />

ω<br />

o<br />

2<br />

FU<br />

=<br />

Δ<br />

12<br />

i$ L<br />

( s)<br />

1 rC<br />

Cs FU<br />

=− + =<br />

i$ 2<br />

( s)<br />

Δs<br />

ω Δ<br />

d<br />

o<br />

22<br />

2 ω<br />

o<br />

Δs = s +<br />

Q s 2<br />

+ ω , R = r<br />

o eq L<br />

1 1 1<br />

ω<br />

o<br />

= ,<br />

Q =<br />

LC<br />

ω L<br />

o + ( rL<br />

+ rC)<br />

C<br />

R<br />

1 rL<br />

1 1<br />

ω1 = ; Q1<br />

=<br />

LC r<br />

L<br />

C<br />

ω1<br />

+ rC<br />

L<br />

r<br />

C<br />

78/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

39


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Transfer Functions of Boost Converters<br />

Transfer Function<br />

s s<br />

( 1 + )( 1 − )<br />

v$ o( s)<br />

V<br />

i<br />

ω<br />

z<br />

ω<br />

a<br />

F<br />

D<br />

=<br />

=<br />

$ ( ) (<br />

'<br />

d s D )<br />

2 2<br />

Δs<br />

ω<br />

Δ<br />

o<br />

1<br />

Transfer Function<br />

RC<br />

$ 1 +<br />

iL<br />

( s)<br />

2V<br />

I<br />

=<br />

2<br />

$ ( ) (<br />

'<br />

d s D )<br />

3 2<br />

R Δs<br />

ω<br />

o<br />

FD<br />

=<br />

Δ<br />

2<br />

v$ o<br />

( s ) 1 1 FU<br />

= =<br />

'<br />

2<br />

v$ ( s)<br />

D Δs<br />

ω Δ<br />

i<br />

o<br />

11<br />

i$ L<br />

( s)<br />

2V<br />

i<br />

1+<br />

RC<br />

=<br />

v$ ( s) ( D<br />

' 3 2<br />

) R Δs<br />

ω<br />

i<br />

o<br />

FU<br />

=<br />

Δ<br />

21<br />

v$ o<br />

( s)<br />

= R<br />

v$ ( s)<br />

i<br />

eq<br />

s s<br />

1 + + ( )<br />

ω<br />

1Q<br />

1<br />

ω<br />

1<br />

2<br />

Δs<br />

ω<br />

o<br />

2<br />

FU<br />

=<br />

Δ<br />

12<br />

i$ L<br />

( s)<br />

1 1 + rC<br />

Cs<br />

=−<br />

$ '<br />

2<br />

i ( s)<br />

D Δs<br />

ω<br />

d<br />

o<br />

FU<br />

=<br />

Δ<br />

22<br />

Δs s<br />

Q s Q D '<br />

2 ω<br />

o 2<br />

1<br />

= + + ω<br />

o<br />

, =<br />

ω L rC<br />

o<br />

L '<br />

+ + DrC<br />

C<br />

'<br />

'<br />

DR D<br />

'<br />

D<br />

ω<br />

o<br />

=<br />

LC<br />

'<br />

D Req<br />

1 1<br />

ω1 = ; Q1<br />

=<br />

LC r<br />

L<br />

C<br />

ω 1 ( + rC<br />

' 2 C )<br />

D R<br />

' 2<br />

1 ( D ) R rL<br />

ω z = ; ω a = Req<br />

=<br />

'<br />

rC<br />

L<br />

D<br />

C<br />

2<br />

D<br />

D r '<br />

C<br />

eq<br />

79/107<br />

Transfer Functions of Buck/Boost Converters<br />

Transfer Function<br />

s s<br />

( 1+ )( 1−<br />

)<br />

v$ o( s)<br />

Vi ωz ωa<br />

FD<br />

=<br />

=<br />

$ ( ) (<br />

'<br />

d s D )<br />

2 2<br />

Δs<br />

ω Δ<br />

v$ o<br />

( s)<br />

D ( 1 + rCs<br />

C<br />

) FU<br />

=<br />

=<br />

'<br />

2<br />

v$ ( s)<br />

D Δs<br />

ω Δ<br />

i<br />

v$ o ( s)<br />

= R<br />

i$ ( s)<br />

d<br />

eq<br />

s s<br />

1 + + ( )<br />

ω1Q1 ω1<br />

2<br />

Δs<br />

ω<br />

o<br />

o<br />

o<br />

2<br />

11<br />

FU<br />

=<br />

Δ<br />

12<br />

1<br />

Transfer Function<br />

i$ L( s)<br />

Vi<br />

1 + RCs FD<br />

=<br />

=<br />

$ ( ) (<br />

'<br />

d s D )<br />

2 2<br />

R Δs<br />

ω Δ<br />

i$ L( s)<br />

D 11+<br />

RCs FU<br />

=<br />

=<br />

v$ ( s) ( D<br />

' 2 2<br />

) R Δs<br />

ω Δ<br />

i<br />

i$ L( s)<br />

11+<br />

rCs<br />

C<br />

FU<br />

=−<br />

=<br />

$ '<br />

2<br />

i ( s)<br />

D Δs<br />

ω Δ<br />

d<br />

o<br />

o<br />

o<br />

22<br />

2<br />

21<br />

2 ω<br />

o<br />

Δs = s +<br />

Q s<br />

2<br />

+ ω o<br />

'<br />

'<br />

D<br />

D<br />

ω<br />

o<br />

= ,<br />

Q =<br />

LC<br />

ω<br />

' 2<br />

1 ( D ) R<br />

rL<br />

D<br />

ω<br />

R<br />

rC<br />

DL<br />

D D r<br />

z<br />

= , ω<br />

a<br />

= ;<br />

eq<br />

= +<br />

' 2 '<br />

( )<br />

C<br />

1<br />

L r r<br />

+ ( + C<br />

' 2 ' ' 2<br />

( D ) R D ( D ) )<br />

o C L<br />

Req<br />

1 1<br />

ω1 = ω<br />

o<br />

;<br />

Q1<br />

=<br />

r<br />

L<br />

C<br />

ω<br />

1<br />

' 2<br />

+ rC<br />

C<br />

D R<br />

eq<br />

C<br />

80/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

40


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Q-factor of Buck Converter<br />

D<br />

L<br />

C<br />

• Buck<br />

v$ o()<br />

s 1+<br />

rC<br />

Cs<br />

= V<br />

ds $<br />

i<br />

( ) s 2 1<br />

( ) +<br />

Q s + 1<br />

ω ω<br />

o<br />

o<br />

1<br />

ωo<br />

=<br />

LC<br />

1 1<br />

Q =<br />

ω L<br />

o + ( rL<br />

+ rC<br />

) C<br />

R<br />

1 1<br />

Q =<br />

=<br />

ω L<br />

o + ( rL<br />

+ rC<br />

) C<br />

R<br />

1<br />

1<br />

LC<br />

1<br />

=<br />

L<br />

+ ( rL<br />

+ rC<br />

) C<br />

1<br />

R<br />

R<br />

1<br />

L<br />

+ ( rL<br />

+ rC<br />

)<br />

C<br />

C<br />

L<br />

=<br />

1<br />

Zo<br />

rL<br />

+ r<br />

+<br />

R Z<br />

o<br />

C<br />

v i v o<br />

C<br />

1 1<br />

1<br />

Q =<br />

=<br />

ω L<br />

Z<br />

o<br />

o<br />

rL<br />

+ r<br />

+ ( rL<br />

+ rC<br />

) C +<br />

R<br />

R Z<br />

o<br />

C<br />

1 1<br />

Q =<br />

≈<br />

ω L<br />

o + ( rL<br />

+ rC<br />

) C<br />

R<br />

LC<br />

=<br />

L<br />

R<br />

R<br />

L<br />

81/107<br />

Summary: Buck Converters at CCM<br />

Transfer Function<br />

v$ o ( s)<br />

1 + rCs C FD<br />

= V i =<br />

d$ 2<br />

( s ) Δs<br />

ω Δ<br />

o<br />

1<br />

Transfer Function<br />

i$ L<br />

( s)<br />

V<br />

i<br />

1 + rCs<br />

L<br />

FD<br />

=<br />

=<br />

d$ 2<br />

( s ) r Δs<br />

ω Δ<br />

L<br />

o<br />

2<br />

v i<br />

r L<br />

Q i L i o<br />

L<br />

D<br />

r c<br />

C<br />

i c<br />

v c<br />

i R<br />

i d<br />

v o<br />

v$ o<br />

( s ) 1 + rC<br />

Cs FU<br />

= D =<br />

2<br />

v$ ( s)<br />

Δs<br />

ω Δ<br />

i<br />

v$ o( s)<br />

= R<br />

i$ ( s)<br />

d<br />

eq<br />

s s<br />

1 + + ( )<br />

ω1Q1 ω1<br />

2<br />

Δs<br />

ω<br />

o<br />

o<br />

2<br />

11<br />

FU<br />

=<br />

Δ<br />

12<br />

i$ L<br />

( s)<br />

D 1 + RCs<br />

=<br />

2<br />

v$ ( s)<br />

R Δs<br />

ω<br />

i<br />

o<br />

FU<br />

=<br />

Δ<br />

i$ L<br />

( s)<br />

1 rC<br />

Cs FU<br />

=− + =<br />

i$ 2<br />

( s)<br />

Δs<br />

ω Δ<br />

d<br />

o<br />

22<br />

21<br />

i i<br />

L<br />

Q ON<br />

r<br />

i L L io i d<br />

i c i R<br />

r c<br />

v i<br />

R v o<br />

C v c<br />

i i<br />

L<br />

D ON<br />

r L i L i o<br />

i d<br />

i c i R<br />

r c<br />

R v o<br />

C<br />

v c<br />

Switch-ON Period<br />

Switch-OFF Period<br />

&x = A x + B u<br />

1 1<br />

y = C x+<br />

E u<br />

1 1<br />

x d 1<br />

&x = A x+<br />

B u<br />

2 2<br />

y= C x+<br />

E u<br />

2 2<br />

x d 2<br />

averaging by using state duty ratio weighting<br />

x = Ax + Bu<br />

y = Cx + Du<br />

where<br />

A = A d + A d<br />

1 1 2 2<br />

B = B d + B d<br />

1 1 2 2<br />

C = C d + C d<br />

1 1 2 2<br />

E = E d + E d<br />

1 1 2 2<br />

82/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

41


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

PWM Switch Model<br />

電 力 電 子 系 統 與 晶 片 實 驗 室<br />

Power Electronic Systems & Chips Lab.<br />

交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />

83/107<br />

PWM Switch Model<br />

• Introduction<br />

• PWM Switch and its Invariant Properties<br />

• CCM Analysis<br />

DC and Small-Signal Model of PWM Switch<br />

PWM Switch Model of Buck Converters<br />

PWM Switch Model of Boost Converters<br />

PWM Switch Model of Buck/Boost Converters<br />

PWM Switch Model of Cuk Converters<br />

Analysis of PWM Converters<br />

Right-half Plane Zero of the Converters<br />

PWM Switch Model Including Storage-Time Modulation<br />

• DCM Analysis<br />

DC and Small Model of PWM Switch<br />

Analysis of PWM Converters<br />

Zero of Control-to-Output Transfer Function in DCM<br />

84/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

42


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

PWM Switch Model (1990)<br />

PWM Switch Method<br />

[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I:<br />

Continuous Conduction Mode,” IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496,<br />

May 1990.<br />

[2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II:<br />

Discontinuous Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp.<br />

497-505, May 1990.<br />

Fast Analytical <strong>Techniques</strong> for Electrical and Electronic Circuits,<br />

V. Vorperian, Cambridge Press, 2004.<br />

1. Introduction<br />

2. Transfer functions<br />

3. The extra element theorem<br />

4. The N-extra element theorem<br />

5. Electronic negative feedback<br />

6. High-frequency and microwave circuits<br />

7. Passive filters<br />

8. PWM switching dc-to-dc converters<br />

85/107<br />

Pulse-Width Modulator<br />

v c<br />

K<br />

m<br />

1<br />

= = constant<br />

v<br />

p<br />

For natural sampling,<br />

ds( t)<br />

v p<br />

v<br />

D T ON<br />

vc<br />

= =<br />

p<br />

T v<br />

S<br />

p<br />

ds $ () = Kv()<br />

s<br />

m c<br />

86/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

43


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

PWM Switch Model<br />

(active)<br />

i% () t<br />

a<br />

d<br />

1-d<br />

~<br />

ic ( t )<br />

c<br />

Instantaneous value<br />

(common)<br />

v% () t<br />

ap<br />

v% () t<br />

cp<br />

p<br />

(passive)<br />

PWM Switch <strong>Modeling</strong><br />

[1] V. Vorperian, R. Tymerski, and F.C.Y. Lee, “Equivalent circuit models for resonant and PWM switches,” IEEE<br />

Transactions on Power Electronics, vol. 4, no. 2, pp. 205-214, Apr 1989.<br />

[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous<br />

Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 490-496, May 1990.<br />

[2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous<br />

Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.<br />

[3] E. Van Dijk, J. N. Spruijt, D. M. O'Sullivan, and J. B. Klaassens, “PWM-switch modeling of DC-DC converters,”<br />

IEEE Transactions on Power Electronics,, vol. 10, no. 6, pp. 659 -665, Nov 1995.<br />

87/107<br />

<strong>Modeling</strong> of the Switch<br />

i<br />

a<br />

= Di<br />

c<br />

i% () t<br />

~ t<br />

ic ( )<br />

a<br />

v<br />

cp<br />

= Dv<br />

ap<br />

v ap<br />

v cp<br />

v% ap<br />

() t<br />

v% () t<br />

cp<br />

Note:<br />

i<br />

a<br />

denotesthe averagevalueof<br />

~<br />

i ( t)<br />

a<br />

During a PWM switching interval:<br />

~ ⎧<br />

~ ie<br />

( t),<br />

ia<br />

( t)<br />

= ⎨<br />

⎩ 0,<br />

0 ≤ t ≤ DT<br />

DT ≤ t ≤ T<br />

s<br />

s<br />

s<br />

⎧v<br />

~<br />

ap<br />

t<br />

v~<br />

( ),<br />

cp<br />

( t)<br />

= ⎨<br />

⎩ 0,<br />

0 ≤ t ≤ DT<br />

DT ≤ t ≤ T<br />

s<br />

s<br />

s<br />

88/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

44


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Small-Signal Perturbation<br />

Make a small-signal perturbation at a DC operating point<br />

We can obtain<br />

d= D+ d $<br />

ia= Ia+<br />

i$<br />

a<br />

i = I + i$<br />

c c c<br />

v = V + v$<br />

cp cp cp<br />

v = V + v$<br />

ap ap ap<br />

i<br />

a<br />

= Di<br />

c<br />

ia<br />

= dic<br />

I<br />

a<br />

+ iˆ<br />

a<br />

= ( D + dˆ)(<br />

I<br />

c<br />

+ iˆ<br />

c<br />

)<br />

I + iˆ<br />

= DI + I dˆ<br />

+ Diˆ<br />

+ di ˆˆ<br />

a<br />

a<br />

c<br />

c<br />

c<br />

c<br />

v<br />

cp<br />

= Dv<br />

ap<br />

v<br />

cp<br />

= dv<br />

ap<br />

V + v$ = ( D+ d$ )( V + v $ )<br />

cp cp ap ap<br />

V + v$ = DV + V d$ + Dv$ + dv $ $<br />

cp cp ap ap ap ap<br />

89/107<br />

DC and AC Analysis<br />

For dc analysis, eliminate all small signal perturbation terms, we can get its<br />

equivalent dc model.<br />

I<br />

V<br />

a<br />

cp<br />

= DI<br />

c<br />

= DV<br />

ap<br />

For ac analysis, set all dc terms to zero and neglect second order nonlinear<br />

terms, we can get its equivalent small-signal ac model.<br />

iˆ = I dˆ<br />

+ Diˆ<br />

a<br />

c<br />

v$ = V d$ + Dv$<br />

cp ap ap<br />

c<br />

90/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

45


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

PWM Switch Model<br />

DC Model:<br />

AC Model:<br />

⎧ I<br />

a<br />

= DI<br />

c<br />

⎪⎧<br />

iˆ<br />

= Diˆ<br />

+ I dˆ<br />

a c c<br />

⎨<br />

⎨<br />

⎩V<br />

cp<br />

= DV<br />

ap<br />

⎪⎩ vˆ<br />

= Dvˆ<br />

cp ap<br />

+ V<br />

Vap I a I c<br />

a<br />

c<br />

D d $<br />

îa<br />

a<br />

1 D<br />

V V<br />

ap<br />

cp<br />

I<br />

c<br />

d$<br />

ap<br />

dˆ<br />

Dˆ i c<br />

1 D<br />

îc<br />

c<br />

p<br />

p<br />

91/107<br />

DC Analysis of a Buck Converter<br />

a<br />

c<br />

L<br />

a<br />

c<br />

r L<br />

p<br />

r L<br />

r C<br />

C<br />

R<br />

V i<br />

1<br />

p<br />

D<br />

R<br />

V o<br />

DC Analysis<br />

V ⎛ ⎞<br />

o<br />

R<br />

= D⋅<br />

⎜<br />

⎟<br />

Vi<br />

⎝R+<br />

rL<br />

⎠<br />

92/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

46


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

AC Analysis of a Buck Converter<br />

Small-signal equivalent circuit<br />

model of the buck converter.<br />

L<br />

r L<br />

i L<br />

i o<br />

i c<br />

Note:<br />

In the following, the hat above<br />

the small signal variables are<br />

neglected for simplicity.<br />

r C<br />

C<br />

i i<br />

V i<br />

i S<br />

i D<br />

v o<br />

R<br />

v c<br />

i d<br />

a<br />

V i<br />

d ˆ<br />

D<br />

c<br />

L<br />

r L<br />

i L<br />

i o<br />

vˆi<br />

i i<br />

i a<br />

1<br />

Id<br />

c<br />

$<br />

p<br />

i c<br />

D<br />

r C<br />

C<br />

i c<br />

R<br />

v c<br />

i R<br />

94/107<br />

i R<br />

v o<br />

i d<br />

93/107<br />

AC Analysis: Control-to-Output Transfer Function<br />

i i<br />

a<br />

V<br />

ap<br />

D d<br />

c<br />

L<br />

r L<br />

i L<br />

i o<br />

'<br />

i c<br />

i R<br />

1 D<br />

p<br />

r C<br />

C<br />

R<br />

v c<br />

v o<br />

Short the unrelated voltage source and open the unrelated current source<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

47


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

AC Analysis: Control-to-Output Transfer Function<br />

v<br />

cp<br />

v<br />

o<br />

Vi<br />

=<br />

D d ⋅ D<br />

= v<br />

cp<br />

R//( rC<br />

+ 1/ sC)<br />

( r + sL) + R//( r + 1/ sC)<br />

L<br />

C<br />

R( 1+<br />

srC<br />

C)<br />

= Vd<br />

i 2<br />

s( R+ r) LC+ srrC ( + rRC+ L+ rRC) + ( R+<br />

r)<br />

C L C L C L<br />

vo()<br />

s<br />

R( 1+<br />

srC<br />

C)<br />

Gd<br />

() s = = Vi<br />

2<br />

ds () s RLC+ s( r r C + L + r RC + r RC) + ( R+<br />

r )<br />

L C L C L<br />

if r L


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

AC Analysis: Line-to-Output Transfer Function<br />

v<br />

cp<br />

= v D<br />

i<br />

R(<br />

rC<br />

+ 1/ sC)<br />

R//(<br />

rC<br />

+ 1/ sC)<br />

R + rC<br />

+ 1/ sC<br />

vo<br />

= vcp<br />

= vi<br />

D<br />

( r ) //( 1/ )<br />

R(<br />

rC<br />

1/ sC)<br />

L<br />

+ sL + R rC<br />

+ sC<br />

+<br />

( rL<br />

+ sL)<br />

+<br />

R + r + 1/ sC<br />

R(<br />

rC<br />

+ 1/ sC)<br />

R(1<br />

+ srC<br />

C)<br />

= vi<br />

D<br />

= viD<br />

( r + sL)(<br />

R + r + 1/ sC)<br />

+ R(<br />

r + 1/ sC)<br />

( r + sL)(<br />

sRC+<br />

sr C + 1) + R(<br />

sr C + 1)<br />

L<br />

R(1+<br />

srC<br />

C)<br />

= vi<br />

D<br />

2<br />

s ( R + r ) LC + s(<br />

r r C + r RC + L + r RC)<br />

+ ( R + r )<br />

C<br />

C<br />

L C<br />

L<br />

vo()<br />

s<br />

R( 1+<br />

srC<br />

C)<br />

Gv<br />

() s = = D<br />

2<br />

v () s s RLC+ s( r r C+ L+ r RC + r RC) + ( R+<br />

r )<br />

i<br />

C<br />

C<br />

L C L C L<br />

if r L


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

AC Analysis: Disturbance-to-Output Transfer Function<br />

v<br />

i<br />

o<br />

d<br />

R(<br />

rC<br />

+ 1/ sC)<br />

= R //( rC<br />

+ 1/ sC) //( rL<br />

+ sL)<br />

=<br />

//( rL<br />

+ sL)<br />

R + r + 1/ sC<br />

R(<br />

rC<br />

+ 1/ sC)<br />

( rL<br />

+ sL)<br />

R + rC<br />

+ 1/ sC<br />

R(<br />

rC<br />

+ 1/ sC)(<br />

rL<br />

+ sL)<br />

=<br />

=<br />

R(<br />

rC<br />

+ 1/ sC)<br />

+ r<br />

R rC<br />

sC R rC<br />

sC rL<br />

sL<br />

L<br />

+ sL<br />

( + 1/ ) + ( + + 1/ )( + )<br />

R + r + 1/ sC<br />

C<br />

C<br />

C<br />

C<br />

2<br />

[ r LC + sr r C + sL + r ]<br />

R s<br />

C L C<br />

L<br />

=<br />

2<br />

sr RC + R + s RLC + s r LC + sr r C + sr RC + sL + r<br />

2<br />

C<br />

L<br />

C<br />

C L<br />

L<br />

C<br />

2<br />

[ r LC + sr r C + sL + r ]<br />

R(<br />

srC<br />

C + 1)( rL<br />

+ sL)<br />

R s<br />

C<br />

L C<br />

L<br />

=<br />

=<br />

R(<br />

sr C + 1) + ( sRC + sr C + 1)( r + sL)<br />

sr RC + R + ( sRC + sr C + 1)( r + sL)<br />

L<br />

C<br />

L<br />

v<br />

i<br />

d<br />

o<br />

2<br />

RsrLC<br />

C<br />

+ sL ( + rrC<br />

L C<br />

) + rL<br />

=<br />

2<br />

s ( R+ r ) LC + s L+ ( r + r ) RC + r r C + ( R+<br />

r )<br />

C C L C L L<br />

99/107<br />

AC Analysis: Disturbance-to-Output Transfer Function<br />

if r L


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

AC Analysis: Disturbance-to-Output Transfer Function<br />

2 1 rL<br />

v s<br />

s rC<br />

s<br />

o(<br />

)<br />

+ +<br />

Z s<br />

C LC<br />

o(<br />

) = =<br />

i s 1 rC<br />

r<br />

d(<br />

) 2 ⎡ +<br />

L⎤<br />

1<br />

s + s<br />

⎢<br />

+ +<br />

⎣RC<br />

L ⎥<br />

⎦ LC<br />

2 1<br />

ω o =<br />

LC<br />

ω= 1 LC<br />

ω 1 o<br />

r C<br />

r L<br />

= + +<br />

Q RC L<br />

2<br />

1 ωo<br />

1 1 1 1<br />

Q=<br />

=<br />

=<br />

ω 1 rC<br />

+ rL<br />

r r L<br />

o o<br />

⎛ 1<br />

C<br />

+<br />

+<br />

ω<br />

L ⎞ ωo<br />

LC⎜<br />

+ ⎟ + ( rC<br />

+ rL<br />

) L<br />

RC L ⎝RC<br />

L ⎠ R<br />

101/107<br />

AC Analysis: Disturbance-to-Output Transfer Function<br />

1 1<br />

Q =<br />

ω L<br />

o + ( rC<br />

+ rL)<br />

L<br />

R<br />

Z ( s)<br />

op<br />

2 ⎡ 1 rC<br />

+ rL<br />

⎤ 1<br />

= s + s<br />

⎢<br />

+ +<br />

⎣RC<br />

L ⎥<br />

⎦<br />

2 ω =<br />

o 2<br />

s + s +ω<br />

o<br />

Q<br />

2 1 rL<br />

Zoq(<br />

s)<br />

= s rC<br />

+ s +<br />

C LC<br />

r ⎛<br />

2 L ⎞<br />

L<br />

rC<br />

=<br />

⎜ LCs + s + 1<br />

⎟<br />

LC⎝<br />

rL<br />

rL<br />

⎠<br />

2⎛<br />

1<br />

= Reqω<br />

o<br />

⎜ s<br />

2<br />

⎝ω1<br />

2<br />

LC<br />

1 ⎞<br />

+ s + 1⎟<br />

ω1Q<br />

1 ⎠<br />

ωo<br />

Δs= s 2 + s + ω<br />

2<br />

Q<br />

R<br />

eq<br />

= r<br />

L<br />

1<br />

ω 1<br />

= r L<br />

r LC<br />

C<br />

1 rL<br />

Q1<br />

= ω L<br />

1<br />

o<br />

102/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

51


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

AC Analysis: Disturbance-to-Output Transfer Function<br />

The exact output impedance is derived as:<br />

v<br />

i<br />

o<br />

d<br />

=<br />

=<br />

=<br />

R<br />

C<br />

2<br />

s ( R + r ) LC + s<br />

C<br />

2<br />

[ s r LC + s(<br />

L + r r C ) + r ]<br />

[ L + ( r + r ) RC + r r C ]<br />

C<br />

C L<br />

+ ( R + r )<br />

2<br />

s rC<br />

LC + s(<br />

L + rL<br />

rC<br />

C ) + rL<br />

2 rC<br />

⎡ L<br />

C ⎤ rL<br />

s (1 + ) LC + s r r C r r<br />

R ⎢<br />

+ (<br />

C<br />

+<br />

L<br />

) +<br />

C L<br />

+ (1 + )<br />

⎣ R<br />

R ⎥<br />

⎦ R<br />

2 1 rL<br />

rC<br />

rL<br />

s rC<br />

+ s(<br />

+ ) +<br />

C L LC<br />

2 rC<br />

⎡ 1 1 rL<br />

rC<br />

⎤ rL<br />

1<br />

s (1 + ) + s ( rC<br />

rL<br />

) + (1 + )<br />

R ⎢<br />

+ + +<br />

⎣ RC L R ⎥<br />

⎦ R LC<br />

L<br />

L C<br />

L<br />

L<br />

103/107<br />

AC Analysis: Disturbance-to-Output Transfer Function<br />

2<br />

Z ( s)<br />

= s r<br />

R<br />

oq<br />

eq<br />

= r<br />

= R<br />

L<br />

⎛ 1 rL<br />

r<br />

+ s⎜<br />

+<br />

⎝C<br />

L<br />

2⎛<br />

1<br />

ω<br />

⎜<br />

o<br />

s<br />

2<br />

⎝ω1<br />

eq<br />

C<br />

1<br />

ω 1 = r L<br />

r LC<br />

C<br />

1 1<br />

Q1<br />

=<br />

ω L<br />

1 + rC<br />

C<br />

r<br />

L<br />

2<br />

C<br />

⎞ r ⎛<br />

L<br />

rL<br />

r<br />

⎟+ =<br />

⎜<br />

⎠ LC LC⎝<br />

r<br />

1 ⎞<br />

+ s + 1<br />

⎟<br />

ω1Q<br />

1 ⎠<br />

C<br />

L<br />

2 L ⎞<br />

LCs + ( + r C)<br />

s + 1<br />

⎟<br />

C<br />

rL<br />

⎠<br />

104/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

52


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

Output Impedance of the Buck Converter<br />

Output Impedance of the Buck Converter:<br />

2 1 rL<br />

rC<br />

rL<br />

v s<br />

s rC<br />

s<br />

o(<br />

)<br />

+ ( + ) +<br />

Z s<br />

C L LC<br />

o(<br />

) = =<br />

i s rC<br />

1 1 rL<br />

rC<br />

r<br />

d<br />

( ) 2 ⎡<br />

⎤ L<br />

1<br />

s (1+<br />

) + s ( rC<br />

rL<br />

) + (1+<br />

)<br />

R ⎢<br />

+ + +<br />

⎣RC<br />

L R ⎥<br />

⎦ R LC<br />

vo( s)<br />

Zo( s)<br />

= = R<br />

i ( s)<br />

d<br />

eq<br />

s s<br />

1+ + ( )<br />

ω1Q1 ω1<br />

2<br />

Δs<br />

ω<br />

o<br />

2<br />

2 ωo<br />

Δs= s +<br />

Q s 2<br />

+ ω , R = r<br />

o eq L<br />

1 1 1<br />

ωo<br />

= ,<br />

Q =<br />

LC<br />

ω L<br />

o + ( rL<br />

+ rC)<br />

C<br />

R<br />

1 rL<br />

1 1<br />

ω1 = ; Q1<br />

=<br />

LC r<br />

L<br />

C<br />

ω1<br />

+ rC<br />

L<br />

r<br />

C<br />

105/107<br />

Recommended Books: <strong>Modeling</strong> and Simulation<br />

Dynamic Analysis of Switching-Mode DC/DC Converters,<br />

Andre'S. Kislovski, Richard Redl, and Nathan O. Sokal,<br />

Van Nostrand Reinhold, New York, 1991.<br />

Switch-Mode Power Supply Simulation: Designing with SPICE 3<br />

Steven M. Sandler,<br />

McGraw-Hill Professional; 1 edition, Nov. 11, 2005.<br />

Switch-Mode Power Supplies - SPICE Simulations and Practical Designs,<br />

Christophe Basso,<br />

McGraw-Hill, Feb. 1, 2008.<br />

Complex Behavior of Switching Power Converters,<br />

Chi Kong Tse, CRC Press, 2004.<br />

106/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

53


課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />

交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />

References: <strong>Modeling</strong> of DC-DC Converters<br />

Recommended Readings<br />

[1] D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, G. C. Verghese, "<strong>Modeling</strong> and simulation of power electronic converters,"<br />

Proceedings of the IEEE, vol. 89, no. 6, pp. 898-912, June 2001.<br />

[2] A. J. Forsyth and S. V. Mollov, "Modelling and control of DC-DC converters," IEEE Power Engineering Journal, vol. 12, no. 5,<br />

pp. 229-236, 1998.<br />

[3] R. D. Middlebrook, "Small-signal modeling of PWM switched-mode power converters," IEEE Proc. vol. 76, no. 4, pp. 343-<br />

354, April 1988.<br />

[4] R. D. Middlebrook and S. C'uk, "A general unified approach to modeling switching converter power stages," IEEE PESC Conf.<br />

Rec., pp. 18-34, 1976. [Pioneer paper]<br />

SPS <strong>Modeling</strong> and Control Loop Design<br />

[5] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode,”<br />

IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 490-496, May 1990.<br />

[6] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction<br />

Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.<br />

[7] V. Voperian, R. Tymerski, and F. C. Lee, “Equivalent circuit models for resonant and PWM switches,” IEEE Trans. on Power<br />

Electronics, vol. 4, no. 2, pp. 205-214, April 1989.<br />

[8] E. Van Dijk, J. N. Spruijt, D. M. O'Sullivan, and J. B. Klaassens, “PWM-switch modeling of DC-DC converters," IEEE<br />

Transactions on Power Electronics, vol. 10, no. 6, pp. 659 -665, Nov 1995.<br />

<strong>Modeling</strong> of Switching Converters in DCM Operation<br />

[11] D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE Trans. Power Electron.,<br />

vol. 6, pp. 476–490, May 1991.<br />

[12] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of PWM converters operating in<br />

discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 16, pp. 482-492, July 2001.<br />

107/107<br />

台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />

電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />

Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />

http://pemclab.cn.nctu.edu.tw/<br />

54


Advances in Averaged Switch<br />

<strong>Modeling</strong> and Simulation<br />

Dragan Maksimovic * and Robert Erickson<br />

Colorado Power Electronics Center<br />

CoPEC<br />

http://ece-www.colorado.edu/~pwrelect<br />

* Acknowledgment: the work by Dragan Maksimovic was supported in part by the National Science Foundation<br />

CAREER Award, Grant No. ECS-9703449.<br />

1. Introduction: converter modeling approaches and objectives<br />

2. Averaged switch modeling of PWM converters operating in the<br />

continuous conduction mode (CCM)<br />

• Basics of averaged switch modeling<br />

• Switch network steady-state and small-signal models<br />

• Using averaged-switch model to predict converter steady-state<br />

characteristics and small-signal dynamics in CCM<br />

• PSpice implementation of the averaged switch model<br />

• Application examples: small-signal dynamics,<br />

conduction losses and efficiency of a Sepic converter<br />

• Averaged switch modeling exercise: include switching losses


3. Averaged switch modeling of PWM converters operating in<br />

discontinuous conduction mode (DCM)<br />

• Averaged switch model in DCM<br />

• Switch network steady-state and small-signal models in DCM<br />

• Using averaged-switch model to predict converter steady-state<br />

characteristics and small-signal dynamics in DCM<br />

• Combined CCM/DCM averaged switch model<br />

• PSpice implementation of combined CCM/DCM models<br />

• Application examples:<br />

Large-signal transient response of a SEPIC<br />

Flyback converter small-signal frequency responses in CCM<br />

and DCM<br />

4. Averaged modeling of PWM converters with current-programmed<br />

mode (CPM) control<br />

• Averaged switch model in CCM and DCM<br />

• Steady-state and AC models in CCM and DCM<br />

• Large-signal averaged CCM/DCM model for CPM controller<br />

• PSpice implementation of the CPM controller model<br />

• Application example: buck converter with CPM controller<br />

5. Single-phase low-harmonic rectifiers<br />

• The ideal rectifier<br />

• Averaged models of rectifiers<br />

• Application examples:<br />

DCM boost rectifier<br />

SEPIC rectifier with nonlinear-carrier control<br />

6. Summary<br />

7. Bibliography


• http://ece-www.colorado.edu/~pwrelect/publications<br />

seminar slides, collection of simulation examples, library of PSpice<br />

models used in the examples, and many other CoPEC publications<br />

and presentation materials<br />

• http://ece-www.colorado.edu/~pwrelect/ is the CoPEC home page<br />

• http://ece-www.colorado.edu/~pwrelect/book/bookdir.html<br />

is the home page for the Textbook: R.W.Erickson, Fundamentals of<br />

Power Electronics<br />

• Power Electronics courses at the University of Colorado:<br />

• Power Electronics 1: http://ece-www.colorado.edu/~ecen5797<br />

• Power Electronics 2: http:// ece-www.colorado.edu/~ecen5807<br />

• Power Electronics Lab: http:// ece-www.colorado.edu/~ecen4517<br />

• All simulation examples completed using free PSpice evaluation<br />

version available from: http://www.orcad.com<br />

Engineering design based on converter modeling:<br />

• Predict converter system behavior, validate models by experiments<br />

• Use the model to predict performance under worst-case conditions<br />

• Improve design until worst-case behavior meets specifications<br />

(or until reliability and production yield are acceptably high)<br />

Models:<br />

• Circuit models that yield design-oriented, analytical results<br />

• Models for computer simulation<br />

Results of interest:<br />

• Steady-state characteristics<br />

• Component stresses, losses, efficiency<br />

• Large and small-signal dynamic responses


• Describe basic averaged switch modeling approach<br />

• Develop averaged models for<br />

Converters in continuous conduction mode (CCM)<br />

Converters in discontinuous conduction mode (DCM)<br />

Converters with Current-Programmed Mode (CPM) controller<br />

Single-phase power-factor correctors<br />

• Summarize analytical results for steady-state and dynamic responses<br />

• Demonstrate PSpice implementations of averaged-switch models and<br />

controllers<br />

• Present application examples<br />

Large-signal transient responses and small-signal dynamics of DC-DC<br />

converters and single-phase power-factor correctors<br />

• Switch network is replaced by averaged circuit model. Switching<br />

harmonics are removed, and low-frequency components of waveforms<br />

are modeled in a simple way.<br />

• A very general approach to modeling converter losses, efficiency, and<br />

dynamics.<br />

• Yields an intuitive understanding of converter behavior in CCM, DCM,<br />

current-programmed mode, etc.<br />

• Applicable to all types of converters: dc-dc converters, as well as dc-ac<br />

inverters, ac-dc low-harmonic rectifiers, ac-ac matrix converters.<br />

• Well-suited to simulation<br />

• Well developed and understood technique, easily taught to students.<br />

• Main reference for the material in this seminar:<br />

R.W.Erickson, Fundamentals of Power Electronics, Chapman and<br />

Hall, 1997.<br />

Bibliography has a large collection of other selected references


averaging<br />

Switching<br />

network + d +<br />

– –<br />

Averaged<br />

switch<br />

model<br />

+<br />

–<br />

Switching converter circuit<br />

Large-signal averaged circuit model<br />

+<br />

-<br />

D<br />

1<br />

2<br />

S<br />

4 A<br />

ccm-dcm1<br />

5<br />

duty<br />

3 K<br />

simulation<br />

model<br />

+<br />

–<br />

linearization<br />

+<br />

–<br />

D+d^<br />

DC and small-signal averaged circuit model<br />

Model implementation for simulation<br />

DC, AC and Transient simulation<br />

G ( s)<br />

c<br />

1 s / ws<br />

Gco<br />

1 (1/ Q)<br />

s / w ( s / w )<br />

o<br />

2<br />

o<br />

Analytical results:<br />

steady-state characteristics<br />

and small-signal dynamics<br />

• Basics of averaged switch modeling<br />

• Switch network steady-state and small-signal models<br />

• Using averaged-switch model to predict converter steady-state<br />

characteristics and small-signal dynamics in CCM<br />

• PSpice implementation of averaged switch models<br />

- ideal switches (ccm1)<br />

- switches with conduction losses (ccm2)<br />

- switches in converters with isolation transformer (ccm3)<br />

- switch with conduction losses in converters with (possibly)<br />

isolation transformer (ccm4)<br />

• Application example:<br />

- SEPIC small-signal frequency response, conduction losses and<br />

efficiency<br />

• Averaged switch modeling exercise: include switching losses


Given a PWM converter operating in continuous conduction mode:<br />

V g<br />

L 1<br />

C 1<br />

D 1<br />

+<br />

+ C – L 2<br />

R v<br />

2<br />

Q 1<br />

–<br />

SEPIC<br />

example<br />

Separate the switching elements from the remainder of the converter...<br />

• Define a switch<br />

network,<br />

containing all of<br />

the converter<br />

switching<br />

elements.<br />

• The remainder of<br />

the converter is<br />

linear and timeinvariant.<br />

• The terminal<br />

voltages and<br />

currents of the<br />

switch network<br />

can be arbitrarily<br />

defined.<br />

v g<br />

(t)<br />

L 1<br />

+ L – 2<br />

i L1<br />

(t)<br />

+ v C1<br />

(t) –<br />

+<br />

C 1<br />

C 2<br />

v C2<br />

(t) R<br />

i L2<br />

(t)<br />

–<br />

i 1<br />

(t) Switch network i 2<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

– Q 1 D 1<br />

–<br />

v 2<br />

(t)<br />

+<br />

Duty<br />

cycle<br />

d(t)


Power input<br />

v g<br />

(t)<br />

Time-invariant network<br />

containing converter reactive elements<br />

+ C<br />

L<br />

–<br />

R<br />

Load<br />

+<br />

v(t)<br />

+ v C<br />

(t) –<br />

i L<br />

(t)<br />

–<br />

i 1<br />

(t)<br />

i 2<br />

(t)<br />

+<br />

Switch network<br />

+<br />

v 1<br />

(t)<br />

port 1<br />

port 2<br />

v 2<br />

(t)<br />

–<br />

–<br />

Control<br />

input<br />

d(t)<br />

The number of ports in the switch network is less than or equal<br />

to the number of SPST switches in the converter<br />

Simple dc-dc case, in which converter contains two SPST<br />

switches: switch network contains two ports<br />

The switch network terminal waveforms are then the port voltages and<br />

currents: v 1<br />

(t), i 1<br />

(t), v 2<br />

(t), and i 2<br />

(t).<br />

Two of these waveforms can be taken as independent inputs to the<br />

switch network; the remaining two waveforms are then viewed as<br />

dependent outputs of the switch network.<br />

Switch network also includes control input d(t)<br />

Definition of the switch network terminal quantities is not unique.<br />

Different definitions lead equivalent results having different<br />

forms


i 1<br />

(t)<br />

+<br />

i 2<br />

(t)<br />

+<br />

i 1<br />

(t) Ts<br />

+<br />

1 : D<br />

i 2<br />

(t) Ts<br />

+<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

v 1<br />

(t) Ts<br />

v 2<br />

(t) Ts<br />

–<br />

–<br />

–<br />

–<br />

i 1<br />

(t)<br />

+<br />

i 2<br />

(t)<br />

+<br />

i 1<br />

(t) Ts<br />

+<br />

D' : 1<br />

i 2<br />

(t) Ts<br />

+<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

v 1<br />

(t) Ts<br />

v 2<br />

(t) Ts<br />

–<br />

–<br />

–<br />

–<br />

i 1<br />

(t)<br />

+<br />

i 2<br />

(t)<br />

+<br />

i 1<br />

(t) Ts<br />

+<br />

D' : D<br />

i 2<br />

(t) Ts<br />

+<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

v 1<br />

(t) Ts<br />

v 2<br />

(t) Ts<br />

–<br />

–<br />

–<br />

–<br />

• The switch network can be defined arbitrarily, as long as<br />

its terminal voltages and currents are independent, and<br />

the switch network contains no reactive elements.<br />

• It is not necessary that some of the switch network terminal quantities<br />

coincide with inductor currents or capacitor voltages of the converter, or<br />

be nonpulsating.<br />

• The object is simply to write the averaged equations of the switch network;<br />

i.e., to express the average values of half of the switch network terminal<br />

waveforms as functions of<br />

the average values of the remaining switch network terminal waveforms,<br />

and<br />

the control input.


v 1 (t)<br />

v C1 + v C2<br />

v 1 (t) Ts<br />

0<br />

0<br />

0<br />

dT s<br />

T s<br />

t<br />

v g (t)<br />

i L1 (t)<br />

+<br />

+ v (t) –<br />

L 1 C 1<br />

C1<br />

L 2 C 2<br />

v C2 (t) R<br />

i 1 (t)<br />

i L1 + i L2<br />

i L2 (t)<br />

–<br />

i 1 (t) T2<br />

0<br />

0<br />

0 dT s<br />

v 2 (t)<br />

v C1 + v C2<br />

T s<br />

t<br />

i 1 (t)<br />

+<br />

v 1 (t)<br />

–<br />

+<br />

–<br />

D 1<br />

Switch network<br />

Q 1<br />

–<br />

v 2 (t)<br />

+<br />

i 2 (t)<br />

v 2 (t) T2<br />

0<br />

0 0 dT s<br />

T s<br />

t<br />

Duty<br />

cycle<br />

d(t)<br />

i 2 (t)<br />

i L1 + i L2<br />

i 2 (t) Ts<br />

0<br />

0<br />

0<br />

dT s<br />

T s<br />

t<br />

x(t) Ts<br />

= 1 T s<br />

t<br />

t + T s<br />

x(t)dt<br />

Now average all waveforms over one switching period:<br />

v g<br />

(t) Ts<br />

Power input<br />

Averaged time-invariant network<br />

containing converter reactive elements<br />

+ C<br />

L<br />

–<br />

R<br />

Load<br />

+<br />

v(t) Ts<br />

+ v C<br />

(t) Ts<br />

–<br />

i L<br />

(t) Ts<br />

–<br />

i 1<br />

(t) Ts<br />

i 2<br />

(t) Ts<br />

+<br />

v 1<br />

(t) Ts<br />

–<br />

port 1<br />

Averaged<br />

switch network<br />

port 2<br />

+<br />

v 2<br />

(t) Ts<br />

–<br />

Control<br />

input<br />

d(t)


The basic assumption is made that the natural time constants of the<br />

converter are much longer than the switching period, so that the<br />

converter contains low-pass filtering of the switching harmonics:<br />

One may average the waveforms over an interval that is short<br />

compared to the system natural time constants, without<br />

significantly altering the system response.<br />

In particular, averaging over the switching period T s<br />

removes the<br />

switching harmonics, while preserving the low-frequency<br />

components of the waveforms.<br />

This step removes the small but mathematically-complicated<br />

switching harmonics, leading to a relatively simple and tractable<br />

converter model.<br />

In practice, the only work needed for this step is to average the switch<br />

dependent waveforms.<br />

(small switching ripple is neglected)<br />

v 1<br />

(t)<br />

v C1<br />

+ v C2<br />

v 2<br />

(t)<br />

v C1<br />

+ v C2<br />

v 1 (t) Ts<br />

0<br />

0<br />

0<br />

dT s<br />

T s<br />

t<br />

v 2 (t) T2<br />

0<br />

0<br />

0 dT s<br />

T s<br />

t<br />

v 1 (t) Ts<br />

= d'(t)<br />

v C1 (t) Ts<br />

+ v C2 (t) Ts<br />

v 2 (t) Ts<br />

= d(t)<br />

0<br />

0<br />

i 1 (t) Ts<br />

= d(t) i L1 (t) Ts<br />

+ i L2 (t) Ts<br />

i 2 (t) Ts<br />

= d'(t) i L1 (t) Ts<br />

+ i L2 (t) Ts<br />

v C1 (t) Ts<br />

+ v C2 (t) Ts<br />

i 1<br />

(t)<br />

i L1<br />

+ i L2<br />

i 2<br />

(t)<br />

i L1<br />

+ i L2<br />

0<br />

0<br />

0<br />

dT s<br />

T s t<br />

0 dT s<br />

T s t<br />

i 1 (t) T2<br />

i 2 (t) Ts


We can write<br />

i L1 (t) Ts<br />

+ i L2 (t) Ts<br />

= i 1(t) Ts<br />

d(t)<br />

Result<br />

+<br />

–<br />

Hence<br />

v C1 (t) Ts<br />

+ v C2 (t) Ts<br />

= v 2(t) Ts<br />

d(t)<br />

v 1 (t) Ts<br />

= d'(t)<br />

d(t)<br />

i 2 (t) Ts<br />

= d'(t)<br />

d(t)<br />

i 1<br />

(t) Ts<br />

d'(t) + d'(t)<br />

v 1<br />

(t) Ts<br />

v<br />

d(t) 2 (t) Ts<br />

i<br />

– d(t) 1 (t) Ts<br />

– i 2<br />

(t) Ts<br />

Averaged switch network<br />

v 2 (t) Ts<br />

<strong>Modeling</strong> the switch network via<br />

averaged dependent sources<br />

i 1 (t) Ts<br />

+<br />

v 2<br />

(t) Ts<br />

Original switch network<br />

i 1<br />

(t)<br />

Switch network<br />

i 2<br />

(t)<br />

+<br />

–<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

– Q 1 D 1<br />

+<br />

Duty<br />

cycle<br />

d(t)<br />

Averaged steady-state model:<br />

“DC transformer”<br />

• Correctly represents the<br />

relationships between the dc<br />

and low-frequency<br />

components of the terminal<br />

waveforms of the switch<br />

network<br />

+<br />

V 1<br />

–<br />

I 1 D' : D<br />

I 2<br />

–<br />

V 2<br />

+


Replace switch network with dc transformer model<br />

C 1<br />

L 2 R<br />

I L1<br />

+ V C1<br />

–<br />

+<br />

V g<br />

+<br />

–<br />

L 1<br />

C 2<br />

V C2<br />

I L2<br />

–<br />

I 1<br />

D' : D<br />

+<br />

V 1<br />

–<br />

–<br />

V 2<br />

+ I 2<br />

• Can now let inductors<br />

become short circuits,<br />

capacitors become open<br />

circuits, and solve for dc<br />

conditions.<br />

• Can simulate this model<br />

using PSPICE, to find<br />

transient waveforms<br />

Perturb and linearize the switch<br />

network averaged waveforms<br />

about a quiescent operating<br />

point. Let:<br />

d(t)=D + d(t)<br />

v 1 (t) Ts<br />

= V 1 + v 1 (t)<br />

i 1 (t) Ts<br />

= I 1 + i 1 (t)<br />

v 2 (t) Ts<br />

= V 2 + v 2 (t)<br />

i 2 (t) Ts<br />

= I 2 + i 2 (t)<br />

Voltage equation becomes<br />

D + d V 1 + v 1 = D'–d V 2 + v 2<br />

Eliminate nonlinear terms<br />

and solve for v 1<br />

terms:<br />

V 1 + v 1<br />

= D'<br />

D V 2 + v 2 – d V 1 + V 2<br />

D<br />

= D'<br />

D V 2 + v 2<br />

– d<br />

V 1<br />

DD'


Current equation becomes<br />

D + d I 2 + i 2 = D'–d I 1 + i 1<br />

Eliminate nonlinear terms<br />

and solve for i 2<br />

terms:<br />

I 2 + i 2<br />

= D'<br />

D I 1 + i 1 – d I 1 + I 2<br />

D<br />

= D'<br />

D I 1 + i 1 – d<br />

I 2<br />

DD'<br />

Reconstruct an equivalent circuit that corresponds to these smallsignal<br />

equations:<br />

I 1 + i 1<br />

I 2 + i 2<br />

+<br />

+<br />

–<br />

V 1 + v 1<br />

V 1<br />

D' : D<br />

–<br />

DD' d I 2<br />

V 2 + v 2<br />

DD' d<br />

–<br />

+<br />

Transistor port<br />

Diode port<br />

A general small-signal ac model for the PWM switch network<br />

operating in CCM.


Replace switch network with small-signal ac model:<br />

C 1<br />

L 2 R<br />

V C1 + v C1<br />

+<br />

V g + v g<br />

I L1 + i L1<br />

I L2 + i L2<br />

+<br />

–<br />

L 1<br />

C 2<br />

V C2 + v C2<br />

–<br />

D' : D<br />

+<br />

–<br />

V 1<br />

DD' d<br />

I 2<br />

DD' d<br />

Can now solve this<br />

model to determine ac<br />

transfer functions<br />

i 1<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

i 2<br />

(t)<br />

+<br />

v 2<br />

(t)<br />

I 1 + i 1 1 : D<br />

I 2 + i 2<br />

+<br />

+<br />

V 1 d<br />

V 1 + v 1<br />

I 2 d<br />

V 2 + v 2<br />

+<br />

–<br />

–<br />

–<br />

–<br />

–<br />

i 1<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

i 2<br />

(t)<br />

+<br />

v 2<br />

(t)<br />

I 1 + i 1 D' : 1<br />

I 2 + i 2<br />

+<br />

V 1 + v 1<br />

+<br />

–<br />

V 2 d<br />

I 1 d<br />

+<br />

V 2 + v 2<br />

–<br />

–<br />

–<br />

–<br />

i 1<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

i 2<br />

(t)<br />

+<br />

v 2<br />

(t)<br />

I 1 + i 1 D' : D<br />

I 2 + i 2<br />

+<br />

+<br />

–<br />

V 1 + v 1<br />

V 1<br />

DD' d I 2<br />

V 2 + v 2<br />

DD' d<br />

+<br />

–<br />

–<br />

–<br />


Control-to-output and line-to-output transfer functions G vd<br />

(s) and G vg<br />

(s)<br />

Converter G g0 G d0 0 Q z<br />

buck<br />

D<br />

V<br />

1<br />

D<br />

LC<br />

R<br />

C<br />

L<br />

boost<br />

1<br />

V<br />

D'<br />

D'<br />

D'<br />

D'R<br />

C D' 2 R<br />

LC<br />

L L<br />

buck-boost<br />

–<br />

D'<br />

D V<br />

D'<br />

DD' 2<br />

D'R<br />

C D' 2 R<br />

LC<br />

L DL<br />

where the transfer functions are written in the standard forms<br />

G vd (s)=G d0<br />

1– s z<br />

1+ s<br />

Q 0<br />

+ s 0<br />

2<br />

G vg (s)=G g0<br />

1<br />

1+ s<br />

Q 0<br />

+ s 0<br />

2<br />

ccm1<br />

i 1 (t)<br />

+<br />

v 1 (t)<br />

_<br />

1<br />

D<br />

S<br />

2<br />

switch<br />

network<br />

3<br />

K<br />

A<br />

4<br />

i 2 (t)<br />

+<br />

v 2 (t)<br />

_<br />

averaging<br />

i 1<br />

i 2<br />

averaged-switch<br />

+<br />

1 model 3<br />

D(sub-circuit)<br />

K<br />

1-d + E<br />

– t G d<br />

d v 1-d<br />

v 2<br />

d i 1<br />

1<br />

S<br />

A<br />

_<br />

2<br />

5<br />

4<br />

duty<br />

d<br />

+<br />

v 2<br />

_<br />

• Controlled voltage source E t<br />

replaces the transistor, controlled<br />

current source G d<br />

replaces the diode<br />

• Duty ratio d is input to the subcircuit<br />

• Large-signal, nonlinear model suitable for DC, AC or Transient<br />

simulation<br />

• The same model can be applied in any two-switch PWM converter<br />

(the transistor and the diode need not have a common node)<br />

• Limitations: ideal switches, CCM only, valid for two-switch<br />

converters without isolation transformer


ccm1<br />

D<br />

S<br />

averaged-switch<br />

1 network<br />

(sub-circuit)<br />

+ E<br />

– t G d<br />

2<br />

5<br />

duty<br />

U1<br />

D<br />

1 4 A<br />

ccm1<br />

2 3<br />

S 5 K<br />

duty<br />

3<br />

4<br />

K<br />

A<br />

**********************************************************<br />

* MODEL: ccm1<br />

* Application: two-switch PWM converters<br />

* Limitations: ideal switches, CCM only, no transformer<br />

**********************************************************<br />

* Parameters: none<br />

**********************************************************<br />

* Nodes:<br />

* 1: transistor+ (D)<br />

* 2: transistor- (S)<br />

* 3: diode cathode (K)<br />

* 4: diode anode (A)<br />

* 5: duty ratio (duty)<br />

**********************************************************<br />

.subckt ccm1 1 2 3 4 5<br />

Et 1 2 value={(1-v(5))*v(3,4)/v(5)}<br />

Gd 4 3 value={(1-v(5))*i(Et)/v(5)}<br />

.ends<br />

**********************************************************<br />

ccm1<br />

+<br />

-<br />

L1<br />

1 800u<br />

Vg<br />

50V<br />

2x<br />

R1<br />

0.5<br />

C1<br />

2 3 4<br />

100u<br />

R2<br />

0.1<br />

L2<br />

100u<br />

C2<br />

100u<br />

V<br />

R3<br />

50<br />

U1<br />

D<br />

1 4 A<br />

ccm1<br />

2 3<br />

S 5 K<br />

duty<br />

sepic-ccm1.sch<br />

ACMAG=1V<br />

DC=0.5V<br />

+<br />

-<br />

Vd<br />

Objective: generate small-signal control-to-output frequency responses


ccm1<br />

(A) sepic-ccm1.dat<br />

80<br />

magnitude || vout/d ||<br />

40<br />

0<br />

-20<br />

0d<br />

DB(V(4))<br />

phase of vout/d<br />

-100d<br />

-200d<br />

small-signal control-to-output response<br />

Vout=50V, R=50, D=0.5<br />

-270d<br />

10Hz 100Hz 1.0KHz 10KHz 100KHz<br />

P(V(4))<br />

Frequency<br />

• Subcircuit ccm1 is implementation of a large-signal, nonlinear<br />

averaged model of the switch network<br />

• Averaged circuit model of the converter is obtained simply by replacing<br />

switching devices with the averaged-switch subcircuit model<br />

• Linearization and AC small-signal analysis are performed by the<br />

simulator<br />

• Small-signal dynamic responses can be easily generated for different<br />

operating points or different sets of parameter values


• MOS transistor model: on-resistance R ON<br />

• Diode model: constant forward voltage drop V D<br />

in series with R d<br />

resistance<br />

• Switch network<br />

+<br />

i 1 (t)<br />

v 1 (t)<br />

_<br />

1<br />

D<br />

S<br />

2<br />

switch<br />

network<br />

3<br />

K<br />

A<br />

4<br />

i 2 (t)<br />

+<br />

v 2 (t)<br />

_<br />

• Waveforms<br />

v 1<br />

(t)<br />

v+V D<br />

+R d<br />

i<br />

i 1<br />

(t)<br />

i<br />

R on<br />

i<br />

0 dT s<br />

T t<br />

s<br />

v 2<br />

(t)<br />

v-R on<br />

i<br />

0 dT s<br />

T t<br />

s<br />

i 2<br />

(t)<br />

i<br />

0 dT -V t<br />

s<br />

D<br />

-R d<br />

i T s<br />

0 dT s<br />

T s<br />

t<br />

ccm2<br />

v 1<br />

(t)<br />

i 1<br />

(t)<br />

v+V D<br />

+R d<br />

i<br />

i<br />

R on<br />

i<br />

0 dT s<br />

T t<br />

s<br />

0 dT s<br />

T t<br />

s<br />

v 2<br />

(t)<br />

i 2<br />

(t)<br />

v-R on<br />

i<br />

i<br />

t<br />

0 dT -V<br />

s<br />

T 0 dT<br />

s<br />

s<br />

T t<br />

D<br />

-R d<br />

i<br />

s<br />

v<br />

1<br />

T<br />

v<br />

dR<br />

1 Ts<br />

v1<br />

v<br />

T 2<br />

s<br />

s<br />

R<br />

on<br />

i<br />

d<br />

1<br />

on<br />

T<br />

s<br />

T<br />

s<br />

i<br />

T<br />

s<br />

v<br />

T<br />

s<br />

1 d<br />

1 d v<br />

d<br />

R<br />

2<br />

d<br />

i<br />

1<br />

T<br />

s<br />

T<br />

s<br />

i 1<br />

T<br />

d<br />

i<br />

s T s<br />

i (1 d)<br />

2<br />

V<br />

T<br />

s<br />

1 d<br />

d<br />

i<br />

T<br />

i2<br />

i<br />

T<br />

1<br />

D<br />

1<br />

s T s<br />

R<br />

d<br />

d<br />

d<br />

i<br />

v<br />

1<br />

T<br />

s<br />

s<br />

V<br />

D


ccm2<br />

D<br />

S<br />

averaged-switch<br />

sub-circuit<br />

1<br />

+<br />

– E ron<br />

+ E<br />

– t<br />

2<br />

G d<br />

5<br />

duty<br />

Subcircuit implementation<br />

U2<br />

D<br />

1<br />

ccm2<br />

2<br />

S 5<br />

duty<br />

3<br />

4<br />

4 A<br />

3 K<br />

K<br />

A<br />

**********************************************************<br />

* MODEL: ccm2<br />

* Application: two-switch PWM converters, includes<br />

* conduction losses due to Ron, VD, Rd<br />

* Limitations: CCM only, no transformer<br />

**********************************************************<br />

* Parameters:<br />

* Ron=transistor on resistance<br />

* VD=diode forward voltage drop (constant)<br />

* Rd=diode on resistance<br />

**********************************************************<br />

* Nodes: (same as in ccm1)<br />

**********************************************************<br />

.subckt ccm2 1 2 3 4 5<br />

+params: Ron=0 VD=0 Rd=0<br />

Eron 1 1x value={i(Et)*(Ron+(1-v(5))*Rd/v(5))/v(5)}<br />

Et 1x 2 value={(1-v(5))*(v(3,4)+VD)/v(5)}<br />

Gd 4 3 value={(1-v(5))*i(Et)/v(5)}<br />

.ends<br />

**********************************************************<br />

ccm2<br />

+<br />

-<br />

L1<br />

1 800u<br />

Vg<br />

50V<br />

2x<br />

R1<br />

0.5<br />

C1<br />

2 3<br />

4<br />

100u<br />

R2<br />

0.1<br />

L2<br />

100u<br />

C2<br />

100u<br />

V<br />

Iload<br />

1A<br />

10K<br />

R4<br />

+<br />

-<br />

PARAMETERS:<br />

Ron 0.0<br />

U1<br />

D<br />

1 4 A<br />

ccm2<br />

2 3<br />

Ron={Ron} S 5 K<br />

duty<br />

+<br />

DC=0.5V Vd<br />

-<br />

Rd=0.05<br />

VD=0.8V<br />

Objective: find converter efficiency as a function of the transistor<br />

on-resistance, for a range of loads


ccm2<br />

100<br />

(D) sepic-ccm2.dat<br />

Efficiency [%] (only conduction losses are included)<br />

95<br />

R on =0<br />

90<br />

0.1<br />

0.2<br />

85<br />

0.3<br />

-100*V(4)* I(Iload)/ V(1)/ I(Vg)<br />

80<br />

1.0A 1.5A 2.0A 2.5A 3.0A 3.5A 4.0A 4.5A 5.0A<br />

I_Iload<br />

0.4<br />

R on =0.5<br />

ccm3<br />

Switch network Waveforms<br />

1:n<br />

v 1<br />

(t)<br />

v<br />

i 1<br />

(t)<br />

i<br />

i 1<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

_<br />

1<br />

D<br />

S<br />

2<br />

switch<br />

network<br />

3<br />

K<br />

A<br />

4<br />

i 2<br />

(t)<br />

+<br />

v 2<br />

(t)<br />

_<br />

0 dT s<br />

T t<br />

s<br />

v 2<br />

(t)<br />

n v<br />

0 dT s<br />

T t<br />

s<br />

i 2<br />

(t)<br />

i/n<br />

PRIMARY SECONDARY<br />

t<br />

0 dT s<br />

T 0 dT<br />

s<br />

s<br />

T t<br />

s<br />

1 d<br />

nd<br />

v1<br />

v<br />

T s<br />

2 T s<br />

1 d<br />

nd<br />

i2<br />

i<br />

T s<br />

1 T s<br />

• Converters: Flyback, Cuk, Sepic, Inverse Sepic (Zeta), with isolation transformer


ccm3<br />

D<br />

S<br />

averaged-switch<br />

1 network<br />

(sub-circuit)<br />

+ E<br />

– t G d<br />

2<br />

5<br />

duty<br />

U3<br />

D<br />

1<br />

ccm3<br />

2<br />

S 5<br />

duty<br />

3<br />

4<br />

4 A<br />

3 K<br />

K<br />

A<br />

**********************************************************<br />

* MODEL: ccm3<br />

* Application: two-switch PWM converters,<br />

* with (possibly) transformer<br />

* Limitations: ideal switches, CCM only<br />

**********************************************************<br />

* Parameters:<br />

* n=transformer turns ratio 1:n (primary:secondary)<br />

**********************************************************<br />

* Nodes: (same as in ccm1)<br />

**********************************************************<br />

.subckt ccm3 1 2 3 4 5<br />

+params: n=1<br />

Et 1 2 value={(1-v(5))*v(3,4)/v(5)/n}<br />

Gd 4 3 value={(1-v(5))*i(Et)/v(5)/n}<br />

.ends<br />

**********************************************************<br />

ccm4<br />

• Combined ccm2 and ccm3 averaged-switch models<br />

• Parameters:<br />

• Transistor on resistance R on<br />

• Diode forward voltage drop V D<br />

• Diode on resistance R d<br />

• Transformer turns ratio n<br />

• A general model implementation valid for all two-switch converters<br />

operating in CCM


ccm4<br />

D<br />

S<br />

averaged-switch<br />

sub-circuit<br />

1<br />

+<br />

– E ron<br />

+ E<br />

– t<br />

2<br />

G d<br />

5<br />

duty<br />

Subcircuit implementation<br />

U4<br />

D<br />

1<br />

ccm4<br />

2<br />

S 5<br />

duty<br />

3<br />

4<br />

K<br />

A<br />

4 A<br />

3 K<br />

* MODEL: ccm4<br />

* Application: two-switch PWM converters, includes<br />

* conduction losses due to Ron, VD, Rd<br />

* and (possibly) transformer<br />

* Limitations: CCM only<br />

**********************************************************<br />

* Parameters:<br />

* Ron=transistor on resistance<br />

* VD=diode forward voltage drop (constant)<br />

* Rd=diode on resistance<br />

* n=transformer turns ratio 1:n (primary:secondary)<br />

**********************************************************<br />

* Nodes: (same as in ccm1)<br />

**********************************************************<br />

.subckt ccm4 1 2 3 4 5<br />

+params: Ron=0 VD=0 Rd=0 n=1<br />

Eron 1 1x value={i(Et)*(Ron+(1-v(5))*Rd/n/n/v(5))/v(5)}<br />

Et 1x 2 value={(1-v(5))*(v(3,4)+VD)/v(5)/n}<br />

Gd 4 3 value={(1-v(5))*i(Et)/v(5)/n}<br />

.ends<br />

• Use averaged-switch modeling approach to construct an<br />

averaged model that includes switching losses<br />

• Loss mechanism example: diode reverse recovery


Example: diode stored<br />

charge in boost converter<br />

v g<br />

(t)<br />

i L<br />

L<br />

(t)<br />

+<br />

–<br />

i 1<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

i 2<br />

(t)<br />

+<br />

v 2<br />

(t) C<br />

R<br />

+<br />

v(t)<br />

v 1<br />

(t)<br />

Waveforms:<br />

–<br />

–<br />

–<br />

v 2<br />

v 2<br />

i 2<br />

(t)<br />

• Other switching loss mechanisms<br />

0<br />

0<br />

are ignored in this example; one<br />

dT t<br />

s<br />

can include other losses if<br />

t r<br />

desired, using a similar procedure<br />

T s<br />

i 1<br />

i 1<br />

• Determine averaged terminal<br />

waveforms of switch network<br />

0<br />

0<br />

t<br />

Area –Q r<br />

• Construct averaged equivalent<br />

circuit model<br />

1<br />

v1 t 1 d T<br />

T<br />

s tr<br />

v2<br />

t<br />

s T<br />

T<br />

s<br />

s<br />

v 1<br />

(t)<br />

v 2<br />

v 2<br />

i2 t 1<br />

Ts<br />

d<br />

i<br />

1<br />

t<br />

Ts<br />

Q<br />

T<br />

r<br />

s<br />

0<br />

0<br />

t<br />

t r<br />

dT s<br />

t<br />

i 2<br />

(t)<br />

T s<br />

i 1<br />

i 1<br />

t r<br />

= diode reverse recovery time<br />

Q r<br />

= diode recovered charge<br />

0<br />

0<br />

Area –Q r


v 1<br />

+<br />

t<br />

_<br />

i 1<br />

t<br />

r<br />

v1 t 1 d v t<br />

T<br />

2<br />

s T<br />

T<br />

s<br />

s<br />

i<br />

t<br />

2<br />

1<br />

T<br />

s<br />

d<br />

t<br />

tr<br />

T<br />

s<br />

i<br />

1<br />

t<br />

i 2<br />

v 2<br />

T<br />

t<br />

s<br />

+<br />

t<br />

_<br />

Q<br />

r<br />

t<br />

r<br />

T<br />

v 1<br />

s<br />

i<br />

1<br />

t<br />

+<br />

_<br />

t<br />

i 1<br />

Ts<br />

t<br />

T<br />

s<br />

Ts<br />

1<br />

d<br />

tr<br />

T<br />

s<br />

:1<br />

Q<br />

r<br />

i 2<br />

t<br />

r<br />

T<br />

s<br />

t<br />

i<br />

Ts<br />

+<br />

1 Ts<br />

_<br />

v 2<br />

t<br />

Ts<br />

switch network<br />

averaged switch model<br />

• Diode reverse recovery time affects conversion ratio<br />

• Stored charge leads to power loss, modeled by current sink<br />

Original<br />

converter<br />

v g<br />

(t)<br />

i L<br />

L<br />

(t)<br />

+<br />

–<br />

i 1<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

i 2<br />

(t)<br />

+<br />

v 2<br />

(t)<br />

C<br />

R<br />

+<br />

v(t)<br />

–<br />

–<br />

–<br />

Averaged<br />

model<br />

v g<br />

(t) Ts<br />

i L<br />

(t) Ts<br />

L<br />

+<br />

–<br />

t r<br />

i 1<br />

(t) Ts<br />

+(1–d) :1<br />

T s<br />

+<br />

v 1<br />

(t) Ts<br />

i 2<br />

(t) Ts<br />

+<br />

+<br />

Q r<br />

v 2<br />

(t) Ts C R v(t)<br />

T Ts<br />

s<br />

–<br />

–<br />


P<br />

P<br />

out<br />

in<br />

VI<br />

2<br />

V I<br />

g 1<br />

I<br />

I<br />

2<br />

1<br />

Qr<br />

Ts<br />

D<br />

t<br />

T<br />

r<br />

1 1 D<br />

V<br />

s<br />

V<br />

g<br />

VI2<br />

V I<br />

g<br />

1<br />

1<br />

1 D<br />

tr<br />

D<br />

T<br />

s<br />

I<br />

2<br />

I<br />

2<br />

Qr<br />

T<br />

s<br />

1<br />

1<br />

tr<br />

1 D T<br />

s<br />

1<br />

1<br />

Qr<br />

I T<br />

load<br />

s<br />

Efficiency due to diode reverse recovery. Other switching loss mechanisms<br />

can be included using a similar procedure.<br />

• Basic idea of average-switch modeling:<br />

Define a switch network, containing all of the converter switching<br />

elements<br />

Average terminal waveforms over a switching period<br />

Use controlled sources with values equal to average of the switch<br />

network terminal waveforms<br />

The result is a large-signal, nonlinear, time-invariant model that can be<br />

inserted back into the converter network<br />

• The choices of the switch network and the independent terminal<br />

waveforms are not unique - there are many ways to construct averaged<br />

switch models<br />

• Averaged-switch model (suitable for circuit analysis or simulation)<br />

yields predictions of converter steady-state and low-frequency dynamic<br />

properties<br />

• Next: apply the averaged-switch modeling approach to other cases of<br />

interest.


• Averaged switch model in DCM<br />

• Using averaged-switch model to predict converter steady-state<br />

characteristics and small-signal dynamics in DCM<br />

• Combined CCM/DCM averaged switch model<br />

• PSpice implementation of combined CCM/DCM models<br />

- ideal switches (ccm-dcm1)<br />

- ideal switches in converters with isolation transformer (ccm-dcm2)<br />

• Application examples:<br />

- comparison of transient simulation results in a SEPIC example<br />

using (1) switching circuit model and (2) averaged model<br />

- small-signal dynamic responses of a flyback converter operating in<br />

CCM or DCM<br />

- more converter examples using averaged-switch subcircuits<br />

Steady-state output voltage becomes strongly load-dependent<br />

Simpler dynamics: one pole and the RHP zero are moved to very high<br />

frequency, and can normally be ignored<br />

Traditionally, boost and buck-boost converters are designed to operate<br />

in DCM at full load<br />

All converters may operate in DCM at light load<br />

So we need equivalent circuits that model the steady-state and smallsignal<br />

ac models of converters operating in DCM<br />

The averaged switch approach yields an intuitive result that is relatively<br />

easy to solve


• Define switch terminal<br />

quantities v 1<br />

, i 1<br />

, v 2<br />

, i 2<br />

, as<br />

shown<br />

• Let us find the averaged<br />

quantities v 1<br />

, i 1<br />

, v 2<br />

,<br />

i 2<br />

, for operation in DCM,<br />

and determine the<br />

relations between them<br />

v g<br />

Switch network<br />

i 1<br />

i 2<br />

+<br />

–<br />

v 1<br />

+<br />

–<br />

–<br />

+<br />

v L<br />

L<br />

–<br />

i L<br />

v 2<br />

+<br />

C<br />

R<br />

+<br />

v<br />

–<br />

i L<br />

(t)<br />

v L<br />

(t)<br />

v g<br />

v g<br />

L<br />

i pk<br />

v<br />

L<br />

0<br />

t<br />

i 1<br />

(t)<br />

v 1<br />

(t)<br />

Area q1<br />

i pk<br />

i 1 (t) Ts<br />

v g<br />

– v<br />

0<br />

v 1 (t) Ts<br />

0<br />

v g<br />

v<br />

i 2<br />

(t)<br />

i pk Area q 2<br />

v g<br />

Switch network<br />

i 1<br />

i 2<br />

+<br />

–<br />

v 1<br />

+<br />

–<br />

–<br />

+<br />

v L<br />

L<br />

–<br />

i L<br />

v 2<br />

+<br />

C<br />

R<br />

+<br />

v<br />

–<br />

v 2<br />

(t)<br />

T s<br />

i 2 (t) Ts<br />

v g<br />

– v<br />

v 2 (t) Ts – v<br />

0<br />

d 1<br />

T s<br />

d 2<br />

T s<br />

d 3<br />

T s<br />

t


Peak inductor current:<br />

i pk = v g<br />

L d 1T s<br />

Average inductor voltage:<br />

v L (t) Ts<br />

= d 1 v g (t)<br />

Ts<br />

+ d 2 v(t) Ts<br />

+ d 3 0<br />

i 1<br />

(t)<br />

v 1<br />

(t)<br />

Area q1<br />

v 1 (t) Ts<br />

i pk<br />

i 1 (t) Ts<br />

v g<br />

– v<br />

v g<br />

In DCM, the diode switches off when the<br />

inductor current reaches zero. Hence, i(0)<br />

= i(T s<br />

) = 0, and the average inductor<br />

voltage is zero. This is true even during<br />

transients.<br />

v L (t) Ts<br />

= d 1 (t) v g (t)<br />

Ts<br />

+ d 2 (t) v(t) Ts<br />

= 0<br />

Solve for d 2<br />

:<br />

d 2 (t)=–d 1 (t)<br />

v g (t)<br />

Ts<br />

i 2<br />

(t)<br />

v 2<br />

(t)<br />

T s<br />

0<br />

i pk Area q 2<br />

i 2 (t) Ts<br />

v g<br />

– v<br />

v 2 (t) Ts – v<br />

0<br />

d 1<br />

T s<br />

d 2<br />

T s<br />

d 3<br />

T s<br />

t<br />

Average the v 1<br />

(t) waveform:<br />

i 1<br />

(t)<br />

Area q1<br />

i pk<br />

v 1 (t) Ts<br />

= d 1 (t) 0+d 2 (t) v g (t)<br />

Ts<br />

– v(t) Ts<br />

+ d 3 (t) v g (t)<br />

Ts<br />

i 1 (t) Ts<br />

Eliminate d 2<br />

and d 3<br />

:<br />

v 1 (t) Ts<br />

= v g (t)<br />

Ts<br />

v 1<br />

(t)<br />

v g<br />

– v<br />

v 1 (t) Ts<br />

v g<br />

Similar analysis for v 2<br />

(t) waveform leads to<br />

0<br />

i 2<br />

(t)<br />

v(t) Ts<br />

d 1<br />

T s<br />

T s<br />

t<br />

v 2 (t) Ts<br />

= d 1 (t) v g (t)<br />

Ts<br />

– v(t) Ts<br />

+ d 2 (t) 0+d 3 (t) – v(t) Ts<br />

i pk Area q 2<br />

=– v(t) Ts<br />

i 2 (t) Ts<br />

v 2<br />

(t)<br />

v g<br />

– v<br />

v 2 (t) Ts<br />

– v<br />

0<br />

d 2<br />

T s<br />

d 3<br />

T s


Average the i 1<br />

(t) waveform:<br />

i 1 (t) Ts<br />

= 1 T s<br />

t + T s<br />

i 1 (t)dt = q 1<br />

Note i 1<br />

(t) Ts<br />

is not equal to d i L<br />

(t) Ts<br />

!<br />

t<br />

The integral q 1<br />

is the area under the i 1<br />

(t)<br />

waveform during first subinterval. Use triangle<br />

area formula:<br />

q 1 =<br />

Eliminate i pk<br />

:<br />

i 1 (t) Ts<br />

= d 2 1(t) T s<br />

2L<br />

t<br />

Similar analysis for i 2<br />

(t) waveform leads to<br />

i 2 (t) Ts<br />

= d 2 2<br />

1(t) T v 1 (t)<br />

s<br />

Ts<br />

2L v 2 (t) Ts<br />

T s<br />

t + T s<br />

i 1 (t)dt = 1 2 d 1T s i pk<br />

v 1 (t) Ts<br />

i 1<br />

(t)<br />

v 1<br />

(t)<br />

i 2<br />

(t)<br />

v 2<br />

(t)<br />

Area q1<br />

v 1 (t) Ts<br />

0<br />

i pk<br />

i 1 (t) Ts<br />

v g<br />

– v<br />

v g<br />

T s<br />

i pk Area q 2<br />

i 2 (t) Ts<br />

v g<br />

– v<br />

v 2 (t) Ts – v<br />

0<br />

d 1<br />

T s<br />

d 2<br />

T s<br />

d 3<br />

T s<br />

t<br />

i 1 (t) Ts<br />

= d 2 1(t) T s<br />

2L<br />

v 1 (t) Ts<br />

i 1 (t) Ts<br />

R e<br />

(d 1<br />

)<br />

+<br />

i 1 (t) Ts<br />

= v 1(t) Ts<br />

R e (d 1 )<br />

R e (d 1 )=<br />

2L<br />

d 1 2 T s<br />

v 1 (t) Ts<br />

–<br />

Low-frequency components of input port waveforms<br />

obey Ohm’s law


i 2 (t) Ts<br />

= d 2 1(t) T s<br />

2L<br />

2<br />

v 1 (t) Ts<br />

v 2 (t) Ts<br />

i(t)<br />

+<br />

i 2 (t) Ts<br />

v 2 (t) Ts<br />

= v 1(t) Ts<br />

R e (d 1 )<br />

2<br />

= p(t) Ts<br />

p(t)<br />

v(t)<br />

–<br />

• Output port is a source of power p(t)<br />

• Power p(t) is independent of load characteristics<br />

• Power p(t) is dependent on (equal to) the power apparently<br />

consumed by the switch network input port<br />

i(t)<br />

+<br />

i(t)<br />

v(t)i(t) = p(t)<br />

p(t)<br />

v(t)<br />

–<br />

v(t)<br />

• Must avoid open- and short-circuit<br />

connections of power sources<br />

• Power sink: negative p(t)


In a lossless two-port network without internal energy storage:<br />

instantaneous input power is equal to instantaneous output power<br />

In all but a small number of special cases, the instantaneous power<br />

throughput is dependent on the applied external source and load<br />

If the instantaneous power depends only on the external elements<br />

connected to one port, then the power is not dependent on the<br />

characteristics of the elements connected to the other port. The other<br />

port becomes a source of power, equal to the power flowing through<br />

the first port<br />

A power source (or power sink) element is obtained<br />

Series and parallel<br />

connection of power<br />

sources<br />

P 1<br />

P 2<br />

P 3<br />

P 1<br />

+ P 2<br />

+ P 3<br />

P 1<br />

Reflection of power<br />

source through a<br />

transformer<br />

P 1<br />

n 1<br />

: n 2


i 1 (t) Ts<br />

R e<br />

(d 1<br />

)<br />

+<br />

p(t) Ts<br />

i 2 (t) Ts<br />

+<br />

v 1 (t) Ts<br />

v 2 (t) Ts<br />

–<br />

–<br />

A two-port lossless network<br />

Input port obeys Ohm’s Law<br />

Power entering input port is transferred to output port<br />

Original circuit<br />

Switch network<br />

i 1<br />

i 2<br />

+<br />

–<br />

v 1<br />

v 2<br />

+<br />

v g<br />

+<br />

–<br />

–<br />

+<br />

v L<br />

L<br />

–<br />

i L<br />

+<br />

C<br />

R<br />

v<br />

–<br />

Averaged model<br />

i 1 (t) Ts<br />

+<br />

v 1 (t) Ts<br />

R e<br />

(d)<br />

p(t) Ts<br />

i 2 (t) Ts<br />

–<br />

v 2 (t) Ts<br />

+<br />

v g (t)<br />

Ts<br />

+<br />

–<br />

–<br />

L<br />

+ C R v(t) Ts<br />


Let<br />

L<br />

C<br />

short circuit<br />

open circuit<br />

I 1<br />

P<br />

V +<br />

g<br />

R e<br />

(D)<br />

R<br />

–<br />

+<br />

V<br />

Converter input power:<br />

P = V 2<br />

g<br />

R e<br />

Converter output power:<br />

P = V 2<br />

R<br />

Equate and solve:<br />

P = V 2<br />

g<br />

= V 2<br />

R e R<br />

V<br />

V g<br />

=<br />

R<br />

Re<br />

–<br />

V<br />

= R is a general result, for any system that can<br />

V g Re be modeled as an LFR.<br />

For the buck-boost converter, we have<br />

R e (D)= 2L<br />

D 2 T s<br />

Eliminate R e<br />

:<br />

V<br />

V g<br />

=–<br />

D 2 T s R<br />

2L<br />

=– D K<br />

which agrees with the results of previous steady-state analyses.


• Determine averaged terminal waveforms of switch network<br />

• In each case, averaged transistor waveforms obey Ohm’s law, while<br />

averaged diode waveforms behave as dependent power source<br />

• Can simply replace transistor and diode with the averaged<br />

model as follows:<br />

i 1<br />

(t)<br />

+<br />

i 2<br />

(t)<br />

+<br />

+<br />

p(t) Ts<br />

i 2 (t) Ts<br />

+<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

v 1 (t) Ts<br />

i 1 (t) Ts<br />

R e<br />

(d 1<br />

)<br />

v 2 (t) Ts<br />

–<br />

–<br />

–<br />

–<br />

Buck<br />

v g (t)<br />

Ts<br />

R e<br />

(d)<br />

L<br />

R e = 2L<br />

+<br />

+ p(t) C R v(t) – Ts Ts<br />

p(t) Ts<br />

d 2 T s<br />

–<br />

Boost<br />

v g (t)<br />

Ts<br />

+<br />

–<br />

L<br />

R e<br />

(d)<br />

C<br />

R<br />

+<br />

v(t) Ts<br />


Cuk<br />

C 1<br />

L2 R e = 2 L 1||L 2<br />

d 2 T s<br />

p(t) Ts<br />

p(t) Ts<br />

L 1<br />

+<br />

v g (t) +<br />

Ts<br />

R C – 2<br />

R v(t) e<br />

(d)<br />

Ts<br />

–<br />

SEPIC<br />

L C 1 1<br />

+<br />

v g (t) +<br />

Ts<br />

R L C – 2<br />

2<br />

R v(t) e<br />

(d)<br />

Ts<br />

–<br />

Let L short circuit<br />

C open circuit<br />

Buck<br />

V g<br />

R e<br />

(D)<br />

+ P<br />

R<br />

–<br />

+<br />

V<br />

–<br />

Boost<br />

+<br />

V g<br />

+ R e<br />

(D) –<br />

P R<br />

V<br />


Converter M, CCM M, DCM<br />

Buck D 2<br />

1+ 1+4R e /R<br />

Boost<br />

Buck-boost, Cuk<br />

SEPIC<br />

1<br />

1–D<br />

– D<br />

1–D<br />

D<br />

1–D<br />

1+ 1+4R/R e<br />

2<br />

– R<br />

Re<br />

R<br />

R e<br />

I > I crit<br />

I < I crit<br />

for CCM<br />

for DCM<br />

I crit = 1–D<br />

D<br />

V g<br />

R e (D)<br />

Large-signal averaged model<br />

Perturb and linearize: let<br />

i 1 (t) Ts<br />

+<br />

p(t) Ts<br />

i 2 (t) Ts<br />

+<br />

d(t)=D + d(t)<br />

v 1 (t) Ts<br />

= V 1 + v 1 (t)<br />

v 1 (t) Ts<br />

R e<br />

(d)<br />

v 2 (t) Ts<br />

i 1 (t) Ts<br />

= I 1 + i 1 (t)<br />

v 2 (t) Ts<br />

= V 2 + v 2 (t)<br />

–<br />

–<br />

i 2 (t) Ts<br />

= I 2 + i 2 (t)<br />

d(t)<br />

i 1 (t) Ts<br />

= d 2 1(t) T s<br />

2L<br />

i 2 (t) Ts<br />

= d 2 1(t) T s<br />

2L<br />

v 1 (t) Ts<br />

i 1 = v 1<br />

r + j 1 d + g 1 v 2<br />

1<br />

2<br />

v 1 (t) Ts<br />

v 2 (t) Ts<br />

i 2 =– v 2<br />

r + j 2 d + g 2 v 1<br />

2


i 1<br />

(t)<br />

+<br />

i 2<br />

(t)<br />

+<br />

i 1<br />

(t)<br />

+<br />

i 2<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

–<br />

–<br />

–<br />

–<br />

In any event, a small-signal two-port model is used, of the form<br />

i 1<br />

g 2 v 1 j 2 d r 2<br />

i 2<br />

v 2<br />

+<br />

+<br />

v 1 r 1 j 1 d g 1 v 2<br />

–<br />

–<br />

i 1 i 2<br />

–<br />

g 2 v 1 j 2 d r 2 v 2<br />

v +<br />

1 r –<br />

1 j 1 d g 1 v 2<br />

+<br />

Switch type g 1 j 1 r 1 g 2 j 2 r 2<br />

Buck,<br />

Fig. 10.16(a)<br />

1<br />

R e<br />

2(1 – M)V 1<br />

DR e<br />

R e<br />

2–M<br />

MR e<br />

2(1 – M)V 1<br />

DMR e<br />

M 2 R e<br />

Boost,<br />

Fig. 10.16(b)<br />

1<br />

(M –1) 2 2MV (M –1) 2 2M –1<br />

R 1<br />

R<br />

e M e (M –1) 2 2V<br />

R 1<br />

e<br />

D(M –1)R e D(M –1)R e<br />

(M –1) 2 R e<br />

Buck-boost,<br />

Fig. 10.7(b)<br />

0<br />

2V 1<br />

DR e<br />

R e<br />

2M<br />

Re<br />

2V 1<br />

DMR e<br />

M 2 R e


When expressed in terms of R, L, C, and M (not D), the smallsignal<br />

transfer functions are the same in DCM as in CCM<br />

Hence, DCM boost and buck-boost converters exhibit two poles<br />

and one RHP zero in control-to-output transfer functions<br />

But, value of L is small in DCM. Hence<br />

RHP zero appears at high frequency, usually greater than<br />

switching frequency<br />

Pole due to inductor dynamics appears at high frequency, near<br />

to or greater than switching frequency<br />

So DCM buck, boost, and buck-boost converters exhibit<br />

essentially a single-pole response<br />

A simple approximation: let L 0<br />

Buck, boost, and buck-boost converter models all reduce to<br />

DCM switch network small-signal ac model<br />

+<br />

v g<br />

+<br />

–<br />

r 1 j 1 d g 1 v 2 g 2 v 1 j 2 d r 2 C R<br />

v<br />

–<br />

Transfer functions<br />

control-to-output<br />

line-to-output<br />

G vd (s)= v d<br />

vg =0= G d0<br />

1+ s p<br />

G vg (s)= v v g d =0<br />

= G g0<br />

1+ s p<br />

with<br />

G d0 = j 2 R || r 2<br />

p = 1<br />

R || r 2 C<br />

G g0 = g 2 R || r 2 = M


Converter G d0 G g0 p<br />

Buck<br />

2V<br />

D<br />

1–M<br />

2–M M<br />

2–M<br />

(1 – M)RC<br />

Boost<br />

2V<br />

D<br />

M –1<br />

2M –1<br />

M<br />

2M –1<br />

(M–1)RC<br />

Buck-boost<br />

V<br />

D<br />

M<br />

2<br />

RC<br />

R = 12<br />

i(t) L<br />

+ v L<br />

(t) –<br />

D 1<br />

i D<br />

(t)<br />

i C<br />

(t)<br />

+<br />

L = 5 µH<br />

V g<br />

+<br />

–<br />

Q 1<br />

C<br />

R<br />

v(t)<br />

C = 470 µF<br />

–<br />

f s = 100 kHz<br />

The output voltage is regulated to be V = 36 V. It is desired to determine G vd (s) at the<br />

operating point where the load current is I = 3 A and the dc input voltage is V g = 24 V.


P = IV– V g = 3A 36 V – 24 V =36W<br />

R e = V 2<br />

g (24 V)2<br />

=<br />

P 36 W =16<br />

D =<br />

2L<br />

R e T s<br />

=<br />

G d0 = 2V D 2M M –1 2(36 V)<br />

=<br />

–1 (0.25)<br />

f p =<br />

p<br />

2 = 2M –1<br />

2(5 H)<br />

(16 )(10 s)<br />

2<br />

(36 V)<br />

(24 V) –1<br />

2 (M–1)RC = 2<br />

2<br />

=0.25<br />

=72V 37 dBV<br />

(36 V)<br />

(24 V) –1<br />

(36 V)<br />

(24 V) –1<br />

=112Hz<br />

(36 V)<br />

(24 V) –1 (12 )(470 F)<br />

60 dBV<br />

|| G vd<br />

|| G vd<br />

40 dBV G d0<br />

37 dBV<br />

|| G vd<br />

||<br />

f<br />

20 dBV<br />

p<br />

112 Hz<br />

0 dBV<br />

–20 dBV<br />

–40 dBV<br />

0˚<br />

G vd<br />

–20 dB/decade<br />

0˚<br />

–90˚<br />

–180˚<br />

–270˚<br />

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz<br />

f


• Observed high-frequency response due to inductor dynamics<br />

• Averaged-switch model derivation used:<br />

v L<br />

T s<br />

0<br />

which is consistent with the fact that in DCM the inductor current starts<br />

from zero and ends at zero in each switching cycle, even in transients<br />

• However, high-frequency dynamics due to the inductor indicates that<br />

the AC voltage across the inductor in the small-signal model is not zero<br />

• Model predictions at high frequencies are not quite correct<br />

• Corrected averaged models that include the inductor in the averaged<br />

switch model have recently been described<br />

See References: [Sun et. al. PESC’99], [Ben-Yaakov et.al. PESC’94]<br />

Objective: a general large-signal averaged-switch model<br />

• Valid in CCM and DCM<br />

• 5 terminals:<br />

transistor port (2 terminals)<br />

diode port (2 terminals)<br />

duty ratio input (1 terminal)<br />

• DCM/CCM boundary resolved within the model, based only on the<br />

terminal voltages/currents of the model<br />

• Spice compatible


i 1 (t)<br />

+<br />

v 1 (t)<br />

1<br />

switch<br />

network<br />

3<br />

i 2 (t)<br />

+<br />

v 2 (t)<br />

_<br />

2<br />

4<br />

_<br />

averaged-switch<br />

model<br />

i 1<br />

CCM i 2<br />

+<br />

1<br />

3<br />

1-d + E<br />

– t G d<br />

d v 1-d<br />

v 2<br />

d i 1<br />

1<br />

+<br />

v 2<br />

i 1<br />

+<br />

1<br />

v 1<br />

averaged-switch<br />

model<br />

DCM<br />

R e (d)<br />

p(t)<br />

3<br />

i 2<br />

+<br />

v 2<br />

_<br />

2<br />

5<br />

duty<br />

d<br />

4<br />

i 1<br />

_<br />

averaged-switch<br />

model<br />

CCM/DCM<br />

_<br />

i 2<br />

2<br />

5<br />

duty<br />

d<br />

4<br />

_<br />

_<br />

1<br />

2<br />

?<br />

5<br />

duty<br />

d<br />

3<br />

4<br />

+<br />

v 2<br />

_<br />

+<br />

1-u<br />

1<br />

+<br />

averaged-switch<br />

model<br />

CCM/DCM<br />

3<br />

K<br />

1-u<br />

u i 1<br />

A<br />

4<br />

i 1<br />

v E t<br />

G d<br />

v<br />

–<br />

2<br />

u v 1 2<br />

, DCM<br />

_<br />

2<br />

D<br />

S<br />

5<br />

duty<br />

d<br />

i 2<br />

+<br />

_<br />

u<br />

d<br />

2<br />

d,<br />

d<br />

2<br />

2Lf<br />

s<br />

i<br />

v<br />

1<br />

2<br />

CCM<br />

CCM/DCM boundary:<br />

u<br />

MAX<br />

d,<br />

d<br />

2<br />

d<br />

2<br />

2Lf<br />

s<br />

i<br />

v<br />

1<br />

2<br />

u = equivalent switch duty ratio


ccm-dcm1<br />

**************************************************************************************<br />

* MODEL: ccm-dcm1<br />

* Application: two-switch PWM converters, CCM or DCM<br />

* Limitations: ideal switches, no transformer<br />

**************************************************************************************<br />

* Parameters:<br />

* L=equivalent inductance (relevant for DCM)<br />

* fs=switching frequency<br />

**************************************************************************************<br />

* Nodes: (same as in ccm1)<br />

**************************************************************************************<br />

.subckt ccm-dcm1 1 2 3 4 5 params: L=1 fs=1E6<br />

Et 1 2 value={(1-v(u))*v(3,4)/v(u)}<br />

Gd 4 3 value={(1-v(u))*i(Et)/v(u)}<br />

Ga 0 a value={MAX(i(Et),0)}<br />

Va a b<br />

Rdummy b 0 10<br />

Eu u 0 table {MAX(v(5), v(5)*v(5)/(v(5)*v(5)+2*L*fs*i(Va)/v(3,4)))} (0 0) (1 1)<br />

.ends<br />

**************************************************************************************<br />

i 1<br />

+<br />

v 1-u<br />

1<br />

v2<br />

n u<br />

_<br />

1<br />

averaged-switch<br />

model<br />

CCM/DCM<br />

D<br />

+<br />

–<br />

S<br />

2<br />

E t<br />

G d<br />

5<br />

duty<br />

d<br />

i 2<br />

3 +<br />

K<br />

1-u i1 v<br />

n u<br />

2<br />

A<br />

4<br />

_<br />

u<br />

d<br />

2<br />

d,<br />

d<br />

2<br />

2nLf<br />

s<br />

i<br />

v<br />

1<br />

2<br />

,<br />

CCM<br />

DCM<br />

CCM/DCM boundary:<br />

u<br />

MAX<br />

d,<br />

d<br />

2<br />

d<br />

2<br />

2nLf<br />

s<br />

i<br />

v<br />

1<br />

2<br />

u = equivalent switch duty ratio


ccm-dcm2<br />

* MODEL: ccm-dcm2<br />

* Application: two-switch PWM converters, CCM or DCM with (possibly) transformer<br />

* Limitations: ideal switches, no transformer<br />

****************************************************************************************<br />

* Parameters:<br />

* L=equivalent inductance (relevant for DCM), referred to primary<br />

* fs=switching frequency<br />

* n=transformer turns ratio 1:n (primary:secondary)<br />

****************************************************************************************<br />

* Nodes: (same as in ccm1)<br />

****************************************************************************************<br />

.subckt ccm-dcm2 1 2 3 4 5 params: L=1 fs=1E6 n=1<br />

Et 1 2 value={(1-v(u))*v(3,4)/v(u)/n}<br />

Gd 4 3 value={(1-v(u))*i(Et)/v(u)/n}<br />

Ga 0 a value={MAX(i(Et),0)}<br />

Va a b<br />

Rdummy b 0 10<br />

Eu u 0 table {MAX(v(5), v(5)*v(5)/(v(5)*v(5)+2*L*n*fs*i(Va)/v(3,4)))} (0 0) (1 1)<br />

.ends<br />

****************************************************************************************<br />

• ccm-dcm1 (for non-isolated converters) and ccm-dcm2 (for converters<br />

that may include isolation transformer) are general, large-signal<br />

averaged-switch models (PSpice subcircuits) valid for both CCM and<br />

DCM<br />

• Can be applied to DC, AC, or Transient simulation of any two-switch<br />

PWM converter<br />

• Limitations: ideal switches, no losses are modeled, but the model can<br />

be refined further to include conduction losses<br />

• Application examples:<br />

• Comparison of Transient simulation results in a Sepic converter<br />

example using:<br />

– (1) switching circuit model<br />

– (2) ccm-dcm2 averaged switch model<br />

• AC simulation results for a flyback converter operating in CCM or<br />

DCM


L3<br />

22x<br />

R6<br />

22<br />

C3<br />

23<br />

24<br />

V<br />

21<br />

800u<br />

+ Vg2<br />

- 50V<br />

0.5<br />

100u<br />

Resr3<br />

0.2<br />

R4<br />

0.1<br />

L4<br />

100u<br />

C4<br />

100u<br />

R5<br />

100<br />

R11<br />

20<br />

S2<br />

+ +<br />

- -<br />

V4<br />

+<br />

M1<br />

switch<br />

-<br />

IRF640<br />

R7<br />

10<br />

D1<br />

MUR820<br />

V3<br />

+<br />

-<br />

Switching frequency 100kHz, duty ratio D=0.5<br />

ccm-dcm2<br />

+<br />

-<br />

L1<br />

1 800u<br />

Vg<br />

50V<br />

2x<br />

R1<br />

0.5<br />

C1<br />

2 3 4<br />

100u<br />

ACMAG=1V<br />

DC=0.5V<br />

Resr1<br />

0.2<br />

+<br />

-<br />

L2<br />

100u<br />

Vd<br />

R2<br />

0.1<br />

U6<br />

D<br />

1 4 A<br />

ccm-dcm2<br />

2<br />

S<br />

5<br />

duty<br />

3 K<br />

C2<br />

100u<br />

V<br />

R3<br />

100<br />

R10<br />

20<br />

S1<br />

+ +<br />

- -<br />

switch<br />

V4<br />

+<br />

-<br />

Exactly the same PSpice circuit, except the MOSFET M1 and the<br />

diode D1 replaced by the ccm-dcm2 subcircuit, and pulsating<br />

gate drive V3 replaced by a duty-ratio voltage source Vd


80V<br />

Averaged model<br />

(B) sepic-switch.dat<br />

V out<br />

start-up transient<br />

60V<br />

Switching model<br />

40V<br />

load transient<br />

20V<br />

0V<br />

0s 5ms 10ms 15ms 20ms<br />

V(24) V(4)<br />

Time<br />

Start-up and load transient response<br />

10A<br />

Diode current during load transient<br />

(B) sepic-switch.dat<br />

8A<br />

6A<br />

4A<br />

switching model<br />

2A<br />

0A<br />

averaged model<br />

-2A<br />

10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms<br />

I(D1) I(X_U6.Gd)<br />

Time<br />

Details of the diode current waveform around the load transient


ccm-dcm2<br />

Vg<br />

48V<br />

+<br />

T1<br />

1 1<br />

Lm=50u<br />

n=0.25 Lm<br />

AC=1<br />

0.25<br />

+<br />

-<br />

1:n<br />

**<br />

- 2<br />

4<br />

R2 transformer<br />

3<br />

0.2<br />

U1<br />

D<br />

2 1 4 A<br />

L=50u<br />

fs=100K<br />

ccm-dcm2<br />

n=0.25 2 3<br />

S 5 K<br />

duty<br />

Vd<br />

3<br />

4<br />

PARAMETERS:<br />

Rload 2<br />

V<br />

C1<br />

500uF<br />

R1<br />

{Rload}<br />

CCM for Rload=1 Ohm, DCM for Rload=2 Ohm<br />

ccm-dcm2<br />

(C) flyback-ccm-dcm2.dat<br />

50<br />

Magnitude response, control-to-output v/d<br />

R load = 1, CCM<br />

0<br />

R load = 2, DCM<br />

-50<br />

0d<br />

DB(V(4))<br />

R load = 1, CCM<br />

-100d<br />

R load = 2, DCM<br />

Phase response, control-to-output v/d<br />

-200d<br />

10Hz 100Hz 1.0KHz 10KHz 100KHz<br />

P(V(4))<br />

Frequency<br />

Frequency responses generated by PSpice AC analyses


transformer<br />

+<br />

-<br />

Vg<br />

2<br />

Lm<br />

1<br />

1:n<br />

**<br />

Watkins-Johnson converter<br />

3<br />

4<br />

transformer<br />

+<br />

-<br />

Vg<br />

2<br />

4<br />

Lm<br />

1<br />

1:n<br />

**<br />

3<br />

1 D<br />

2 S<br />

ccm-dcm2<br />

A<br />

4<br />

5<br />

3<br />

K<br />

duty<br />

+<br />

-<br />

Vd<br />

Pspice averaged circuit model<br />

using ccm-dcm2<br />

averaged-switch subcircuit<br />

1 1:n 3<br />

Vg **<br />

+<br />

-<br />

Lm<br />

2<br />

4<br />

transformer<br />

1 1:n 3<br />

Vg **<br />

+<br />

-<br />

Lm<br />

2<br />

4<br />

transformer<br />

U2<br />

D<br />

1 4 A<br />

ccm-dcm2<br />

2<br />

S<br />

5<br />

duty<br />

3 K<br />

Cuk converter with<br />

isolation transformer<br />

PSpice averaged circuit model<br />

using ccm-dcm2<br />

averaged-switch subcircuit


• Averaged switch model for current-programmed mode (CPM) in<br />

CCM<br />

• Steady-state and simple AC model in CCM<br />

• Averaged switch model for CPM in DCM<br />

• Steady-state and small-signal AC model in DCM<br />

• Large-signal averaged CCM/DCM model for current-mode<br />

controller<br />

• PSpice implementation of the averaged CPM controller model<br />

• Application examples<br />

- Buck converter with current-programmed mode controller<br />

v g (t)<br />

Buck converter<br />

i s (t)<br />

Q 1<br />

+<br />

– D 1<br />

L<br />

i L (t)<br />

C<br />

+<br />

v(t)<br />

R<br />

The peak transistor current<br />

replaces the duty cycle as the<br />

converter control input.<br />

–<br />

Measure<br />

switch<br />

current<br />

i s (t)R f<br />

i c (t)R f<br />

R f<br />

i s (t)<br />

Clock<br />

+<br />

–<br />

Analog<br />

comparator<br />

0<br />

T s<br />

S Q<br />

R<br />

Latch<br />

m 1<br />

Switch<br />

current<br />

i s (t)<br />

Control signal<br />

i c (t)<br />

Control<br />

input<br />

Current-programmed controller<br />

0 dT s T s<br />

Transistor<br />

status: on<br />

off<br />

t<br />

Compensator<br />

– +<br />

v(t)<br />

Clock turns<br />

transistor on<br />

Comparator turns<br />

transistor off<br />

v ref<br />

Conventional output voltage controller


i L (t) Ts<br />

= i c (t)<br />

• Neglects switching ripple and artificial ramp (slope compensation)<br />

• Yields physical insight and simple first-order model<br />

• Accurate when converter operates well into CCM (so that switching<br />

ripple is small) and when the magnitude of the artificial ramp is not<br />

too large<br />

• Well-accepted by practicing engineers<br />

• Resulting small-signal relation:<br />

i L (s)<br />

i c (s)<br />

Buck converter example<br />

v g<br />

(t)<br />

i 1<br />

(t)<br />

i 2<br />

(t)<br />

L<br />

+<br />

–<br />

v 1<br />

(t)<br />

v 2<br />

(t)<br />

+<br />

+<br />

i L<br />

(t)<br />

C<br />

R<br />

+<br />

v(t)<br />

–<br />

–<br />

–<br />

Switch network<br />

Averaged terminal waveforms,<br />

CCM:<br />

The simple approximation:<br />

v 2 (t) Ts<br />

= d(t) v 1 (t) Ts<br />

i 2 (t) Ts<br />

i c (t) Ts<br />

i 1 (t) Ts<br />

= d(t) i 2 (t) Ts


v 2 (t) Ts<br />

= d(t) v 1 (t) Ts i 2 (t) Ts<br />

i c (t) Ts<br />

i 1 (t) Ts<br />

= d(t) i 2 (t) Ts<br />

Eliminate duty cycle:<br />

i 1 (t) Ts<br />

= d(t) i c (t) Ts<br />

= v 2(t) Ts<br />

v 1 (t) Ts<br />

i c (t) Ts<br />

i 1 (t) Ts<br />

v 1 (t) Ts<br />

= i c (t) Ts<br />

v 2 (t) Ts<br />

= p(t) Ts<br />

So:<br />

• Output port is a current source<br />

• Input port is a dependent power sink<br />

v g<br />

(t) Ts<br />

i 1<br />

(t) Ts<br />

i 2<br />

(t) Ts<br />

L<br />

+<br />

–<br />

v 1<br />

(t) Ts<br />

i c<br />

(t) Ts<br />

v 2<br />

(t) Ts<br />

+<br />

+<br />

p(t) Ts<br />

C<br />

i L<br />

(t) Ts<br />

R<br />

+<br />

v(t) Ts<br />

–<br />

Averaged switch network<br />

–<br />


Boost<br />

+<br />

–<br />

L<br />

v g<br />

(t) Ts<br />

i L<br />

(t) Ts<br />

Averaged switch network<br />

i c<br />

(t) Ts<br />

p(t) Ts<br />

C<br />

R<br />

+<br />

v(t) Ts<br />

–<br />

Averaged switch network<br />

Buck-boost<br />

p(t) Ts<br />

i c<br />

(t) Ts<br />

+<br />

v g<br />

(t) Ts<br />

C<br />

R<br />

v(t) Ts<br />

+<br />

–<br />

L<br />

–<br />

i L<br />

(t) Ts<br />

Let<br />

v 1 (t) Ts<br />

= V 1 + v 1 (t)<br />

i 1 (t) Ts<br />

= I 1 + i 1 (t)<br />

v 2 (t) Ts<br />

= V 2 + v 2 (t)<br />

i 2 (t) Ts<br />

= I 2 + i 2 (t)<br />

i c (t) Ts<br />

= I c + i c (t)<br />

Resulting input port equation:<br />

V 1 + v 1 (t) I 1 + i 1 (t) = I c + i c (t) V 2 + v 2 (t)<br />

Small-signal result:<br />

i 1 (t)=i c (t) V 2<br />

V 1<br />

+ v 2 (t) I c<br />

V 1<br />

– v 1 (t) I 1<br />

V 1<br />

Output port equation:<br />

î 2<br />

= î c


i 1 i L<br />

2<br />

+<br />

+<br />

+<br />

v + v V<br />

g<br />

i 2<br />

C R<br />

– – V I<br />

1 1<br />

c<br />

v c<br />

2 i v<br />

V c<br />

2 v<br />

1<br />

V 1<br />

I 1<br />

–<br />

Switch network small-signal ac model<br />

–<br />

–<br />

i 1 (t)=i c (t) V 2<br />

V 1<br />

+ v 2 (t) I c<br />

V 1<br />

– v 1 (t) I 1<br />

V 1<br />

L<br />

i g<br />

i L<br />

v g<br />

+<br />

– i – D 2<br />

D<br />

c D 1+ sL v i<br />

R R R c<br />

C R<br />

+<br />

v<br />

G vc (s)= v(s) = R || 1<br />

i c (s) sC<br />

vg =0<br />

G vg (s)= v(s) =0<br />

v g (s)<br />

i c =0<br />


v g<br />

+<br />

–<br />

i g<br />

+<br />

r 1<br />

f 1 (s) i c g 1 v g 2 v g<br />

f 2 (s) i c r 2 C R v<br />

–<br />

Converter g 1 f 1 r 1 g 2 f 2 r 2<br />

Buck<br />

D<br />

R<br />

D 1+ sL R<br />

– R D 2 0 1<br />

Boost 0 1<br />

1<br />

D'R D' 1 – sL<br />

D' 2 R<br />

R<br />

Buck-boost – D R D 1+ sL<br />

D'R<br />

– D'R<br />

D 2<br />

– D2<br />

D'R<br />

– D' 1 – sDL<br />

D' 2 R<br />

R<br />

D<br />

• Again, use averaged switch modeling approach<br />

• Result: simply replace<br />

Transistor by power sink<br />

Diode by power source<br />

• Inductor dynamics appear at high frequency, near to or greater<br />

than the switching frequency<br />

• Small-signal transfer functions contain a single low frequency pole<br />

• DCM CPM boost and buck-boost are stable without artificial ramp<br />

• DCM CPM buck without artificial ramp is stable for D < 2/3. A<br />

small artificial ramp m a<br />

0.086m 2<br />

leads to stability for all D.


i L<br />

(t)<br />

i 1<br />

(t)<br />

+<br />

v 1<br />

(t)<br />

Switch network<br />

i 2<br />

(t)<br />

–<br />

v 2<br />

(t)<br />

+<br />

i pk<br />

v g<br />

(t)<br />

+<br />

–<br />

–<br />

L<br />

i L<br />

(t)<br />

+<br />

C<br />

R<br />

v(t)<br />

–<br />

v L<br />

(t)<br />

m 1<br />

= v 1 T s<br />

L<br />

v 1 (t) Ts<br />

m 2 = v 2 T s<br />

L<br />

0<br />

t<br />

i c<br />

– m a<br />

m 1<br />

0<br />

v 2 (t) Ts<br />

i pk = m 1 d 1 T s<br />

i L<br />

(t)<br />

m 1 = v 1(t) Ts<br />

L<br />

i c<br />

– m a<br />

i pk<br />

i c = i pk + m a d 1 T s<br />

= m 1 + m a d 1 T s<br />

v L<br />

(t)<br />

= v 1 T s<br />

L<br />

v 1 (t) Ts<br />

m 2 = v 2 T s<br />

L<br />

0<br />

t<br />

d 1 (t)=<br />

i c (t)<br />

0<br />

m 1 + m a<br />

T s<br />

v 2 (t) Ts


i 1 (t) Ts<br />

= 1 t + T s<br />

i 1 ( )d = q 1<br />

T s t<br />

T s<br />

i 1 (t) Ts<br />

= 1 2 i pk(t)d 1 (t)<br />

i 1<br />

(t)<br />

Area q1<br />

i pk<br />

i 1 (t) Ts<br />

i 1 (t) Ts<br />

= 1 2 m 1d 1 2 (t)T s<br />

i 1 (t) Ts<br />

=<br />

v 1 (t) Ts<br />

1<br />

2 Li 2 c f s<br />

1+ m a<br />

m 1<br />

2<br />

i 2<br />

(t)<br />

i 2 (t) Ts<br />

i pk Area q 2<br />

i 1 (t) Ts<br />

v 1 (t) Ts<br />

=<br />

1<br />

2 Li 2 c f s<br />

1+ m a<br />

m 1<br />

2 = p(t) T s<br />

t<br />

d 1<br />

T s<br />

d 2<br />

T s<br />

d 3<br />

T s<br />

T s<br />

• Averaged transistor waveforms obey a power sink characteristic<br />

• During first subinterval, energy is transferred from input voltage<br />

source, through transistor, to inductor, equal to<br />

W = 1 2 Li 2<br />

pk<br />

This energy transfer process accounts for power flow equal to<br />

p(t) Ts<br />

= Wf s = 1 2 Li 2 pk f s<br />

which is equal to the power sink expression of the previous slide.


i 2 (t) Ts<br />

= 1 t + T s<br />

i<br />

T<br />

2 ( )d = q 2<br />

s t<br />

T s<br />

i 1<br />

(t)<br />

Area q1<br />

i pk<br />

q 2 = 1 2 i pkd 2 T s<br />

d 2 (t)=d 1 (t)<br />

v 1 (t) Ts<br />

i 1 (t) Ts<br />

v 2 (t) Ts<br />

i 2<br />

(t)<br />

i 2 (t) Ts<br />

=<br />

p(t) T s<br />

v 2 (t) Ts<br />

i pk Area q 2<br />

i 2 (t) Ts<br />

v 2 (t) Ts<br />

=<br />

1<br />

2 Li 2 c(t) f s<br />

1+ m a<br />

m 1<br />

2 = p(t) T s<br />

T s<br />

i 2 (t) Ts<br />

d 1<br />

T s<br />

d 2<br />

T s<br />

d 3<br />

T s<br />

t<br />

• Averaged diode waveforms obey a power sink characteristic<br />

• During second subinterval, all stored energy in inductor is<br />

transferred, through diode, to load<br />

• Hence, in averaged model, diode becomes a power source,<br />

having value equal to the power consumed by the transistor<br />

power sink element


i 1 (t) Ts<br />

i 2 (t) Ts<br />

+<br />

v 1 (t) Ts<br />

p(t) Ts<br />

–<br />

v 2 (t) Ts<br />

+<br />

v g (t)<br />

Ts<br />

+<br />

–<br />

–<br />

L<br />

+ C R v(t) Ts<br />

–<br />

P<br />

+<br />

V g<br />

+<br />

– R<br />

V<br />

–<br />

Solution<br />

V 2<br />

R = P<br />

P =<br />

1<br />

2 LI 2 c(t) f s<br />

1+ M 2<br />

a<br />

M 1<br />

V= PR = I c<br />

RLf s<br />

2 1+ M a<br />

M 1<br />

2<br />

for a resistive load


Buck<br />

v g (t)<br />

Ts<br />

L<br />

+ p(t)<br />

–<br />

Ts<br />

C<br />

R<br />

+<br />

v(t) Ts<br />

–<br />

Boost<br />

v g (t)<br />

Ts<br />

+<br />

–<br />

L<br />

p(t) Ts<br />

C<br />

R<br />

+<br />

v(t) Ts<br />

–<br />

Converter M I crit<br />

Stability range<br />

when m a = 0<br />

Buck<br />

P load – P<br />

P load<br />

1<br />

2 I c – Mm a T s<br />

0 M < 2 3<br />

Boost P load<br />

P load – P<br />

I c – M M<br />

–1m<br />

a T s<br />

2 M<br />

0 D 1<br />

Buck-boost<br />

Depends on load characteristic:<br />

P load = P<br />

I c –<br />

M<br />

M –1<br />

m a T s<br />

2 M –1<br />

0 D 1<br />

I > I crit<br />

for CCM<br />

I < I crit<br />

for DCM


Buck<br />

+<br />

+<br />

L<br />

i L<br />

+<br />

v g<br />

i 1<br />

g 2 v 1 f 2 i c r 2<br />

i 2<br />

v 2<br />

+<br />

–<br />

v 1 r 1 f 1 i c<br />

g 1 v 2<br />

C<br />

R<br />

v<br />

–<br />

–<br />

–<br />

Boost<br />

i<br />

L<br />

L<br />

+<br />

+<br />

+<br />

v g<br />

i 1<br />

g 2 v 1 f 2 i c r 2<br />

i 2<br />

v 2<br />

+<br />

–<br />

v 1 r 1 f 1 i c g 1 v 2<br />

C<br />

R<br />

v<br />

–<br />

–<br />

–<br />

i 1<br />

g 2 v 1 f 2 i c r 2<br />

i 2<br />

v 2<br />

+<br />

–<br />

v g<br />

v 1 r 1 f 1 i c g 1 v 2<br />

+ –<br />

–<br />

+<br />

C<br />

R<br />

+<br />

v<br />

L<br />

–<br />

i L


Converter g 1 f 1 r 1<br />

Buck<br />

1<br />

R<br />

M 2<br />

1–M<br />

1– m a<br />

m 1<br />

2 I 1<br />

I c – R 1–M<br />

1+ m a<br />

m 1<br />

M 2<br />

1+ m a<br />

m 1<br />

1– m a<br />

m 1<br />

Boost<br />

– 1 R<br />

M<br />

M –1<br />

2 I I c<br />

R<br />

M 2 2–M<br />

M –1 +<br />

2 m a<br />

m 1<br />

1+ m a<br />

m 1<br />

Buck-boost 0 2 I 1<br />

I c<br />

– R<br />

M 2<br />

1+ m a<br />

m 1<br />

1– m a<br />

m 1<br />

Converter g 2 f 2 r 2<br />

Buck<br />

1<br />

R<br />

M<br />

1–M<br />

m a<br />

m 1<br />

2–M – M<br />

2 I I<br />

1–M 1+ m a<br />

c<br />

m 1<br />

R<br />

1+ m a<br />

1–2M + m a<br />

m 1<br />

m 1<br />

Boost<br />

1<br />

R<br />

M<br />

M –1<br />

2 I 2<br />

R M –1<br />

I c<br />

M<br />

Buck-boost<br />

2M<br />

R<br />

m a<br />

m 2 I 2<br />

1<br />

1+ m I c<br />

a<br />

m 1<br />

R


Buck, boost, buck-boost all become<br />

+<br />

v g<br />

+<br />

–<br />

r 1 f 1 i c<br />

g 1 v g 2 v g f 2 i c r 2 C R<br />

v<br />

–<br />

G vc (s)= v i c v g =0= G c0<br />

1+ s p<br />

G vg (s)= v v g ic =0<br />

= G g0<br />

1+ s p<br />

G c0 = f 2 R || r 2<br />

p =<br />

1<br />

R || r 2 C<br />

G g0 = g 2 R || r 2<br />

i<br />

pk<br />

i<br />

c<br />

m<br />

a<br />

dT<br />

s<br />

i c<br />

-m a<br />

i pk<br />

i<br />

m L<br />

(t)<br />

-m 2<br />

1<br />

t<br />

0 dT s<br />

T s<br />

d 2<br />

T s<br />

=(1-d)T s<br />

i c<br />

-m a<br />

i pk<br />

i L<br />

(t)<br />

m 1<br />

-m 2<br />

t<br />

0 dT s<br />

(d+d 2<br />

)T s<br />

T s<br />

d 2<br />

T s<br />

i<br />

L<br />

T<br />

s<br />

d<br />

i<br />

pk<br />

m dT<br />

2<br />

d<br />

i<br />

m2d2T<br />

2<br />

1 s<br />

s<br />

2 pk<br />

d<br />

2<br />

1 d<br />

i<br />

pk<br />

m T<br />

2<br />

s<br />

CCM<br />

DCM<br />

CCM/DCM:<br />

d<br />

MIN<br />

d<br />

2<br />

1 ,<br />

i<br />

pk<br />

m T<br />

2<br />

s


Inputs:<br />

ic<br />

m1<br />

m2<br />

i L<br />

T s<br />

d<br />

MIN<br />

d<br />

2<br />

1 ,<br />

i<br />

c<br />

madT<br />

m T<br />

2<br />

s<br />

s<br />

Model:<br />

d 2<br />

d<br />

2i<br />

c<br />

d<br />

d<br />

m dT<br />

1<br />

s<br />

2<br />

2 i<br />

2m<br />

a<br />

L<br />

d<br />

T<br />

s<br />

d<br />

m d<br />

2<br />

2<br />

T<br />

s<br />

2<br />

2<br />

T<br />

s<br />

Output: duty ratio<br />

d<br />

**********************************************************<br />

* MODEL: CPM<br />

* Current-Programmed-Mode CCM/DCM controller model.<br />

* All parameters and inputs are referred to<br />

* the primary side.<br />

**********************************************************<br />

* Parameters:<br />

* L=equivalent inductance, referred to primary<br />

* fs=switching frequency<br />

* va=amplitude of the artificial ramp, va=Rf*ma/fs<br />

* Rf=equivalent current-sense resistance<br />

**********************************************************<br />

* Nodes:<br />

* ctr: control input, v(ctr)=Rf*ic<br />

* current: sensed average inductor current v(current)=Rf*iL<br />

* 1: voltage across L in interval 1, slope m1=v(1)/L<br />

* 2: (-) voltage across L in interval 2, slope m2=v(2)/L<br />

* d: duty ratio (output of the controller)<br />

**********************************************************<br />

.subckt CPM ctr current 1 2 d<br />

+params: L=100e-6 fs=1e5 va=0.5 Rf=0.1<br />

*<br />

* generate d2 for CCM/DCM<br />

Ed2 d2 0 table<br />

+ {MIN(<br />

+ L*fs*(v(ctr)-va*v(d))/Rf/(v(2)),<br />

+ 1-v(d)<br />

+ )} (0,0) (1,1)<br />

*<br />

Em1 m1 0 value={Rf*v(1)/L/fs}<br />

Em2 m2 0 value={Rf*v(2)/L/fs}<br />

*<br />

* generate duty-ratio d (valid CCM and DCM operation)<br />

*<br />

Eduty d 0 table<br />

+ {<br />

+ 2*(v(ctr)*(v(d)+v(d2))<br />

+ -v(current)-v(m2)*v(d2)*v(d2)/2)<br />

+ /(v(m1)*v(d)+2*va*(v(d)+v(d2)))<br />

+ } (0.01,0.01) (0.99,0.99)<br />

*<br />

.ends ; end of subcircuit CPM<br />

**********************************************************


• Demonstrate how CCM/DCM averaged-switch model can be used<br />

together with CCM/DCM averaged model of the current-mode controller<br />

• Use DC sweep simulation to show steady-state characteristics<br />

including operation in DCM or CCM<br />

• Use AC simulation to show control-to-output responses compared for<br />

duty-ratio control and current-mode control, in DCM or CCM<br />

• Use parametric sweep simulation to find the amplitude of the artificial<br />

ramp to minimize input-to-output audio-susceptibility<br />

• Specifications:<br />

• Input V g<br />

= 28V, output V = 5-20V, 0.5-2A<br />

• Switching frequency f s<br />

=100kHz, inductance L = 35uH<br />

• Equivalent current-sense resistance R f<br />

= 1<br />

• Artificial-ramp amplitude V a<br />

= 0-3V<br />

U2<br />

L1 R1<br />

D<br />

1 4 A<br />

2x 3<br />

1<br />

35uH 0.05<br />

L=35uH<br />

ccm-dcm1<br />

VDB<br />

5.315V<br />

fs=100K 2<br />

S<br />

DC=28V Vg<br />

5<br />

3 K<br />

+<br />

-<br />

C1 R2<br />

100u 10<br />

duty<br />

d<br />

177.09mV<br />

DC=2V<br />

Vc<br />

+<br />

-<br />

ctr<br />

E2<br />

IN+ OUT+<br />

IN-<br />

OUT-<br />

Vc<br />

Rf iL<br />

CTR<br />

CURRENT<br />

1<br />

U1<br />

CPM<br />

2<br />

D duty L=35uH<br />

fs=100kHz<br />

va={Va}<br />

Rf=1<br />

PARAMETERS:<br />

Va 1<br />

531.52mV<br />

E3<br />

V1<br />

EVALUE<br />

i(L1)<br />

IN+ OUT+<br />

IN- OUT-<br />

V2<br />

IN+ OUT+<br />

IN- OUT-<br />

E4<br />

EVALUE<br />

V(1)-V(2x)<br />

EVALUE<br />

V(2x)<br />

Example: Cpm-buck


1.0V<br />

(E) cpm-buck.dat<br />

1-d<br />

0.8V<br />

d2<br />

DCM<br />

CCM<br />

0.6V<br />

0.4V<br />

0.2V<br />

u<br />

d<br />

0V<br />

0.5V 1.0V 1.5V 2.0V 2.5V 3.0V<br />

V(d) 1-V(d) V(Xs.u) V(Xcpm.d2) Vc<br />

Duty ratio d, equivalent duty ratio u, and diode conduction<br />

interval d 2<br />

as functions of the control input V c<br />

3.0<br />

(F) cpm-buck.dat<br />

2.5<br />

2.0<br />

Vc=Rf*Ic<br />

1.5<br />

1.0<br />

iL<br />

0.5<br />

0<br />

0.5V 1.0V 1.5V 2.0V 2.5V 3.0V<br />

I(L1) v(ctr)<br />

Vc<br />

Average inductor current iL as a function of the control input V c


100<br />

(H) cpm-buck.dat<br />

50<br />

0<br />

MAGNITUDE<br />

PHASE<br />

v/d<br />

v/vc<br />

-50<br />

-100<br />

Vc=2.0, CCM<br />

v/vc<br />

-150<br />

v/d<br />

-200<br />

10Hz 100Hz 1.0KHz 10KHz 100KHz<br />

DB(V(3)) DB(V(3)/v(d)) P(V(3)) P(V(3)/v(d)) Frequency<br />

Control-to-output frequency responses for duty-ratio control (v/d)<br />

and current-mode control (v/v c<br />

). The converter operates in CCM.<br />

50<br />

(H) cpm-buck.dat<br />

MAGNITUDE<br />

v/d<br />

0<br />

PHASE<br />

v/vc<br />

-50<br />

Vc=1.5, DCM<br />

v/vc<br />

-100<br />

v/d<br />

-150<br />

10Hz 100Hz 1.0KHz 10KHz 100KHz<br />

DB(V(3)) DB(V(3)/v(d)) P(V(3)) P(V(3)/v(d)) Frequency<br />

Control-to-output frequency responses for duty-ratio control (v/d)<br />

and current-mode control (v/v c<br />

). The converter operates in DCM.


-20<br />

(A) cpm-buck.dat<br />

Audio-susceptibility v/v g as a function of the artificial-ramp amplitude V a<br />

-30<br />

-40<br />

-50<br />

-60<br />

Va=0.8, v/vg(0) = -62.848dB<br />

-70<br />

0 0.5 1.0 1.5 2.0<br />

VDB(3)<br />

Va<br />

Parametric sweep used to determine amplitude of the artificial ramp<br />

V a<br />

to minimize input-to-output response (audio-susceptibility) v/v g<br />

.<br />

• Ideal rectifier<br />

• Averaged model obtained by averaging over switching period<br />

• Averaged model obtained by averaging over line period<br />

• Application examples:<br />

- Power factor corrector based on boost converter operating in DCM<br />

- Power factor corrector based on SEPIC with nonlinear-carrier control


It is desired that the rectifier present a resistive load to the ac power<br />

system. This leads to<br />

• unity power factor<br />

• ac line current has same waveshape as voltage<br />

i ac (t)= v ac(t)<br />

R e<br />

+<br />

i ac<br />

(t)<br />

R e<br />

is called the emulated resistance<br />

v ac<br />

(t)<br />

R e<br />

–<br />

P av =<br />

V 2<br />

ac,rms<br />

R e (v control )<br />

+<br />

i ac<br />

(t)<br />

Power apparently “consumed” by R e<br />

is actually transferred to rectifier dc<br />

output port. To control the amount<br />

of output power, it must be possible<br />

to adjust the value of R e<br />

.<br />

v ac<br />

(t)<br />

–<br />

R e<br />

(v control<br />

)<br />

v control


The ideal rectifier is<br />

lossless and contains no<br />

internal energy storage.<br />

Hence, the<br />

instantaneous input<br />

power equals the<br />

instantaneous output<br />

power. Since the<br />

instantaneous power is<br />

independent of the dc<br />

load characteristics, the<br />

output port obeys a<br />

power source<br />

characteristic.<br />

+<br />

v ac<br />

(t)<br />

–<br />

i ac<br />

(t)<br />

ac<br />

input<br />

p(t)=<br />

R e<br />

(v control<br />

)<br />

v control<br />

v 2<br />

ac (t)<br />

R e (v control (t))<br />

Ideal rectifier (LFR)<br />

p(t) = v ac 2 /R e<br />

i(t)<br />

+<br />

v(t)<br />

–<br />

dc<br />

output<br />

v(t)i(t)=p(t)= v 2<br />

ac(t)<br />

R e<br />

Defining equations of the<br />

ideal rectifier:<br />

i ac (t)=<br />

v(t)i(t)=p(t)<br />

p(t)=<br />

v ac (t)<br />

R e (v control )<br />

v 2<br />

ac (t)<br />

R e (v control (t))<br />

When connected to a<br />

resistive load of value R, the<br />

input and output rms voltages<br />

and currents are related as<br />

follows:<br />

V rms<br />

V ac,rms<br />

=<br />

R<br />

Re<br />

I ac,rms<br />

I rms<br />

= R<br />

Re<br />

A switch network that is capable of satisfying the above (averaged)<br />

equations can be employed in low-harmonic rectifier applications


i g<br />

(t)<br />

Ideal rectifier (LFR)<br />

i 2<br />

(t)<br />

p load<br />

(t) = VI = P load<br />

v ac<br />

(t)<br />

i ac<br />

(t)<br />

+<br />

v g<br />

(t)<br />

R e<br />

p ac<br />

(t) Ts<br />

C<br />

+<br />

v C<br />

(t)<br />

Dc–dc<br />

converter<br />

+<br />

v(t)<br />

i(t)<br />

load<br />

Energy storage capacitor<br />

voltage v C<br />

(t) must be<br />

independent of input and<br />

output voltage waveforms, so<br />

that it can vary according to<br />

= d 1 2 Cv 2<br />

C(t)<br />

dt<br />

–<br />

= p ac (t)–p load (t)<br />

–<br />

Energy storage<br />

capacitor<br />

This system is capable of<br />

• Wide-bandwidth control of<br />

output voltage<br />

• Wide-bandwidth control of<br />

input current waveform<br />

• Internal independent energy<br />

storage<br />

–<br />

i g<br />

(t) Ts<br />

i 2<br />

(t) Ts<br />

p(t) +<br />

Ts<br />

v g<br />

(t) +<br />

Ts –<br />

R e<br />

(v control<br />

)<br />

C v(t) Ts<br />

v control<br />

Load<br />

Ideal rectifier (LFR)<br />

ac<br />

input<br />

dc<br />

output<br />

–<br />

Ideal rectifier model, assuming that inner wide-bandwidth loop<br />

operates ideally<br />

High-frequency switching harmonics are removed via averaging<br />

Ac line-frequency harmonics are included in model<br />

Nonlinear and time-varying


If the input voltage is<br />

v g (t)= 2v g,rms sin t<br />

v control<br />

i g<br />

(t) Ts<br />

Ideal rectifier (LFR) i 2<br />

(t) Ts<br />

v g<br />

(t) +<br />

Ts –<br />

R e<br />

(v control<br />

)<br />

C v(t) Ts<br />

p(t) Ts<br />

+<br />

Load<br />

Then the<br />

instantaneous power<br />

is:<br />

p(t) Ts<br />

=<br />

2<br />

v g (t) 2<br />

Ts<br />

R e (v control (t)) = v g,rms<br />

R e (v control (t))<br />

ac<br />

input<br />

1–cos 2 t<br />

which contains a constant term plus a secondharmonic<br />

term<br />

dc<br />

output<br />

–<br />

i 2<br />

(t) Ts<br />

+<br />

– V 2<br />

g,rms<br />

cos<br />

R 2 2 t<br />

e<br />

2<br />

V g,rms<br />

R e<br />

C<br />

v(t) Ts<br />

Load<br />

–<br />

Rectifier output port<br />

The second-harmonic variation in power leads to second-harmonic<br />

variations in the output voltage and current


v(t)<br />

v(t) Ts<br />

v(t) T2L<br />

t<br />

T 2L = 1 2<br />

2 =<br />

+<br />

i 2<br />

(t) T2L<br />

2<br />

V g,rms<br />

R e<br />

C<br />

v(t) T2L<br />

Load<br />

–<br />

Rectifier output port<br />

Time invariant model<br />

Power source is nonlinear


The averaged model predicts that the rectifier output current is<br />

i 2 (t) T2L<br />

=<br />

p(t) T 2L<br />

v(t) T2L<br />

=<br />

2<br />

v g,rms (t)<br />

R e (v control (t)) v(t) T2L<br />

= f v g,rms (t), v(t) T2L<br />

, v control (t))<br />

Let<br />

v(t) T2L<br />

= V + v(t)<br />

i 2 (t) T2L<br />

= I 2 + i 2 (t)<br />

v g,rms = V g,rms + v g,rms (t)<br />

v control (t)=V control + v control (t)<br />

with<br />

V >> v(t)<br />

I 2 >> i 2 (t)<br />

V g,rms >> v g,rms (t)<br />

V control >> v control (t)<br />

where<br />

I 2 + i 2 (t)=g 2 v g,rms (t)+j 2 v(t)– v control(t)<br />

r 2<br />

g 2 =<br />

df v g,rms , V, V control )<br />

dv g,rms<br />

v g,rms = V g,rms<br />

= 2<br />

R e (V control )<br />

V g,rms<br />

V<br />

– 1 r 2<br />

=<br />

df V g,rms , v T2L<br />

, V control )<br />

dv T2L<br />

v T2L<br />

= V<br />

=– I 2<br />

V<br />

j 2 =<br />

df V g,rms , V, v control )<br />

2<br />

V g,rms<br />

=–<br />

dv control VR 2 e (V control )<br />

v control = V control<br />

dR e (v control )<br />

dv control<br />

v control = V control


i 2<br />

+<br />

g 2 v g,rms<br />

j 2 v control C v R<br />

r 2<br />

Rectifier output port<br />

Predicted transfer functions<br />

Control-to-output<br />

v(s)<br />

v control (s) = j 2 R||r 2<br />

1<br />

1+sC R||r 2<br />

–<br />

Line-to-output<br />

v(s)<br />

v g,rms (s) = g 2 R||r 2<br />

1<br />

1+sC R||r 2<br />

i g<br />

(t)<br />

i 2<br />

(t)<br />

p load<br />

(t) = VI = P load<br />

i ac<br />

(t)<br />

+<br />

p ac<br />

(t) Ts<br />

+<br />

+<br />

i(t)<br />

v ac<br />

(t)<br />

v g<br />

(t)<br />

R e<br />

C<br />

v C<br />

(t)<br />

P load<br />

V<br />

+<br />

–<br />

v(t)<br />

load<br />

–<br />

–<br />

–<br />

Ideal rectifier (LFR)<br />

Energy storage<br />

capacitor<br />

Dc-dc<br />

converter<br />

Rectifier and dc-dc converter operate with same average power<br />

Incremental resistance R of constant power load is negative, and is<br />

R =– V 2<br />

P av<br />

which is equal in magnitude and opposite in polarity to rectifier<br />

incremental output resistance r 2<br />

for all controllers except NLC


When r 2<br />

= –R, the parallel combination r 2<br />

|| R becomes equal to zero.<br />

The small-signal transfer functions then reduce to<br />

v(s)<br />

v control (s) = j 2<br />

sC<br />

v(s)<br />

v g,rms (s) = g 2<br />

sC<br />

Objectives:<br />

• Example of how large-signal averaged-switch model can be used for<br />

analysis and simulation of a power-factor corrector<br />

• Show examples of averaged pulse-width modulator model, and<br />

implementation of closed-loop control<br />

• Use transient simulation to study start-up transient response of the PFC<br />

and harmonic distortion of the AC line current in steady state<br />

Specifications:<br />

• Input: 120Vrms, 50Hz. Output: 300VDC, 100W<br />

• Switching frequency: 100kHz


-<br />

L<br />

L<br />

<br />

v line<br />

i line<br />

+<br />

i i line +<br />

i + +<br />

+ +<br />

g = <br />

d<br />

i i<br />

v g = <br />

s<br />

<br />

line<br />

v g v V v co<br />

o<br />

g R e p(t) v co V<br />

C o<br />

C o<br />

_<br />

_ _<br />

_<br />

_ _<br />

Switching circuit model<br />

Averaged circuit model (in DCM)<br />

Boost converter operates in DCM at constant duty ratio, constant frequency<br />

i<br />

g<br />

i<br />

s<br />

T<br />

s<br />

i<br />

d<br />

T<br />

s<br />

v<br />

R<br />

g<br />

e<br />

p<br />

V v<br />

g<br />

v<br />

R<br />

g<br />

e<br />

R ( V<br />

e<br />

v<br />

2<br />

g<br />

v<br />

g<br />

)<br />

i<br />

g<br />

v<br />

R<br />

g<br />

e<br />

1<br />

1<br />

v<br />

g<br />

V<br />

2L<br />

D T<br />

Re<br />

2<br />

s<br />

Line current distrortion due<br />

to this term<br />

R2<br />

L1<br />

output<br />

PARAMETERS:<br />

Rload 900<br />

Vac<br />

VAMPL=170<br />

FREQ=50<br />

D1<br />

+<br />

-<br />

diode<br />

D2<br />

0.2<br />

diode<br />

200uH U1<br />

D<br />

1 4 A<br />

fs=100KHz ccm-dcm1<br />

L=200uH<br />

2 3<br />

S 5 K<br />

duty<br />

C1<br />

150uF<br />

R1<br />

{Rload}<br />

V<br />

Averaged<br />

model of<br />

the boost<br />

rectifier<br />

D3<br />

diode<br />

D4<br />

diode<br />

d<br />

0.9<br />

0.1<br />

0.5<br />

Voffset<br />

+<br />

2V<br />

PWM<br />

m<br />

12V<br />

+<br />

VCC -<br />

1<br />

R6<br />

4<br />

U2A + 3<br />

V+<br />

LM324<br />

V-<br />

11<br />

- 2<br />

R5 3.3K C2 1u<br />

10K<br />

5V<br />

Vref<br />

+<br />

-<br />

R3<br />

600K<br />

R4<br />

10K<br />

Averaged PWM model: d=v m<br />

/V M<br />

=0.5v m<br />

,<br />

D min<br />

=0.1, D max<br />

=0.9 limits<br />

Closed-loop output<br />

voltage control


(A) dcm-boost-rectifier-closed-loop.dat<br />

0.8<br />

Duty ratio d<br />

0.4<br />

100W load<br />

50W load<br />

0<br />

400V<br />

V(d)<br />

50W load<br />

200V<br />

100W load<br />

0V<br />

0s 50ms 100ms 150ms 200ms<br />

V(output)<br />

Time<br />

Start-up transient response for full load and 50% load<br />

1.5A<br />

1.0A<br />

(A) dcm-boost-rectifier-closed-loop.dat<br />

100W load<br />

1st harmonic: 0.87A<br />

3rd harmonic: 0.14A (16.4%)<br />

THD: 16.4%<br />

0.5A<br />

0A<br />

-0.5A<br />

50W load<br />

1st harmonic: 0.48A<br />

3rd harmonic: 0.08A (16.2%)<br />

THD: 16.2%<br />

-1.0A<br />

-1.5A<br />

180ms 185ms 190ms 195ms 200ms<br />

I(Vac)<br />

Time<br />

AC line current waveforms at full load and 50% load


2.0A<br />

(A) dcm-boost-rectifier-closed-loop.dat<br />

0A<br />

-2.0A<br />

50W load<br />

100W load<br />

150W load<br />

-4.0A<br />

-6.0A<br />

Converter operates in CCM<br />

-8.0A<br />

500ms 505ms 510ms 515ms 520ms<br />

I(Vac)<br />

Time<br />

AC line current waveforms at full load (100W),<br />

50% load, and 150% load<br />

136 turns #18<br />

i s<br />

1uF<br />

2400uF<br />

IRF840<br />

53 turns 53 turns<br />

#18 #18<br />

AC line<br />

voltage<br />

120V, 60Hz<br />

R s i s<br />

Nonlinear-Carrier<br />

Controller<br />

Magnetics 1F19 UU<br />

v m<br />

voltage-loop<br />

–<br />

+<br />

V ref<br />

error amplifier<br />

• Active current shaping using Nonlinear Carrier Control method<br />

• Sepic converter has integrated magnetics designed for zero switching<br />

ripple in the AC line current<br />

• Specifications:<br />

• Input: 90-120Vrms, 60Hz. Output: 48VDC, 200W<br />

• Switching frequency: 90kHz


Objectives:<br />

• Show application of the CCM/DCM averaged-switch model in powerfactor<br />

correctors with active current shaping and closed-loop output<br />

voltage control<br />

• Show average model implementation of a nonlinear pulse-width<br />

modulator (NLC controller)<br />

• Compare average model predictions to experimental results:<br />

• AC line current waveshapes<br />

• Start-up and load transient responses<br />

switch<br />

drive<br />

d<br />

switch<br />

current sensor<br />

Q<br />

Q<br />

R<br />

S<br />

+<br />

–<br />

vc (t)<br />

v q (t) = R s < i s ><br />

NLC generator<br />

v c (t) = v m f(t/T s )<br />

v m<br />

i s [5A/div]<br />

clock<br />

T<br />

t<br />

s<br />

f ( t / Ts<br />

) vm<br />

1<br />

t<br />

T<br />

s<br />

R<br />

s<br />

i<br />

s<br />

T<br />

s<br />

v<br />

m<br />

1<br />

d<br />

d<br />

v c<br />

v q<br />

1<br />

d<br />

d<br />

i g<br />

i s<br />

v<br />

g<br />

V<br />

T s<br />

Ideal current shaping<br />

i<br />

g<br />

vm<br />

R V<br />

s<br />

v<br />

g<br />

c(t)<br />

d<br />

R<br />

s<br />

v<br />

i<br />

s<br />

m<br />

T<br />

s<br />

v<br />

m<br />

NLC Controller Model


-<br />

-<br />

Coupledinductor<br />

model<br />

D3<br />

diode<br />

+<br />

Vac<br />

-<br />

VAMPL=170<br />

D1<br />

diode<br />

n=0.94<br />

D4<br />

diode<br />

D2<br />

diode<br />

0<br />

0<br />

2 1:n 4<br />

EVALUE<br />

V(m)/(Rs*I(Vsense)+V(m))<br />

NLC controller<br />

950uH<br />

L-13-23 n=1<br />

TX1<br />

C1 T1 Lm=180uH<br />

1 1:n 3<br />

**<br />

1uF<br />

+<br />

Lm<br />

- Vsense<br />

2<br />

4<br />

0 transformer<br />

1<br />

* *<br />

3<br />

U1<br />

D<br />

1 4 A<br />

L=180uH ccm-dcm1<br />

fs=90kHz<br />

2 3<br />

S 5 K<br />

0<br />

OUT+<br />

E1<br />

IN+<br />

OUT-<br />

IN-<br />

duty<br />

0 0<br />

m<br />

1<br />

Vcc 0<br />

12V<br />

4<br />

+ 3<br />

Vref<br />

U2A<br />

V+<br />

LM324 10.4V<br />

V-<br />

11<br />

-<br />

2<br />

+<br />

+<br />

0<br />

R4 15k C4 1uF<br />

0<br />

2400uF<br />

C3<br />

0<br />

68K<br />

R2<br />

0<br />

18K<br />

R3<br />

Rload<br />

17<br />

0<br />

0<br />

NLC controller model<br />

Closed-loop output<br />

voltage control<br />

1A<br />

0.5A<br />

2A<br />

i line<br />

0 A<br />

0A<br />

-0.5A<br />

-1A<br />

i line<br />

AC line current waveform and spectrum at 50W load (left) and<br />

Simulation<br />

-2A<br />

Simulation<br />

i line [1A/div]<br />

i line [2A/div]<br />

0<br />

0<br />

Line current harmonics [2.4%/div]<br />

Line current harmonics [1.6%/div]<br />

3 5 7 9 11 13 15 17<br />

Experiment<br />

3 5 7 9 11 13 15 17<br />

Experiment<br />

170W load (right)


v o<br />

50V<br />

v o<br />

v m<br />

30V<br />

10V<br />

v m<br />

i line [2A/div]<br />

0V<br />

3A<br />

0A<br />

i line<br />

-3A<br />

Experiment<br />

Simulation<br />

50W to 125W load transient in the Sepic PFC<br />

v g<br />

200V<br />

v g<br />

0V<br />

i line [2A/div]<br />

3A<br />

i line<br />

0A<br />

-3A<br />

10V<br />

v m<br />

v m<br />

v o<br />

0V<br />

100V<br />

v o<br />

0V<br />

Experiment<br />

Simulation<br />

Start-up transient in the Sepic PFC at 50W load


• The averaged switch modeling approach: replace switch network with<br />

an equivalent circuit that correctly predicts the low-frequency<br />

components of the switch network terminal waveforms<br />

• Seminar addressed:<br />

- PWM converters in continuous and discontinuous conduction modes<br />

- PWM converters with current-programmed mode (CPM) control<br />

- Single-phase low-harmonic rectifiers (power-factor correctors)<br />

• In each case, the large-signal averaged switch model can be used:<br />

- to develop steady-state and (by linearization) small-signal circuit<br />

models suitable for analysis<br />

- to construct Spice-compatible model implementations suitable for<br />

DC, Transient and AC simulations<br />

• A number of PSpice model implementation examples and converter<br />

application examples were presented<br />

Selected books:<br />

R.W. Erickson, Fundamentals of Power Electronics, Chpman & Hal, 1997.<br />

Web page: http://ece-www.colorado.edu/~pwrelect/book/bookdir.html<br />

J.G.Kassakian, M.F.Schlecht, G.C.Verghese, Principles of Power Electronics, Addison-Wesley, 1991.<br />

A.Kislovski, R.Redl, N.Sokal, Dynamic Analysis of Switched-Mode DC/DC Converters, New York: Van<br />

Nostrand Reinhold, 1994.<br />

P.T. Krein, Elements of Power Electronics, Oxford University Press, 1998.<br />

Daniel M. Mitchel, DC-DC Switching Regulator Analysis, New York: McGraw-Hill, 1988.<br />

N.Mohan, T.Undeland, W.Robbins, Power Electronics: Converters, Applications and Design, Second Edition,<br />

John Wiley & Sons, 1995.<br />

S.M. Sandler, SMPS Simulation with Spice 3, McGraw Hill, 199.


Selected papers on averaged modeling of switching power converters<br />

R. M. Bass, J. Sun, “Averaging under large-signal conditions,” IEEE PESC 1998, pp. 630-632.<br />

R.Erickson, M.Madigan, S.Singer, “Design of a simple high power factor rectifier based on the flyback<br />

converter,” IEEE APEC, 1990, pp.792-801.<br />

P. Krein, et al, "On the Use of Averaging for the Analysis of Power Electronic Systems," IEEE Transactions on<br />

Power Electronics, Vol. 5, No. 2, pp 182-190, April<br />

1990.<br />

K.Mahabir, G.Verghese, J.Thottuvelil, A.Heyman, “Linear averaged and sampled data models for large signal<br />

control of high power factor AC-DC converters,” IEEE PESC, 1990, pp. 372-381.<br />

D.Maksimovic, S.Cuk, ``A unified analysis of PWM converters in discontinuous modes,'' IEEE Trans. on Power<br />

Electronics, Vol.6, No.3, July 1991.<br />

D.~Maksimovic, Y.Jang and R.Erickson, ``Nonlinear-carrier control for high power factor boost rectifiers,'' IEEE<br />

Transactions on Power Electronics, Vol.11, No.4, July 1996, pp.578-584.<br />

R.D.Middlebrook and Slobodan Cuk, “A general unified approach to modeling switching-converter power<br />

stages, International Journal of Electronics, Vol.42, No.6, pp.521-550, June 1977.<br />

R.D.Middlebrook, “Topics in multiple-loop regulators and current-mode programming,” IEEE PESC, 1985, pp.<br />

716-732.<br />

Selected papers on averaged modeling of switching power converter (continued)<br />

R.D.Middlebrook, “<strong>Modeling</strong> current programmed buck and boost regulators,” IEEE Trans. On Power<br />

Electronics, Vol.4, No.1, January 1989, pp.36-52.<br />

S.R.Sanders, G.C.Verghese, “Synthesis of averaged circuit models for switched power converters,” IEEE<br />

Transactions on Circuits and Systems, Vol.38, No.8, pp.905-915, August 1991.<br />

S.Singer, R.W. Erickson, “Power source element and its properties,” IEE Proceedings - Circuits Devices<br />

Systems, Vol.141, Np.3, pp.220-226, June 1994.<br />

J.Sun, D.M.Mitchel, M.Greuel, P.T.Krain, R.M.Bass, “Averaged modeling of PWM converters in discontinuous<br />

conduction mode: a reexamination,” IEEE PESC 1998, pp.615-622.<br />

J.Sun, D.M.Mitchel, M.Greuel, P.T.Krain, R.M.Bass, “Averaged models for PWM converters in discontinuous<br />

conduction mode,” HFPC 1998.<br />

J.Sun, R.M.Bass, “<strong>Modeling</strong> and practical design issues for average current control,” IEEE APEC 1999.<br />

R. Tymerski and V. Vorperian, “Generation, classification and analysis of switched-mode DC-to-Dcconverters<br />

by the use of converter cells,” INTELEC 1986, pp.181-195.<br />

E. Van Dijk, H.J.N.Spruijt, D.M.O’Sullivan, J.B.Klaassens, “PWM switch modeling of DC/DC converters,” IEEE<br />

Transactions on Power Electronics, Vol.10, No.6, November 1995, pp. 659-665.


Selected papers on averaged modeling of switching power converter (continued)<br />

G. Verghese, C. Bruzos, K. Mahabir, “Averaged and sampled-data models for current mode control: a<br />

reexamination,” IEEE PESC, 1989, pp.484-491.<br />

V.Vorperian, R.Tymerski, F.C.Lee, “Equivalent circuit models for resonant and PWM switches,” IEEE<br />

Transactions on Power Electronics, Vol.4, No.2, pp.205-214.<br />

V.Vorperian, “Simplified analysis of PWM converters using the model of the PWM switch: Parts I and II,” IEEE<br />

Transactions on Aerospace and Electronic Systems, Vol.AES-26, pp.490-505, May 1990.<br />

G.W.Wester and R.D.Middlebrook, “Low-frequency characterization of switched Dc-Dc converters,” IEEE<br />

Transactions on Aerospace and Electronic Systems, Vol.AES-9, pp.376-385, May 1973.<br />

R.~Zane, D.~Maksimovic, ``Nonlinear-carrier control for high-power-factor rectifiers based on flyback, Cuk or<br />

Sepic converters,'’ Proc. IEEE APEC, March 3-7, 1996, San Jose, CA, pp.814-820.<br />

Selected papers on averaged model implementation for computer simulation<br />

V. Bello, "Computer Aided Analysis of Switching Regulators Using SPICE2," IEEE PESC, 1980 Record, pp 3-<br />

11.<br />

V. Bello, "Using The SPICE2 CAD Package for Easy Simulation of Switching Regulators in Both Continuous<br />

and Discontinuous Conduction Modes," Powercon 8, April, 1981, pp H3-1-14.<br />

V. Bello, "Using the SPICE2 CAD Package to Simulate and Design the Current Mode Converter," Powercon<br />

11, April 1984.<br />

Y. Amran, F. Huliehel, S. Ben-Yaakov, “A unified SPICE compatible average model of PWM converters,” IEEE<br />

Transactions on Power Electronics, Vol. 6, No. 4, pp. 585-594, 1991.<br />

S. Ben-Yaakov, “Average simulation of PWM converters by direct implementation of behavioral relationships,”<br />

IEEE APEC, pp.510-516, 1993.<br />

S.Ben-Yaakov, D.Adar, “Average models as tools for studying dynamics of switch mode DC-DC converters,”<br />

IEEE PESC 1994, pp.1369-1376<br />

S. Ben-Yaakov, Z. Gaaton, “Generic SPICE compatible model of current feedback in switch mode converters,<br />

Electronics Letters, Vol. 28, No. 14, 2nd July 1992.<br />

V.M.Canalli, J.A.Cobos, J.A.Oliver, J.Uceda, “Bihavioral large signal averaged model for DC/DC switching<br />

power converters,” IEEE PESC 1996.


Selected papers on averaged model implementation for computer simulation<br />

D. Edry, M. Hadar, O. Mor, S. Ben-Yaakov, “A SPICE compatible model of tapped inductor PWM converter,”<br />

IEEE APEC 1994, pp.1035-1041.<br />

S. Hageman, "Behavioral <strong>Modeling</strong> and PSPICE Simulate SMPS Control Loops,” PCIM, April 1990, pp 13-24<br />

and May 1990, pp 47-50.<br />

N. Jayaram, D. Maksimovic, “Power factor correctors based on coupled-inductor Sepic and Cuk converters<br />

with nonlinear-carrier control,” IEEE APEC 1998.<br />

D. Kimhi, S. Ben-Yaakov, “A SPICE model for current mode PWM converters operating under continuous<br />

inductor current conditions,” IEEE Transactions on Power Electronics, Vol.6, No.2, pp.281-286, 1991.<br />

R. Michelet and W. Roehr, "Evaluating Power Supply Designs with CAE Models” APEC 89, pp 323-334.<br />

D. Monteith and D. Salcedo, "<strong>Modeling</strong> Feedforward PWM Circuits Using the Nonlinear Function Capabilities<br />

of SPICE II," Powercon 10,March 1983.


ON Semiconductor<br />

The “PWM Switch” in mode<br />

transitioning SPICE models<br />

PCIM Germany 2005<br />

Christophe Basso - Application Manager<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Agenda<br />

Why average simulations?<br />

What techniques already exist?<br />

The PWM Switch concept<br />

The voltage-mode case<br />

The current-mode case<br />

Checking averaged model’s validity<br />

Conclusion<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

2


The “PWM Switch” in mode transitioning SPICE models<br />

Why average simulations?<br />

Unveil open-loop ac response for stabilization purposes<br />

Helps to assess impact of stray elements variations on stability<br />

Can predict transient response with large-signal models<br />

Simulation time is quick as frequency component fades away<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

3<br />

The “PWM Switch” in mode transitioning SPICE models<br />

What techniques already exist?<br />

State-Space Space Averaging (SSA)<br />

Introduced by Slobodan uk in the 80’<br />

Long and painful process<br />

Fails to predict sub-harmonic oscillations<br />

u1<br />

x1<br />

L<br />

on<br />

x2<br />

C<br />

R<br />

Vout<br />

dx<br />

dt<br />

dx<br />

dt<br />

x<br />

L<br />

x<br />

Cout<br />

u<br />

L<br />

x<br />

Rload Cout<br />

x1<br />

L<br />

off<br />

x2<br />

C<br />

R<br />

Vout<br />

dx<br />

dt<br />

dx<br />

dt<br />

x<br />

L<br />

x<br />

Cout<br />

Rload Cout<br />

x<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

4


The “PWM Switch” in mode transitioning SPICE models<br />

What techniques already exist?<br />

The GSIM concept<br />

Introduced by Sam Ben-Yaakov in the 90’<br />

Easy to derive but not fully invariant (dual inductors converters?)<br />

Fully auto-toggling mode models<br />

Fails to predict sub-harmonic oscillations<br />

b<br />

Ib<br />

Ic<br />

c<br />

V(a,b)<br />

b<br />

on<br />

off<br />

Fsw<br />

a<br />

Lf<br />

V(a,c)<br />

Fsw<br />

on<br />

off<br />

c<br />

Vin<br />

V(a,b)<br />

Lf<br />

Ia<br />

a<br />

V(a,c)<br />

C<br />

R<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

5<br />

The “PWM Switch” in mode transitioning SPICE models<br />

What techniques already exist?<br />

The CoPEC model<br />

Introduced by the Colorado Power Electronic Center in the 90’<br />

Easy to derive and fully invariant<br />

Fully auto-toggling mode models<br />

Fails to predict sub-harmonic oscillations<br />

i1(t)<br />

i1(t)<br />

v1(t)<br />

Q1<br />

D1<br />

v2(t)<br />

v1(t)<br />

Q1<br />

D1<br />

v2(t)<br />

CCM<br />

d(t)<br />

i12(t)<br />

DCM<br />

d1(t)<br />

i12(t)<br />

i1(t)<br />

i1(t)<br />

v1(t)<br />

v2(t)<br />

v1(t)<br />

Re(d1)<br />

I2<br />

v2(t)<br />

i12(t)<br />

i12(t)<br />

D':D<br />

I2=(Re x i1^2) / v2<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

6


The “PWM Switch” in mode transitioning SPICE models<br />

What techniques already exist?<br />

The Ridley models<br />

Introduced by Raymond Ridley from VPEC in the 90’<br />

Use z-transform method<br />

No auto-toggling mode models<br />

Can only work in ac<br />

Can predict sub-harmonic oscillations in CCM<br />

AC model<br />

Vin<br />

Vout<br />

Vout<br />

0<br />

2<br />

Vg<br />

AC = 0<br />

D<br />

Duty<br />

0.458<br />

4<br />

Gnd<br />

Ctrl<br />

0<br />

3<br />

V2<br />

AC = 1<br />

RS = 20m<br />

FS = 50k<br />

VOUT = 5<br />

RL = 3<br />

VIN = 11<br />

X1<br />

RI = 0.33<br />

L = 37.5u<br />

0<br />

5<br />

Resr<br />

100m<br />

Cout<br />

220uF<br />

0<br />

1<br />

Rload<br />

3<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

7<br />

The “PWM Switch” in mode transitioning SPICE models<br />

What techniques already exist?<br />

The PWM Switch<br />

Introduced by Vatché Vorpérian in the mid-80’<br />

Easy to derive and fully invariant<br />

No auto-toggling mode models<br />

Can predict sub-harmonic oscillations in CCM<br />

DCM model was never published!<br />

a<br />

d<br />

c<br />

L<br />

a<br />

Ia(t)<br />

d<br />

d'<br />

Ic(t)<br />

c<br />

Vin<br />

PWM switch<br />

d'<br />

p<br />

C<br />

R<br />

Vout<br />

Vap(t)<br />

p<br />

Vcp(t)<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

8


The “PWM Switch” in mode transitioning SPICE models<br />

The PWM Switch concept<br />

Linear network<br />

L<br />

on<br />

Vin<br />

a c<br />

d<br />

d'<br />

PWM switch p<br />

C<br />

R<br />

Vout<br />

off<br />

Linear network<br />

What do<br />

you plead?<br />

diode + transistor = guilty for non-linearity!<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

9<br />

The “PWM Switch” in mode transitioning SPICE models<br />

The PWM Switch concept<br />

Rb_upper<br />

1Meg<br />

5<br />

1<br />

Rc<br />

10k<br />

Vout<br />

Vin<br />

ib b<br />

h11<br />

7<br />

e<br />

c ic<br />

8<br />

3<br />

Beta.Ib<br />

Vout<br />

Vg<br />

Vin<br />

4<br />

Q1<br />

Req<br />

Rb_upper//Rb_lower<br />

ie<br />

Rc<br />

10k<br />

2<br />

Rb_lower<br />

100k<br />

Re<br />

150<br />

Ce<br />

1nF<br />

Re<br />

150<br />

Ce<br />

1nF<br />

Ve<br />

Remember the bipolars<br />

Ebers-Moll model…<br />

Replace Q 1 by its small-signal model<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

10


The “PWM Switch” in mode transitioning SPICE models<br />

An invariant association<br />

L<br />

Vin<br />

c<br />

a<br />

d<br />

L<br />

d'<br />

PWM switch<br />

p<br />

C<br />

R<br />

Vout<br />

Vin<br />

a c<br />

d<br />

d'<br />

PWM switch p<br />

C<br />

R<br />

Vout<br />

a<br />

Ia(t)<br />

d<br />

d'<br />

Ic(t)<br />

c<br />

Vin<br />

a<br />

d<br />

d'<br />

PWM switch<br />

p<br />

c<br />

L<br />

C<br />

R<br />

Vout<br />

Vap(t)<br />

p<br />

Vcp(t)<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

11<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Observe waveforms and average them<br />

Vin<br />

a<br />

Vap(t)<br />

Ia(t)<br />

d<br />

p<br />

d'<br />

Ic(t)<br />

c<br />

Vcp(t)<br />

L<br />

C<br />

R<br />

Vout<br />

Tsw<br />

I t I I t dt d I t dI<br />

a T a a c c<br />

sw<br />

Tsw<br />

Tsw<br />

Tsw<br />

V t V V t dt d V t dV<br />

cp<br />

T<br />

cp cp ap ap<br />

sw T<br />

Tsw<br />

sw<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

12


The “PWM Switch” in mode transitioning SPICE models<br />

PWM Switch model in CCM: a 1:D transformer!<br />

a<br />

Ia(t)<br />

I=d.Ic<br />

c<br />

Ic(t)<br />

V=d.V(a,p)<br />

Vap<br />

a<br />

Ia(t)<br />

1 d<br />

Ic(t)<br />

c<br />

Vcp<br />

p<br />

p<br />

p<br />

Large-signal (non-linear) model<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

13<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Use it immediately, SPICE linearizes it for you!<br />

L<br />

10.0 10.0<br />

100uH<br />

c<br />

a<br />

p<br />

d<br />

0.400<br />

16.7<br />

Vout<br />

Vin<br />

10<br />

Vbias<br />

0.4<br />

AC = 1<br />

C1<br />

100u<br />

R1<br />

10<br />

Always verify the dc operating point!<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

14


The “PWM Switch” in mode transitioning SPICE models<br />

The original CCM/DCM PWM Switch models<br />

a<br />

d 1-d<br />

c<br />

CCM: common « passive »<br />

vap<br />

t vcp<br />

t<br />

a<br />

d1<br />

p<br />

d2<br />

p<br />

DCM: common « common »<br />

Looks like<br />

auto-toggling<br />

is impossible…<br />

d3<br />

vac<br />

t<br />

vcp<br />

t<br />

c<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

15<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Deriving the DCM PWM Switch in common « passive »<br />

I a<br />

V ap<br />

I peak<br />

t<br />

Vin<br />

a<br />

Vap(t)<br />

Ia(t)<br />

d1<br />

p<br />

d2<br />

Ic(t)<br />

d3<br />

c<br />

Vcp(t)<br />

L<br />

C<br />

R<br />

Vout<br />

I c<br />

I peak<br />

t<br />

t<br />

I<br />

I<br />

a<br />

c<br />

I<br />

peak<br />

d<br />

I d I d I d d<br />

peak peak peak<br />

V cp V ap V cp<br />

t<br />

d 1 T sw d 2 T sw d 3 T sw<br />

I<br />

c<br />

I<br />

d<br />

a<br />

d d d d<br />

I<br />

a<br />

d<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

16


The “PWM Switch” in mode transitioning SPICE models<br />

An auto-toggling version: clamp the equation!<br />

a<br />

Ia(t)<br />

Ic(t)<br />

c<br />

Clamp<br />

Vap<br />

1 N<br />

Vcp<br />

p<br />

N=d1/(d1+d2)<br />

d<br />

IL V d T LF I<br />

V dT d V<br />

c ac sw sw c<br />

ac sw ac<br />

d<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

17<br />

The “PWM Switch” in mode transitioning SPICE models<br />

In voltage mode, add the PWM modulator gain<br />

a<br />

X4<br />

PWMCCMVM<br />

c<br />

5.00<br />

4<br />

L1<br />

75u<br />

10.0<br />

3<br />

V4<br />

10<br />

0.500<br />

17<br />

GAIN<br />

d<br />

PWM switch VM<br />

XPWM<br />

GAIN<br />

K = 0.5<br />

p<br />

5.0<br />

K<br />

PWM<br />

V<br />

peak<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

18


,<br />

-<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Testing the auto-toggling model<br />

a<br />

4.99 c<br />

L1<br />

75u<br />

4 17<br />

R5<br />

20m<br />

vout<br />

4.99<br />

Vout<br />

X2<br />

PSW1<br />

L1<br />

75u<br />

IC =<br />

1 4<br />

R4<br />

20m<br />

vout<br />

Vout<br />

10.0<br />

3<br />

V4<br />

10<br />

0.499<br />

5<br />

GAIN<br />

d<br />

PWM switch VM p<br />

X10 4.99<br />

XPWM<br />

PWMVM2<br />

GAIN<br />

L = 75u<br />

K = 0.5<br />

Fs = 100k<br />

Resr<br />

70m<br />

2<br />

Cout<br />

100u<br />

IC = 0<br />

Xstep<br />

PSW1<br />

19<br />

Vstep<br />

10<br />

V4<br />

10<br />

7<br />

D2<br />

N = 0.01<br />

Resr<br />

70m<br />

Cout<br />

100u<br />

IC =<br />

16<br />

Xstep<br />

PSW1<br />

20<br />

Vstep<br />

vout<br />

vout<br />

C2<br />

{C2}<br />

R2 C1<br />

{R2} {C1}<br />

14<br />

0.329<br />

Rupper<br />

{Rupper}<br />

2.50<br />

7<br />

R3<br />

{R3}<br />

5.00<br />

13<br />

C3<br />

{C3}<br />

6<br />

+<br />

3<br />

X8<br />

COMPAR<br />

C2<br />

{C2}<br />

R2 C1<br />

{R2} {C1}<br />

19<br />

Rupper<br />

{Rupper}<br />

13<br />

R3<br />

{R3}<br />

18<br />

C3<br />

{C3}<br />

6<br />

Verr<br />

2.50<br />

8<br />

X2<br />

V2<br />

AMPSIMP 2.5<br />

VHIGH = 1.9<br />

Rlower<br />

10k<br />

Vsaw<br />

Tran Generators = PULSE<br />

Verr<br />

8<br />

X1<br />

AMPSIMP<br />

VHIGH = 1.9<br />

V2<br />

2.5<br />

Rlower<br />

10k<br />

Averaged model<br />

Cycle-by-cycle<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

19<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Comparing results with a stepload…<br />

5.40<br />

5.20<br />

5.00<br />

4.80<br />

4.60<br />

1.10<br />

900m<br />

Cycle-by-cycle<br />

I can’t believe<br />

this result…<br />

700m<br />

500m<br />

300m<br />

9.75m 11.2m 12.7m 14.2m 15.7m<br />

time in seconds<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

20


The “PWM Switch” in mode transitioning SPICE models<br />

Current-mode PWM switch<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

21<br />

The “PWM Switch” in mode transitioning SPICE models<br />

CCM operation, current expression<br />

I t R V t d t T S<br />

c i c sw e<br />

Sd tT<br />

f<br />

sw<br />

V T S T<br />

I c<br />

d V d<br />

R R L<br />

c sw e sw<br />

cp<br />

i<br />

i<br />

a<br />

c<br />

Ia(t)<br />

Ic(t)<br />

I=d.Ic<br />

I=Vc/Ri<br />

I=Iu<br />

Cs<br />

p<br />

p<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

22


-<br />

The “PWM Switch” in mode transitioning SPICE models<br />

DCM operation, current expression<br />

I<br />

I<br />

I<br />

peak<br />

Vc dTsw Se<br />

Ri<br />

Vc dTswSe<br />

d T S<br />

Ri<br />

I d I d I d d<br />

c sw f<br />

c<br />

peak peak peak<br />

d Tsw Se V c p d d<br />

I d Tsw<br />

Ri<br />

L<br />

a<br />

Ia(t)<br />

c<br />

Ic(t)<br />

I=(d1/(d1+d2)).Ic<br />

I=Vc/Ri<br />

I=Iu<br />

p<br />

p<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

23<br />

The “PWM Switch” in mode transitioning SPICE models<br />

The PWM Switch, the final encapsulation<br />

duty_cycle<br />

a<br />

2<br />

duty-cycle<br />

c<br />

L1<br />

75u<br />

1 4<br />

R4<br />

20m<br />

vout<br />

Vout<br />

X2<br />

PSW1<br />

L1<br />

75u<br />

IC = 250m<br />

1 4<br />

R4<br />

1<br />

vout<br />

Vout<br />

V4<br />

25<br />

d<br />

PWM switch CM p<br />

X1<br />

PWMDCMCM<br />

Resr<br />

70m<br />

16<br />

Cout<br />

220uF<br />

10<br />

V4<br />

25<br />

12<br />

D1<br />

1n5818<br />

Resr<br />

70m<br />

16<br />

Cout<br />

220uF<br />

IC = 4.6<br />

20<br />

V2<br />

V2<br />

X5<br />

PSW1<br />

C2<br />

470p<br />

vout<br />

X5<br />

PSW1<br />

2<br />

V1<br />

S<br />

Q<br />

R1<br />

20k<br />

C1<br />

10n<br />

12<br />

R7<br />

10k<br />

Q<br />

R<br />

10<br />

L4<br />

1p<br />

6<br />

13<br />

C1x<br />

100p<br />

9<br />

C3<br />

1p<br />

11<br />

8<br />

Y4<br />

X4<br />

AMPSIMP<br />

7<br />

V6<br />

2.5<br />

R8<br />

10k<br />

X3<br />

COMPAR<br />

+<br />

14 6<br />

C2<br />

470p<br />

R3<br />

470<br />

B1<br />

Voltage<br />

17<br />

V(4,vout)<br />

vout<br />

V7<br />

AC = 1<br />

R1<br />

20k<br />

C1<br />

10n<br />

24<br />

R7<br />

10k<br />

18<br />

Verr<br />

X4<br />

AMPSIMP<br />

19<br />

V6<br />

2.5<br />

R8<br />

10k<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

24


The “PWM Switch” in mode transitioning SPICE models<br />

Good matching between both models<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

25<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Testing the ac response<br />

0.649<br />

18<br />

0.408<br />

dc<br />

a<br />

duty-cycle<br />

vc<br />

PWM switch CM<br />

X1x<br />

XFMR<br />

-127RATIO = -0.1<br />

Vout<br />

D1<br />

L1<br />

Rs<br />

MBR140P out1 2.2uH<br />

12.2 12.2 10m12.2<br />

out2<br />

126<br />

2<br />

Vin<br />

126<br />

c<br />

p<br />

0<br />

3<br />

PWMCM<br />

X1<br />

L = 1.8m<br />

L3 Fs = 66k<br />

1.8m Ri = 1.5<br />

1 4<br />

12.7<br />

R4<br />

R5<br />

100m<br />

100m<br />

12.2 12.2<br />

15 7<br />

C1<br />

C5<br />

470uF<br />

470uF<br />

6<br />

R17<br />

300m<br />

12.2<br />

9<br />

C2<br />

10uF<br />

Rload<br />

14<br />

V3<br />

4.8<br />

4.80<br />

11<br />

out1<br />

out2<br />

0.649<br />

14<br />

R7<br />

8k<br />

R15<br />

LoL<br />

1.5k<br />

1kH0.649<br />

10.6<br />

VFB<br />

16<br />

5<br />

CoL<br />

1kF<br />

0<br />

12<br />

9.88<br />

10<br />

Cf<br />

100nF<br />

Rupp<br />

3.9k<br />

Vstim<br />

AC = 1<br />

X3<br />

TL431<br />

2.50<br />

13<br />

A dcm current-mode flyback<br />

Rlow<br />

1k<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

26


The “PWM Switch” in mode transitioning SPICE models<br />

Ac simulation results of the flyback converter<br />

0<br />

10 100 1K 10K 100K<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

27<br />

The “PWM Switch” in mode transitioning SPICE models<br />

If the load increases…<br />

plot1<br />

vdbfb in db(volts)<br />

60.0<br />

40.0<br />

20.0<br />

0<br />

-20.0<br />

gain<br />

CCM operation<br />

Sub-harmonic oscillations!<br />

1<br />

Plot2<br />

ph_vfb in degrees<br />

220<br />

180<br />

140<br />

100<br />

phase<br />

2<br />

60.0<br />

10 100 1k 10k 100k<br />

frequency in hertz<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

28


The “PWM Switch” in mode transitioning SPICE models<br />

Testing on a multi-output forward<br />

L2<br />

12.2 {L2} 12.2<br />

4 5<br />

R2x<br />

70m<br />

12.0<br />

9 Vout2<br />

X1<br />

XFMR<br />

RATIO = N2<br />

Resr2<br />

100m<br />

12.0<br />

2<br />

Cout2<br />

100u<br />

Rload2<br />

6<br />

X7<br />

XFMR<br />

RATIO = N1/N2<br />

dc<br />

0.356<br />

duty-cycle<br />

160 56.6<br />

a<br />

c<br />

10 8<br />

L1<br />

28.3 {L1} 28.3<br />

11 3<br />

R9<br />

70m<br />

vout<br />

28.0<br />

Vout1<br />

V6<br />

parameters<br />

160<br />

Rsense=0.35<br />

Vout=28<br />

L1=130u<br />

L2=130u<br />

N1=0.5<br />

N2=0.215<br />

Rupper=(Vout-2.5)/250u<br />

fc=5k<br />

pm=50<br />

Gfc=8.84<br />

pfc=-66<br />

G=10^(-Gfc/20)<br />

boost=pm-(pfc)-90<br />

pi=3.14159<br />

K=tan((boost/2+45)*pi/180)<br />

C2=1/(2*pi*fc*G*k*Rupper)<br />

C1=C2*(K^2-1)<br />

R2=k/(2*pi*fc*C1)<br />

0.861<br />

1<br />

vc<br />

PWM switch CM p<br />

X5<br />

PWMCM2<br />

L = L1/N1^2+L2/N2^2<br />

Fs = 200k<br />

Ri = Rsense<br />

Se = 0<br />

C2<br />

{C2}<br />

R2 C1<br />

{R2} {C1}<br />

20<br />

0.861<br />

LoL<br />

1kH<br />

19<br />

0.861<br />

2.50<br />

CoL Verrx<br />

X4<br />

1kF<br />

0<br />

AMPSIMP<br />

7<br />

V1<br />

AC = 1<br />

X6<br />

XFMR<br />

RATIO = N1<br />

vout<br />

Rupper<br />

{Rupper}<br />

2.50<br />

13<br />

18<br />

Rlower<br />

V3<br />

10k<br />

2.5<br />

Resr1<br />

245m<br />

28.0<br />

6<br />

Cout1<br />

48u<br />

Rload1<br />

7<br />

A multi-output forward<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

29<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Output voltage bang on the 28 V output…<br />

28.8<br />

Plot1<br />

vout, vout1 in volts<br />

28.4<br />

28.0<br />

27.6<br />

3<br />

1<br />

27.2<br />

Averaged<br />

Cycle-by-cycle<br />

12.4<br />

12.5<br />

Plot2<br />

vout2 in volts<br />

12.2<br />

12.0<br />

11.8<br />

vout2#a in volts<br />

12.3<br />

12.1<br />

11.9<br />

24<br />

11.6<br />

11.7<br />

3.93m 4.83m 5.74m 6.64m 7.55m<br />

time in seconds<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

30


The “PWM Switch” in mode transitioning SPICE models<br />

Output voltage bang on the 28 V output…<br />

28.8<br />

plot1<br />

vout, vout1 in volts<br />

28.4<br />

28.0<br />

27.6<br />

4<br />

1<br />

27.2<br />

Averaged<br />

Cycle-by-cycle<br />

12.8<br />

Plot2<br />

vout2, vout2#a in volts<br />

12.4<br />

12.0<br />

11.6<br />

3<br />

2<br />

11.2<br />

3.83m 4.75m 5.68m 6.61m 7.54m<br />

time in seconds<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

31<br />

The “PWM Switch” in mode transitioning SPICE models<br />

Instability in the buck DCM current-mode<br />

> 20 dB increase<br />

Plot1<br />

vphout, vphout#1, vphout#2 in degrees<br />

180<br />

90.0<br />

0<br />

-90.0<br />

vdbout, vdbout#1, vdbout#2 in db(volts)<br />

80.0<br />

40.0<br />

0<br />

-40.0<br />

Gain<br />

V in<br />

R load<br />

Phase<br />

V in<br />

R load<br />

Gain<br />

V in<br />

R load<br />

Phase<br />

V in<br />

R load<br />

V in M<br />

V in M<br />

V in M<br />

Gain<br />

V in<br />

3<br />

5<br />

1<br />

2<br />

46<br />

The DCM buck<br />

shows instability<br />

as M > 0.66<br />

without ramp<br />

Phase jumps<br />

to –180°<br />

-180<br />

-80.0<br />

Phase<br />

V in<br />

R load<br />

1 10 100 1k 10k 100k 1Meg<br />

frequency in hertz<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

32


The “PWM Switch” in mode transitioning SPICE models<br />

Instability in the buck DCM current-mode<br />

40.0<br />

180<br />

Gain<br />

V in<br />

R load<br />

Adding 0.086 x S off<br />

cures the problem<br />

Plot1<br />

vdbout, vdbout#2 in db(volts)<br />

20.0<br />

0<br />

vphout, vphout#2 in degrees<br />

90.0<br />

0<br />

Gain<br />

V in<br />

R load<br />

S a<br />

Phase<br />

V in<br />

R load<br />

S a<br />

2<br />

4<br />

-20.0<br />

-90.0<br />

-40.0<br />

-180<br />

Phase<br />

V in<br />

R load<br />

3<br />

1<br />

1 10 100 1k 10k 100k 1Meg<br />

frequency in hertz<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

33<br />

The “PWM Switch” in mode transitioning SPICE models<br />

The conclusion<br />

The CM PWM Switch DCM was derived<br />

Two auto-toggling models developed<br />

Good matching of average vs reality<br />

Models also exist in BCM (PFC simulations)<br />

Exist in both IsSpice and PSpice<br />

www.onsemi.com<br />

Christophe Basso – PCIM 2005<br />

November 2001<br />

34


8 PWM switching dc-to-dc converters<br />

Introducing the PWM switch<br />

8.1 Introduction<br />

An electronic circuit which transforms the dc level of a voltage or current source in<br />

a controllable manner without dissipating power is called an ideal dc-to-dc<br />

converter or simply a converter. This is shown in Fig. 8.1 in which α is a control<br />

parameter on which the output voltage or current depends. When feedback is used<br />

as shown in Fig. 8.2,either the output voltage or output current can be regulated<br />

against variations in the input voltage or load current. A vast majority of applications,such<br />

as logic and sensitive instrumentation circuits,require a converter<br />

whose output voltage,rather than the output current,is tightly regulated. A<br />

converter may also have more than one control parameter so that α can be taken<br />

as a control vector.<br />

Figure 8.1<br />

Figure 8.2<br />

365<br />

In the following sections we shall determine the basic characteristics of dc-to-dc<br />

converters,determine their equivalent circuits using a model of the PWM switch,<br />

and analyze their dynamics using the techniques developed in this book.


366 PWM switching dc-to-dc converters<br />

8.2 Basic characteristics of dc-to-dc converters<br />

The voltage conversion ratio of a converter is defined as the ratio of the dc output<br />

voltage to the dc input voltage:<br />

M <br />

V <br />

V <br />

(8.1)<br />

In a similar manner,the current conversion ratio is defined as the ratio of the dc<br />

output current to the dc input current:<br />

M <br />

I <br />

I <br />

(8.2)<br />

Since in an ideal converter there can be no power dissipation,the input and output<br />

powers must be equal:<br />

P <br />

P <br />

V <br />

I <br />

V <br />

I <br />

M <br />

M <br />

1 (8.3)<br />

No practical converter can satisfy the condition in Eq. (8.3) because of losses<br />

associated with nonideal components. In designing a converter,every effort is<br />

made to keep these losses to a minimum in order to maximize the efficiency,which<br />

is defined as the ratio of the output power to the input power:<br />

η P <br />

P <br />

M <br />

M <br />

(8.4)<br />

One may wonder what kind of ideal components go into an ideal converter.<br />

Resistors,which may be arranged as a voltage divider to achieve down conversion,<br />

are precluded because they dissipate power and lack controllability. A bipolar<br />

transistor connected between a voltage source and a load can achieve controllability<br />

by adjusting V <br />

,but such a circuit,known as a series regulator (see Problem<br />

8.1),dissipates power by an amount given by:<br />

P <br />

V <br />

I <br />

(V <br />

V <br />

)I <br />

(8.5)<br />

Hence,the series regulator and its dual,the shunt regulator (see Problem 8.2),are<br />

not classified as converters. In fact,these circuits are nothing more than linear dc<br />

amplifiers.<br />

The two mechanisms required for nondissipative power conversion are switching<br />

and filtering. Switching is achieved by a minimum of two switches while filtering<br />

is achieved by inductors and capacitors arranged in an effective low-pass filter<br />

configuration. The purpose of the filters is to attenuate the pulsating currents,


367 8.2 Basic characteristics of dc-to-dc converters<br />

generated by the switches,down to a specified level at the input and output ports<br />

of the converter. Since ideal switches,inductors and capacitors do not dissipate<br />

any power,the ideal conversion efficiency is 100%. In reality,all practical inductors<br />

and capacitors dissipate a very small percentage of the peak energy stored in<br />

them owing to dielectric,conductive and magnetic losses. Also,all practical<br />

semiconductor switches have finite conductive and switching losses. The switching<br />

frequency is one of the most critical parameters in the design of a switching<br />

converter. Increasing the switching frequency results in smaller inductors and<br />

capacitors but higher switching losses and lower efficiency. The tradeoff between<br />

size,cost,weight and efficiency has never been an exact science and is usually<br />

driven by market requirements. For example,a commercially available 48 V to<br />

5 V,100-W converter may have an efficiency of 80% at full load with linear<br />

dimensions 3.0 1.5 0.38,whereas a similar custom-designed converter may<br />

in comparison have an efficiency of 93% and twice the linear dimensions.<br />

We consider now the input and output port characteristics of an ideal converter<br />

with and without feedback. In what follows we shall assume that a converter is<br />

made of linear inductors and capacitors. For a converter without feedback,the<br />

output voltage is linearly related to the input voltage by the conversion ratio M <br />

:<br />

No feedback V <br />

M <br />

V <br />

; M <br />

M <br />

(V <br />

) (8.6)<br />

The reason for this is that the switching action in any dc-to-dc converter,as we<br />

shall see,produces a periodic sequence of linear networks. The conversion ratio is<br />

obtained by piecing together the solutions of the individual switched linear networks<br />

which are linear functions of the input voltage. Hence,the piecewise<br />

composite solution is also a linear function of the input voltage. Following the<br />

same argument we conclude that M <br />

is also independent of the input voltage.<br />

Hence,the ideal voltage converter in Fig. 8.1a can be modeled by an ideal<br />

transformer with turns ratio M <br />

as shown in Fig. 8.3. In general M <br />

is a function of<br />

the control parameter, α,the output voltage,V <br />

,and the output current,I <br />

:<br />

M <br />

M <br />

(α, V <br />

, I <br />

) (8.7)<br />

Also,a converter can in general have several modes of operation so that a unique<br />

M <br />

may not be sufficient for modeling purposes. In the very important class of<br />

converters discussed in this chapter, M <br />

is only a function of α.<br />

Figure 8.3


368 PWM switching dc-to-dc converters<br />

The input and output characteristics of an ideal converter can now be ascertained<br />

using the equivalent circuit in Fig. 8.3. For an unregulated converter feeding<br />

a resistive load R <br />

,the incremental input resistance seen by the source according<br />

to Fig. 8.3 is:<br />

R <br />

R <br />

M <br />

(8.8)<br />

For an ideal converter in which the output voltage is regulated by the feedback<br />

arrangement shown in Fig. 8.4,the output voltage is equal to the reference voltage:<br />

V <br />

V <br />

(8.9)<br />

Hence,when the load is fixed,the input power of a regulated converter is fixed and<br />

independent of the source voltage. It follows that any increase in the source voltage<br />

is accompanied by a decrease in the source current,which implies that the<br />

incremental input resistance of a regulated converter is negative. Proceeding as<br />

follows,we obtain:<br />

P <br />

V <br />

0 V <br />

I <br />

V <br />

I <br />

0 I <br />

V <br />

I <br />

V <br />

(8.10)<br />

Substituting Eqs. (8.1),(8.2) and (8.3) in Eq. (8.10) we obtain several useful expressions<br />

for the incremental input resistance:<br />

R V P <br />

(V /I )<br />

M <br />

⎫<br />

⎬⎭<br />

(8.11a—c)<br />

R <br />

M <br />

In Eq. (8.11c) we have made use of the fact that R V /I whenever the load<br />

<br />

actually consists of a resistor as shown in Fig. 8.4.<br />

Figure 8.4


369 8.2 Basic characteristics of dc-to-dc converters<br />

The incremental output resistance of regulated and unregulated ideal converters<br />

can be determined in a similar manner (see Problem 8.3).<br />

Example 8.1 An ideal battery charging circuit is shown in Fig. 8.5. This circuit is<br />

somewhat tricky because it has two voltage sources connected in parallel with zero<br />

resistance between them. If it were not for the control circuit,it would not have<br />

been clear which of the two voltage sources was charging or being charged and the<br />

charging current would have been undetermined. In this ideal case,the feedback<br />

circuit adjusts the control parameter α,and hence the conversion ratio M ,by <br />

monitoring the charging current I to ensure I I . The value of α determined by<br />

<br />

the control circuit is given by:<br />

α M<br />

V <br />

V <br />

<br />

(8.12)<br />

If α were to deviate by the slightest amount from the value in Eq. (8.12),the<br />

charging current would become infinite,causing an infinite error signal,which<br />

would be instantaneously corrected by the negative feedback circuit. The current<br />

drawn from the source,when α is set exactly to the value in Eq. (8.12),is determined<br />

from the current conversion ratio:<br />

I <br />

I <br />

M <br />

I <br />

M <br />

I <br />

V <br />

V <br />

(8.13)<br />

where we have made use of the fact that M <br />

M <br />

1 for an ideal converter.<br />

The incremental input impedance is determined next following the procedure in<br />

Eq. (8.10):<br />

I <br />

V <br />

I <br />

V <br />

I V <br />

V <br />

(8.14)<br />

Figure 8.5<br />

It follows that:<br />

R <br />

V <br />

I <br />

V <br />

(8.15)


370 PWM switching dc-to-dc converters<br />

The same result could have been obtained directly from Eq. (8.11a).<br />

<br />

8.3 The buck converter<br />

Consider the task of converting an unregulated dc voltage source, V <br />

,to a<br />

regulated dc voltage source V <br />

V <br />

which supplies power to a load R <br />

.One<br />

simple and efficient way of doing this is to chop the source and generate a unipolar<br />

voltage pulse train with an amplitude V <br />

,a fixed period T <br />

,and a variable width,or<br />

on-time T <br />

,as shown in Fig. 8.6. Such a waveform is known as a pulse-widthmodulated<br />

(PWM) waveform. It is relatively easy to see that the dc component of<br />

the PWM waveform in Fig. 8.6 can be controlled by varying the pulse width, T <br />

.<br />

To make use of this dc component,the high-frequency components must be<br />

filtered out by a nondissipative low-pass filter. A simple converter which can chop<br />

and filter as described above is the buck converter shown in Fig. 8.7.<br />

Figure 8.6<br />

Figure 8.7<br />

The chopper section of the buck converter consists of two switches S and S <br />

which are driven by the complementary switching functions D<br />

(t) and D (t) <br />

1 D (t),respectively. The switching function is a unit pulse train defined:<br />

<br />

D<br />

(t) <br />

1 nT t nT T <br />

(8.16)<br />

0 nT T t (n 1)T <br />

⎫<br />

⎬<br />


371 8.3 The buck converter<br />

Looking back into the chopper circuit from the terminals of S ,we see an effective<br />

<br />

voltage source V (t) given by:<br />

<br />

V<br />

(t) V D (t) (8.17)<br />

<br />

The dc component of V (t) is given by:<br />

<br />

1<br />

T <br />

<br />

V<br />

(t)dt 1 T<br />

<br />

<br />

<br />

V D (t)dt DV (8.18)<br />

<br />

<br />

in which D is defined as the duty-ratio function,or duty cycle,and is given by:<br />

D 1 T <br />

<br />

D<br />

(t)dt T <br />

(8.19)<br />

T<br />

<br />

<br />

The LC filter following the chopper is the simplest,lossless,low-pass filter that can<br />

extract the dc component of V<br />

(t) and generate a dc output voltage V given by:<br />

<br />

V DV (8.20)<br />

<br />

It is clear from Eq. (8.20) that the dc output voltage can be regulated by varying the<br />

duty cycle, D,so that the duty cycle serves as the control parameter,i.e. α D. It<br />

follows from Eq. (8.20) that the voltage conversion ratio, M <br />

,of the buck converter<br />

is given by:<br />

M <br />

V <br />

V <br />

D (8.21)<br />

In order to determine the steady-state voltages and currents of the buck converter,we<br />

need to study the response of the low-pass LC filter to V (t). The following<br />

<br />

transfer function can be easily verified (see Problem 8.4):<br />

H(s) v (s)<br />

v <br />

(s) 1<br />

1 s<br />

ω <br />

Q s<br />

ω <br />

(8.22)<br />

in which:<br />

ω <br />

1<br />

LC<br />

Q <br />

R<br />

L/C<br />

⎫<br />

⎬<br />

⎭<br />

(8.23a, b)<br />

The magnitude and phase response of H(s) is shown in Fig. 8.8. In order to study<br />

the interaction of V<br />

(t) with H(s),we write V (t) as:<br />

<br />

V<br />

(t) DV V (t) (8.24)


372 PWM switching dc-to-dc converters<br />

in which V (t) is a periodic waveform which contains only the fundamental and<br />

harmonics of V (t). From the magnitude response of H(s),it can be seen that the dc<br />

<br />

component, DV ,of V (t) will pass through and become the dc component of the<br />

<br />

output voltage. It can also be seen from the same figure that if the corner frequency<br />

of the filter, f ,is chosen well below the switching frequency of the converter,<br />

<br />

F 1/T ,then all the harmonics of V<br />

(t) atnF will fall on the 40 dB/dec<br />

<br />

asymptote so that the ac components of V (t) will be attenuated and integrated<br />

<br />

twice. Therefore,the actual output voltage consists of the dc component V DV <br />

and a small periodic waveform, V (t),known as the output ripple voltage:<br />

<br />

V<br />

(t) V V (t); V (t) V (8.25)<br />

<br />

Figure 8.8<br />

Since the output ripple voltage is given by the high-frequency response of H(s) to<br />

V(t),we can approximate H(s) as:<br />

H(s) ω <br />

s<br />

(8.26)<br />

Equation (8.26) corresponds to a double integration so that we have:<br />

V<br />

(t) ω V (t)dt (8.27)<br />

in which V (t),according to Eqs. (8.16),(8.17) and (8.24),is given by:<br />

V (t) <br />

⎫<br />

⎬<br />

⎭<br />

V V nT t nT T <br />

(8.28)<br />

V nT T t (n 1)T <br />

Since V (t) is a constant in each subinterval,the double integration in Eq. (8.27)<br />

yields a parabolic segment in each subinterval as shown in Fig. 8.9. Note that the<br />

ripple voltage, V (t),and V (t) are inverted with respect to each other because all the


373 8.3 The buck converter<br />

frequency components of V (t) are phase shifted by 180° owing to the phase<br />

response of H(s) at high frequencies. Each parabolic segment of the voltage ripple<br />

is given by:<br />

V<br />

(t) V ω (V V ) t 2<br />

V<br />

(t) V ω V t<br />

2<br />

⎫<br />

⎬<br />

⎭<br />

(8.29a, b)<br />

in which the time origin of each segment is taken at its peak. The peak-to-peak<br />

output voltage ripple follows from Eqs. (8.29a, b) which,when normalized with<br />

respect to the output voltage (see Problem 8.5),is given by:<br />

δV <br />

V <br />

V <br />

π<br />

2 (1 D) f <br />

F <br />

<br />

(8.30a)<br />

For a regulating converter,the worse case normalized ripple,δ <br />

,occurs at D <br />

or<br />

M <br />

so that we have:<br />

δ <br />

π<br />

2 (1 M ) f <br />

F <br />

<br />

Hence,the LC filter is designed with a resonant frequency f <br />

given by:<br />

(8.30b)<br />

f <br />

F <br />

π 2δ <br />

1 M <br />

(8.31)<br />

Note that f <br />

is expressed in terms of the design specifications (δ <br />

, M <br />

) and a design<br />

parameter F <br />

which the designer chooses.<br />

Figure 8.9<br />

Example 8.2 A 100-kHz buck converter is to be used in the design of a regulated<br />

converter which operates from an unregulated bus voltage of 28 4 V and


374 PWM switching dc-to-dc converters<br />

delivers an output of 12 V at 2.3 A. The maximum output ripple voltage is specified<br />

to be 150 mV. Determine the range of the duty ratio and f <br />

of the output filter.<br />

According to the given variation in the bus voltage the specified range of the<br />

duty cycle and the conversion is:<br />

M D <br />

V 12<br />

V ῀V 28 4 0.375 ⎫<br />

<br />

⎬⎭<br />

(8.32a, b)<br />

M D <br />

V 12<br />

V ῀V 28 4 0.5 <br />

According to Eq. (8.31),the worse case,or the lowest corner frequency,requirement<br />

is dictated by M <br />

so that we have:<br />

f 1 F <br />

π 2δ 1 1 M <br />

π 2(0.15/12) 0.064 (8.33)<br />

1 0.375<br />

Hence,the corner frequency of the filter must be selected less than or equal to<br />

6.4 kHz to have an output ripple voltage of 150 mV or less. <br />

Determination of the corner frequency of the filter in the example above does<br />

not uniquely determine the inductor and the capacitor. We shall now determine<br />

the current in the inductor and show that its ripple component provides another<br />

design equation for the selection of L and C. The current in the inductor consists of<br />

a dc and a ripple component. The dc component of the inductor current is the<br />

same as the dc component of the output current because the capacitor does not<br />

carry any dc current. Hence,the inductor current can be written as:<br />

I<br />

(t) I I (t) (8.34)<br />

<br />

in which I V /R. <br />

The ripple current in the inductor is determined by integrating the voltage<br />

across it,which is given by:<br />

V<br />

(t) V (t) V (t)<br />

V V (t) V V<br />

<br />

V (t)<br />

(t) (8.35)<br />

<br />

In the last step we have ignored the output ripple voltage because it is much<br />

smaller in comparison with V (t). Since V (t) has a constant value in each subinterval,the<br />

ripple current consists of two linear segments as shown in Fig. 8.10. The<br />

first segment of the inductor current is given by:<br />

I<br />

(t) L 1 (V V )dt I V V t (8.36)<br />

L


375 8.3 The buck converter<br />

in which the time origin has been taken at I <br />

. For the second segment we have:<br />

I<br />

(t) L 1 (V )dt I V <br />

L t (8.37)<br />

<br />

in which the time origin has been taken at I . Since the ripple current is linear,the<br />

<br />

average value of the inductor current is midway between I and I and the<br />

<br />

peak-to-peak ripple current can be determined from either segment. Hence,letting<br />

t DT in Eq. (8.37),we obtain:<br />

<br />

I <br />

I <br />

V DT <br />

L<br />

(8.38)<br />

It follows that the peak-to-peak ripple current is given by:<br />

I<br />

<br />

I <br />

I <br />

V DT <br />

L<br />

(8.39)<br />

Figure 8.10<br />

It can be seen from Eq. (8.39) that for a buck converter with a regulated output<br />

voltage,the maximum ripple current occurs when D is a maximum,which occurs<br />

when the input voltage is a maximum. When the ripple current is normalized with<br />

respect to the average inductor current, I <br />

I <br />

,we obtain:<br />

δI I V DT <br />

I I L<br />

RDT <br />

L<br />

<br />

(8.40)<br />

The amount of ripple current determines the peak current in the inductor and<br />

the switches S <br />

and S <br />

. This peak is given by:<br />

I <br />

I <br />

I δI <br />

2<br />

(8.41)<br />

The maximum value of the peak current in Eq. (8.41) occurs at the specified


376 PWM switching dc-to-dc converters<br />

maximum load current so that we have:<br />

I<br />

<br />

I<br />

<br />

(1 δ <br />

) (8.42)<br />

in which δ <br />

is the worst case value of δI <br />

/2 and is given by:<br />

δ <br />

V (1 M )T <br />

2LI<br />

<br />

(8.43)<br />

It follows that,for a design choice of δ <br />

, L is determined uniquely according to:<br />

L 1<br />

F <br />

δ <br />

V <br />

(1 M <br />

)<br />

2I<br />

<br />

(8.44a)<br />

The value of C follows from the resonant frequency given in Eq. (8.31):<br />

C δ I<br />

<br />

F 4V δ <br />

(8.44b)<br />

Note that Eqs. (8.44a, b),just like Eq. (8.31),express L and C in terms of the design<br />

specifications (V <br />

, M <br />

, I<br />

<br />

, δ <br />

) and the design parameters (F <br />

, δ <br />

).<br />

The maximum peak current is an important design consideration and is expressed<br />

in terms of δ <br />

. For example,it can be seen that designing with a larger<br />

value of δ <br />

results in a smaller inductor,a larger capacitor and a larger peak<br />

current. There are many design tradeoff considerations which we will not discuss<br />

here and which result in practical values of δ <br />

in the range 0.1—1.0.<br />

Although not necessary,the design equations of the filter elements can be<br />

expressed in terms of the resonant frequency f <br />

given by Eq. (8.31) and the Q-factor,<br />

which we shall determine next. Hence,after performing the necessary substitutions,we<br />

can rewrite Eq. (8.43) as:<br />

δ <br />

π(1 M <br />

)Q <br />

f <br />

F <br />

(8.45)<br />

in which Q <br />

is given by:<br />

Q <br />

(V /I )<br />

ω <br />

L<br />

ω <br />

C(V <br />

/I<br />

<br />

)<br />

⎫<br />

⎬<br />

⎭<br />

(8.46a, b)<br />

If the load is a simple resistor R,then V <br />

/I <br />

R and Q <br />

is the same as the Q-factor<br />

of the LC filter. If the load,on the other hand,is a current source,another<br />

regulated converter,or a battery as in Example 8.1,then Q <br />

and the actual Q-factor<br />

are different. Performing the necessary substitutions for Q <br />

,we obtain an alternate<br />

set of design equations for the LC filter:


377 8.3 The buck converter<br />

⎫<br />

f F π 2δ <br />

1 M (8.47a, b)<br />

δ<br />

⎬<br />

Q <br />

2δ (1 M ) ⎭<br />

<br />

Example 8.3 If the maximum peak current in the buck converter of Example 8.2<br />

is to be 3 A,determine the values of L and C.<br />

The value of δ <br />

,given by Eq. (8.42),is computed first:<br />

δ I 1 3 1 0.3 (8.48)<br />

I 2.3<br />

<br />

Next we compute Q <br />

given by Eq. (8.47):<br />

0.3<br />

Q <br />

2.4 (8.49)<br />

2(1 0.375)(0.15/12)<br />

The values of L and C are obtained from Eqs. (8.46a, b):<br />

L (12/2.3)<br />

(2π6400)2.4 54 μH ⎫<br />

⎬<br />

(8.50a, b)<br />

2.4<br />

C<br />

(2π6400)(12/2.3) 11.14 μF ⎭<br />

These are exact values,which may or may not be available. Typically,the tolerances<br />

on power inductors and large capacitors can be of the order 5—10%. Hence,<br />

when the actual components are chosen,the nearest available values are selected<br />

such that their worst case values are greater or equal to those determined<br />

above.<br />

<br />

The currents and voltages of the switches S <br />

and S <br />

are examined next. These<br />

are shown in Fig. 8.11 and can be verified easily. Switch S <br />

is called the active<br />

switch and it carries the inductor current during DT <br />

. Switch S <br />

is called the passive<br />

switch and it carries the inductive current during DT <br />

. Two practical realizations<br />

of the switches are shown in Figs. 8.12a and b. The difference between these two<br />

realizations is in their modes of operation at low-output currents as shown in Fig.<br />

8.13. When a MOSFET is turned on,it can conduct in both directions whereas a<br />

diode can conduct only in one direction. Hence,in Fig. 8.12a,when Q <br />

is turned<br />

off,the current in the inductor turns on the diode to initiate the DT <br />

subinterval.<br />

The diode will conduct as long as the inductor current is positive,which is<br />

expressed quantitatively:<br />

I<br />

<br />

2 I <br />

(8.51)


378 PWM switching dc-to-dc converters<br />

Figure 8.11<br />

If this condition is not satisfied,then the diode will stop conducting before the end<br />

of DT <br />

and a third interval of operation will occur during which both switches will<br />

be in the off state and the output capacitor will discharge into the load. This is<br />

called the discontinuous conduction mode (DCM),which we shall not discuss<br />

here. In DCM,the conversion ratio is no longer the same as in the continuous<br />

conduction mode (CCM) and depends on the output current and the switching<br />

frequency in addition to the duty-cycle D. The current waveforms in DCM are<br />

shown in Fig. 8.13a.<br />

When a MOSFET is used instead of a diode,as shown in Fig. 8.12b,the<br />

converter is capable of operating in CCM down to zero load current,because<br />

when a MOSFET is turned on it can conduct in both directions allowing the<br />

current in the inductor to reverse direction. The currents in both MOSFETs at<br />

low-output currents,when the condition in Eq. (8.51) is not satisfied,are shown in<br />

Fig. 8.13b.<br />

Figure 8.12<br />

For the buck converter discussed above,the input current is pulsating and is the<br />

same as the current in S <br />

. The input current of an ideal converter,however,must<br />

be smooth and only follow the variations in the output current as required by the


379 8.3 The buck converter<br />

equivalent circuit model of an ideal converter shown in Fig. 8.3. Hence,another<br />

filter must be added on the input side to reduce the input ripple current down to an<br />

acceptable level. It is interesting to point out that the end-user of a converter<br />

usually does not care how much ripple current the converter generates on the<br />

input power bus. But,high frequency ripple currents on power lines,called<br />

conduction emissions,create serious interference problems for other users. Hence,<br />

for commercial applications,conducted emissions are specified and enforced by<br />

regulatory agencies such as the FCC in the USA,the CSA in Canada and the VDE<br />

in Germany. (For military and aerospace applications,conducted emissions must<br />

Figure 8.13<br />

comply with US Military Standards 461.) The simplest type of input filter,with<br />

series or shunt damping,is shown in Figs. 8.14a and b in which R L and R C <br />

are the series and shunt damping networks,respectively. The purpose of the<br />

damping networks is to prevent oscillations or ringing,and these will be discussed<br />

shortly.<br />

The input ripple current is calculated by determining the transfer function H (s) <br />

shown in Fig. 8.15,in which the current source I (s) is the pulsating current drawn<br />

<br />

by the converter. In this figure,we have assumed that the ripple voltage across C is <br />

small in comparison with the dc voltage across it so that the shape of I (t) is<br />

<br />

essentially the same with or without the input filter. In determining this transfer<br />

function,the effect of the damping network can be ignored so that we have from<br />

Fig. 8.15:<br />

I <br />

(s)<br />

I <br />

(s) 1<br />

1 s/ω <br />

(8.52)<br />

in which:<br />

ω <br />

1<br />

L <br />

C <br />

(8.53)


380 PWM switching dc-to-dc converters<br />

Figure 8.14<br />

According to Eq. (8.52),the dc component of I (t) will pass through the input<br />

<br />

circuit,while its ac component,I (t),will be attenuated,if its frequency spectrum<br />

<br />

falls above ω . Hence,as in the design of the output filter,we choose the corner<br />

<br />

frequency of the input filter to be much lower than the switching frequency so that<br />

I (t) will be attenuated and integrated twice. Hence,the input ripple current is<br />

<br />

given by:<br />

I (s) <br />

I (s) ω <br />

s I (t) ω <br />

I (t)dt (8.54)<br />

<br />

The exact calculation of the peak-to-peak ripple from the double integral in Eq.<br />

(8.54) is somewhat tedious because of the cubic term that arises from the current<br />

Figure 8.15<br />

slope during DT <br />

. This calculation can be simplified if the trapezoidal pulse is<br />

replaced with a rectangular pulse of the same area and duration. The height of this


381 8.3 The buck converter<br />

equivalent rectangular pulse,of course,is equal to the output current. This<br />

simplification is justified because the maximum input ripple current occurs at<br />

maximum load current; which,in most designs,corresponds to an I (t) that is close<br />

<br />

to rectangular. The resulting expression of the peak-to-peak input ripple current is<br />

given (see Problem 8.6) by:<br />

I<br />

<br />

I <br />

πDD<br />

2 f <br />

F <br />

(8.55)<br />

It is clear from Eq. (8.55) that the worst case value of the input ripple current occurs<br />

at maximum load. The maximum value of the term DD,however,depends on the<br />

specified range of D <br />

D D <br />

. Hence,we have from Eq. (8.55):<br />

I<br />

<br />

I<br />

<br />

π(max[DD])<br />

2 f <br />

F <br />

(8.56)<br />

in which<br />

max[DD] <br />

⎫<br />

⎬<br />

⎭<br />

D <br />

(1 D <br />

); D <br />

1/2<br />

1/4; D <br />

1/2D <br />

1/2<br />

D <br />

(1 D <br />

); D <br />

1/2<br />

(8.57)<br />

With these design equations we can only determine the resonant frequency of the<br />

input filter but not C <br />

and L <br />

individually. We could derive another design<br />

equation in terms of the voltage ripple on the input capacitor, C <br />

,so that C <br />

and L <br />

could be determined uniquely,but the input voltage ripple is hardly a design<br />

consideration. Hence,typically,once f <br />

is determined, L <br />

and C <br />

are usually<br />

determined such that their combined volume is as small as possible.<br />

Example 8.4 Determine the resonant frequency of the input filter for the buck<br />

converter in Example 8.3 so that I 10 mA. Since D 0.5,we have from<br />

<br />

Eqs. (8.56) and (8.57);<br />

0.01 2.3 π<br />

2<br />

1<br />

4 f <br />

F <br />

f 0.059 (8.58)<br />

F <br />

Hence,the input filter is designated with f <br />

5.9 kHz.<br />

Since the input impedance of a regulating converter is negative,the addition of<br />

an LC input filter can easily result in an instability because of the negative<br />

damping effect. Hence,it is always a good idea to damp the input filter of a<br />

regulating converter by adding either a series or shunt damping branch as shown<br />

in Figs. 8.14a and b. The design of the damping network can be optimized if the<br />

frequency response of the input impedance of the converter is known. We shall be<br />

brief and present a much simpler technique that assumes that the input impedance


382 PWM switching dc-to-dc converters<br />

is real and negative. In Fig. 8.14a,if C <br />

is chosen to be much larger than C <br />

,then at<br />

resonance the capacitive reactance of C <br />

will be much higher than that of C <br />

so<br />

that the damping resistor, R <br />

,will appear effectively in parallel with the negative<br />

resistance of the input converter resulting in a Q given by:<br />

Q <br />

R R <br />

L <br />

/C <br />

(8.59)<br />

in which:<br />

R <br />

V <br />

I <br />

1<br />

M<br />

(8.60)<br />

Typically, R <br />

is chosen such that Q <br />

1. Note that Q <br />

cannot be chosen to be<br />

very small simply because as R <br />

gets smaller,then C <br />

begins to appear effectively<br />

in parallel with C <br />

,which in turn gives rise to a new,lower,undamped resonance<br />

formed by C <br />

C <br />

and L <br />

(see Problem 8.7).<br />

Example 8.5 For the buck converter discussed in the previous examples,we<br />

select the input filter inductor to be 86 μH. With the resonant frequency determined<br />

to be f 5.9 kHz,the value of the input filter capacitor is given by:<br />

<br />

1<br />

C <br />

8.46 μF (8.61)<br />

(2π5900)86 10<br />

The smallest value of the negative input resistance of the converter occurs at M <br />

,<br />

so that we have:<br />

R 12 V 1<br />

20.9 Ω (8.62)<br />

2.3 A (0.5)<br />

The value of the damping resistor for the shunt branch is determined from Eq.<br />

(8.59) in which we select Q <br />

1. This yields:<br />

1 R (20.9)<br />

86/8.46 R 2.8 Ω (8.63)<br />

<br />

The value of C <br />

is chosen to be about ten times that of C <br />

:<br />

C <br />

10C <br />

84 μF (8.64)<br />

An OrCAD/Pspice simulation of the actual filter and its frequency response is<br />

shown in Figs. 8.16a and b. The response is seen to be properly damped so that any<br />

transient disturbance in the input voltage will not generate any ringing in the input<br />

filter.<br />

A simulation of the actual input ripple current is shown in Figs 8.17a and b in


383 8.3 The buck converter<br />

Li<br />

86uH<br />

Vin<br />

Rid<br />

2.8<br />

Cid<br />

84.6uF<br />

Ci<br />

8.46uF<br />

Rin<br />

-20.9<br />

0<br />

Figure 8.16<br />

Figure 8.17<br />

which we see that the peak-to-peak ripple current is 10.11 mA,which is very close<br />

to the specified design value of 10 mA.<br />

In this example we have shown that the approximate design equations for the<br />

damping network and for the determination of the input ripple current yield very<br />

accurate results when compared with actual simulations.<br />

<br />

For the series damping branch in Fig. 8.14b,if L <br />

is chosen much larger than L <br />

,


384 PWM switching dc-to-dc converters<br />

Figure 8.17 (cont.)<br />

then,at resonance,R <br />

will effectively appear in series with L <br />

and will counteract<br />

the negative input resistance of the converter. In this case (see Problem 8.8) the<br />

overall Q is given by:<br />

Q <br />

L /C <br />

R <br />

<br />

R <br />

(8.65)<br />

L /C <br />

As in the case of the shunt damping, R <br />

is chosen such that Q <br />

1. Observe that<br />

in this case too it is not possible to design with a much lower Q <br />

by making R <br />

very large because that would effectively create a new,lower,undamped resonance<br />

formed by L <br />

and C <br />

.<br />

Example 8.6 In this example we shall design a series damping branch for the<br />

input filter of the buck converter in Example 8.5. In this case,we chose L about <br />

ten times larger than L so that we have:<br />

<br />

L <br />

10L <br />

860 μH (8.66)<br />

The value of the damping resistor is determined from Eq. (8.65):<br />

1 86/8.46<br />

R <br />

20.9<br />

86/8.46 R 3.67 Ω (8.67)<br />

<br />

An OrCAD/Pspice simulation of this circuit and its frequency response are<br />

shown in Figs. 8.18a and b. In comparison to the response of the shunt damping<br />

network,the peaking seems to be a little higher because this transfer function has a<br />

zero at about 617 Hz and a pole at about 824 Hz,whereas the shunt network has


385 8.3 The buck converter<br />

Li<br />

86uH<br />

Rid<br />

3.67<br />

Lid<br />

860uH<br />

Vin<br />

Ci<br />

8.46uF<br />

Rin<br />

-20.9<br />

0<br />

Figure 8.18<br />

essentially a pole-zero cancellation at about 676 Hz (see Problems 8.7 and 8.8).<br />

A simulation run of the input ripple current yields a peak-to-peak ripple current<br />

of 11.14 mA,which is about 10% higher than the parallel-damped filter in the<br />

previous example. The reason for this slight increase is that,at the switching<br />

frequency,the pulsating current is divided between C and L L instead of C and<br />

<br />

L . (Here we have ignored the resistance of R with respect to the reactance of L at<br />

<br />

the switching frequency.) Since L 10L ,the reactance of their parallel combination<br />

is about 10% smaller than the reactance of L ,which is what accounts for the<br />

<br />

<br />

10% reduction in the ripple attenuation. Since L carries the dc input current,it<br />

<br />

may not be as economical as the shunt damping element for high input currents.<br />

The size and cost of an inductor increases with its inductance and its current<br />

handling capacity.


386 PWM switching dc-to-dc converters<br />

8.4 The boost converter<br />

By rearranging the filter elements around the switches in the buck converter we<br />

obtain different converters with different conversion ratio characteristics. All of<br />

these converters operate on the same basic principle of commutating the inductor<br />

current between the input and output circuits. When the elements of the buck<br />

converter are rearranged as shown in Fig. 8.19,we obtain the boost converter. The<br />

voltage and current waveforms of this converter are shown in Fig. 8.20. In this<br />

Figure 8.19<br />

circuit when S <br />

is turned on during T <br />

,while S <br />

is turned off,the inductor charges<br />

linearly from I <br />

to I <br />

and the output filter capacitor discharges into the load with<br />

a time constant much longer than T <br />

. When S <br />

is turned off and S <br />

is turned on<br />

during T <br />

,the current in the inductor discharges linearly from I <br />

to I <br />

into R <br />

and C. Since the capacitive reactance of C at the switching frequency is much lower<br />

than the load resistance,the ac component of the pulsating current in S <br />

is almost<br />

entirely absorbed by C while the dc component is absorbed by the load R <br />

. From<br />

the current waveforms in Fig. 8.20 we obtain the current conversion ratio:<br />

I <br />

DI <br />

M <br />

I <br />

I <br />

D (8.68)<br />

The voltage conversion ratio for the ideal boost converter follows immediately and<br />

is given by:<br />

M <br />

1 D 1 (8.69)<br />

Hence,in contrast to the buck converter,the output voltage of the boost converter<br />

is always larger than its input voltage.<br />

During the on-time,the inductor current charges up linearly with a slope V <br />

/L<br />

so that the peak-to-peak ripple current shown in Fig. 8.21 is given by:


387 8.4 The boost converter<br />

Figure 8.20<br />

I V <br />

L DT V DD<br />

F L <br />

(8.70)<br />

When I<br />

<br />

is normalized with respect to the average inductor current, I <br />

I <br />

,we<br />

obtain:<br />

δI I V DD<br />

<br />

I I F L V DD<br />

<br />

I F L<br />

<br />

(8.71)<br />

The peak value of the inductor current is given by:<br />

I <br />

I <br />

I <br />

2<br />

(8.72)<br />

Substituting Eqs. (8.68) and (8.70) in Eq. (8.72) we obtain:<br />

I <br />

V <br />

2LF <br />

DD I <br />

D<br />

(8.73)<br />

Hence,for a regulating converter in which V <br />

is a constant, I <br />

depends on I <br />

and D.<br />

In order to design the inductor,we need to know the operating conditions for<br />

which I <br />

is a maximum. Clearly,one of the operating conditions,according to Eq.<br />

Figure 8.21


388 PWM switching dc-to-dc converters<br />

(8.73),is that the load current be at its maximum value. To determine the value of<br />

D which causes I <br />

to be a maximum,we set its derivative with respect to D to zero<br />

and obtain:<br />

I <br />

D 0 (1 2D) 2LF I<br />

<br />

V D 0 (8.74)<br />

<br />

For typical designs,the average inductor current at maximum load is always larger<br />

than half the ripple current through it,so that according to Eqs. (8.72) and (8.73)<br />

we have:<br />

I<br />

V DD I 2LF<br />

D (8.75)<br />

D 2LF D V <br />

It follows that,for typical designs,there is no value of D which satisfies Eq. (8.74),<br />

and the maximum value of I <br />

occurs at D <br />

. Hence,the worst case value of the<br />

design parameter for the inductor,according to Eq. (8.71),is given by:<br />

δ <br />

δI <br />

2 <br />

V <br />

2LF <br />

I<br />

<br />

D <br />

(1 D <br />

) (8.76)<br />

Practical values of δ <br />

range from 0.1 to 1.0. Expressing the duty cycle in terms of<br />

the conversion ratio in Eq. (8.76),we obtain the design equation for the inductor:<br />

L V M 1 1<br />

(8.77)<br />

2I M δ F<br />

<br />

The output voltage ripple can be easily determined from the on-time when the<br />

capacitor is discharging into the load as shown in Fig. 8.22. Since the output time<br />

constant is much shorter than the on-time,we can assume the capacitor discharges<br />

linearly and write:<br />

C ῀v<br />

῀t C V <br />

DT <br />

I <br />

(8.78)<br />

The normalized output voltage ripple follows:<br />

V<br />

I DT<br />

<br />

V V C <br />

(8.79)<br />

Clearly,the capacitor now must be chosen in such a way as to meet the specified<br />

output ripple voltage under worst case conditions which correspond to maximum<br />

load current and maximum duty cycle. Hence we have:<br />

δ V <br />

V <br />

I D<br />

<br />

V F C<br />

<br />

(8.80)


389 8.4 The boost converter<br />

Figure 8.22<br />

Hence the design equation for the capacitor is given by:<br />

C I M 1 1<br />

(8.81)<br />

V M δ F <br />

Equation (8.79) is not very accurate at very light load currents as the current in the<br />

switches (assuming MOSFETs are used for both S and S ) begins to reverse. At<br />

<br />

zero load current Eq. (8.79) suggests that the output ripple voltage is zero,which<br />

certainly is not accurate (see Problem 8.9).<br />

Example 8.7 An OrCAD/Pspice simulation of a practical boost converter is<br />

shown in Fig. 8.23. The converter operates at 100 kHz and has a duty cycle of<br />

D 7/12. The inductor current and the output ripple voltage are shown in Fig.<br />

8.24 at I 0 A,1 A. The ideal output voltage is given by:<br />

<br />

V 5 12 V (8.82)<br />

1 7/12<br />

Since the MOSFETs have a finite resistance when turned on,the output voltage is<br />

slightly less than 12 V at I <br />

1A.<br />

According to Eq. (8.79),the output ripple voltage at full load is given by:<br />

V<br />

<br />

1<br />

(7/12)(10 10)<br />

117 mV (8.83)<br />

50 10<br />

which is in exact agreement with the ripple in Fig. 8.24a. At zero load current,we<br />

need to use the result derived in Problem 8.9:<br />

V<br />

<br />

V <br />

DDT <br />

8LC<br />

(1 7/12)(7/12)(10 10)<br />

12<br />

8(10 10)(50 10)<br />

(8.84)<br />

30 mV


390 PWM switching dc-to-dc converters<br />

L<br />

10uH<br />

M2<br />

IRF045<br />

PARAMETERS:<br />

R_load = 12<br />

5V<br />

Vin<br />

M1<br />

IRF045<br />

V_Dp<br />

C1<br />

50uF<br />

RL<br />

{R_load}<br />

V_D<br />

0<br />

Figure 8.23<br />

Figure 8.24


391 8.4 The boost converter<br />

which is in exact agreement with the ripple in Fig. 8.24a.<br />

<br />

Example 8.8 If a feedback loop is added to the boost converter in the previous<br />

example to maintain the output voltage at 12 V as the input voltage varies from<br />

5 V to 10 V,then the maximum value of the peak current would occur at D and <br />

I 1 A (assuming the specified maximum load current is 1 A). The maximum<br />

<br />

and minimum values of D are given by:<br />

D 1 V 1 5<br />

V 12 0.5833 ⎫<br />

<br />

⎬<br />

(8.85a, b)<br />

D 1 V 1 10<br />

V 12 0.1666 <br />

⎭<br />

According to Eq. (8.73),the maximum peak current is given by:<br />

I V D (1 D ) <br />

2LF <br />

I <br />

12(7/12)(1 7/12)<br />

<br />

2(10 10)(100 10) 1<br />

1 7/12<br />

1 D <br />

(8.86)<br />

This is in agreement with the waveforms shown in Fig. 8.25 in which the<br />

inductor current is shown at D <br />

and D <br />

.<br />

Figure 8.25<br />

If this were an unconventional design,then the maximum specified load current<br />

would have been fairly low,say 60 mA. Also,if the converter had to operate from<br />

an input voltage range 3.5 V V <br />

10 V,then the range of D would have been


392 PWM switching dc-to-dc converters<br />

given by:<br />

0.1666 D 0.708 (8.87)<br />

In this case,Eq. (8.74) would yield the value of D at which the maximum value of I <br />

would occur:<br />

(1 2D) 2LF <br />

V <br />

I<br />

<br />

(1 D) 0 (8.88)<br />

A numerical solution of Eq. (8.88) yields D 0.483. The peak inductor current at<br />

D 0.483 is equal to 1.614 A,whereas at D <br />

0.708 it is equal to 1.445 A,as can<br />

be seen in Fig. 8.26 in which the inductor currents at D <br />

, D <br />

and D 0.483 are<br />

shown.<br />

Figure 8.26<br />

The purpose of this exercise was to demonstrate the use of Eq. (8.74) even<br />

though the difference in the peak currents between the two operating points is not<br />

significant.<br />

<br />

8.5 The buck-boost converter<br />

The converter shown in Fig. 8.27 is called the buck-boost because it is capable of<br />

either stepping up or down the input voltage. When S <br />

is closed and S <br />

is opened<br />

during the on-time,the inductor charges up linearly from I <br />

to I <br />

with a slope<br />

V <br />

/L,while the output capacitor discharges into the load with a slope I <br />

/C. When<br />

S <br />

is opened and S <br />

is closed during T <br />

,the inductor discharges into the output<br />

circuit with a slope V <br />

/L.


393 8.5 The buck-boost converter<br />

Figure 8.27<br />

The voltages and currents of the switches are shown in Fig. 8.28 whence we can<br />

immediately determine:<br />

I <br />

DI <br />

(8.89a, b)<br />

I <br />

DI <br />

⎫<br />

⎬⎭<br />

Figure 8.28<br />

Hence the current conversion ratio is given by:<br />

M <br />

I <br />

I <br />

D<br />

D<br />

(8.90)<br />

The ideal voltage conversion ratio follows immediately:<br />

M <br />

1 M <br />

D D<br />

(8.91)<br />

The output ripple voltage is determined in the same manner as the output ripple<br />

voltage of the boost converter and is given by Eq. (8.79). Substituting Eq. (8.91) in<br />

(8.79),we obtain:


394 PWM switching dc-to-dc converters<br />

V<br />

<br />

I 1 M<br />

<br />

(8.92)<br />

V V F C 1 M <br />

As in the case of the boost converter,this expression is not accurate at very light<br />

load currents (see Problem 8.10).<br />

The output filter capacitor must be chosen to meet the output ripple voltage<br />

specification, δ <br />

,under worst case conditions which,for a converter with a<br />

regulated output voltage,occurs when the load current and the conversion ratio<br />

are at a maximum. Hence,we have from Eq. (8.92):<br />

δ V <br />

V <br />

I 1 M<br />

<br />

(8.93)<br />

V F C 1 M <br />

The peak-to-peak ripple current in the inductor is determined from the on-time<br />

and is given by:<br />

I<br />

<br />

V <br />

DT <br />

L<br />

V <br />

F <br />

L<br />

1<br />

M <br />

1<br />

⎫<br />

⎬<br />

⎭<br />

(8.94a, b)<br />

The average inductor current can be seen to be given by the sum of the average<br />

input and output currents so that when Eq. (8.94) is normalized with respect to the<br />

average inductor current,we obtain:<br />

δI I V 1 1<br />

<br />

I I F L (M 1)<br />

<br />

(8.95)<br />

The peak value of the inductor current is given by:<br />

I <br />

I <br />

I <br />

2<br />

I <br />

(1 M <br />

) V <br />

2F <br />

L<br />

1<br />

M <br />

1<br />

⎫<br />

⎬<br />

⎭<br />

(8.96a, b)<br />

Clearly,one of the operating conditions which maximizes the peak current is the<br />

maximum load current. The other condition is the duty cycle,which can be<br />

determined by setting the derivative of I <br />

with respect to D to zero. This yields:<br />

I <br />

D 0 1 D 2F L<br />

V <br />

/I<br />

<br />

(8.97)<br />

For most typical designs,no value of D satisfies this condition so that the<br />

maximum value of the peak occurs at M<br />

<br />

. Hence we have:


395 8.5 The buck-boost converter<br />

I I (1 M ) V 1<br />

<br />

2F L M 1<br />

<br />

(8.98)<br />

It follows that the worst case design parameter for the inductor is given by:<br />

δ δI <br />

2 V 1 1<br />

<br />

I 2F L (M 1)<br />

<br />

(8.99)<br />

Typical values of δ <br />

range from 0.1 to 1.0. Hence,the design equations for the<br />

values of L and C of the buck-boost converter are given by:<br />

L V <br />

I<br />

<br />

1<br />

2F <br />

δ <br />

1<br />

(M<br />

<br />

1)<br />

C I <br />

V <br />

1<br />

F <br />

δ <br />

⎫<br />

M ⎬⎭<br />

<br />

1 M<br />

<br />

(8.100a, b)<br />

The input current of the buck-boost converter in Fig. 8.27 is pulsating and must<br />

be filtered as shown in Fig. 8.29. The design procedure of the input filter and its<br />

damping elements is the same as that of the buck converter.<br />

Figure 8.29<br />

Example 8.9 The buck-boost converter in Fig. 8.30 generates a 12-V output<br />

from a 5-V source. The load current varies from 0 to 1 A. The output ripple<br />

voltage and the inductor current at three different load currents are shown in Figs.<br />

8.31a and b below.<br />

The peak-to-peak ripple voltage according to Eq. (8.92) is given by:<br />

1 M<br />

V I <br />

F C 1 M <br />

1<br />

I <br />

(100 10)(50 10)<br />

12/5<br />

1 12/5<br />

(8.101)<br />

0.141I <br />

At I <br />

1 A,the peak-to-peak ripple voltage is computed to be 141 mV,which is<br />

very close to the observed value of 143 mV in Fig. 8.31a.AtI <br />

0.5 A,we compute


396 PWM switching dc-to-dc converters<br />

M1<br />

IRF045<br />

M2<br />

IRF045<br />

PARAMETERS:<br />

R_load = 12<br />

V_D<br />

V_Dp<br />

5V<br />

Vin<br />

L<br />

10uH<br />

C1<br />

50uF<br />

RL<br />

{R_load}<br />

0<br />

Figure 8.30<br />

Figure 8.31<br />

V<br />

<br />

70 mV,while the observed value is 76 mV. At no load current,we can no<br />

longer use Eq. (8.92) and we must use Eq. (8.278b),see Problem 8.10,instead. This<br />

yields:<br />

V V T<br />

<br />

8LC<br />

<br />

1 M


397 8.6 The Cuk converter<br />

12 10 10<br />

<br />

8(10 10)(50 10)1 12/5 (8.102)<br />

26 mV<br />

which is in close agreement with the 25 mV seen in Fig. 8.31a.<br />

Note that the output voltage in Fig. 8.31a changes slightly as a function of the<br />

load current because the converter is not regulated and the MOSFETs have a<br />

resistance of 15 mΩ when turned on with an 8-V gate-drive signal.<br />

<br />

8.6 The Cuk converter<br />

This converter,named after its inventor Slobodan Cuk — (pronounced chook),is<br />

shown in Fig. 8.32. The input loop,consisting of V <br />

, L <br />

and S <br />

,looks like a boost<br />

converter while its output loop,consisting of S <br />

, L <br />

and V <br />

,looks like a buck<br />

converter. The switching voltage and current waveforms are shown in Fig. 8.33.<br />

Since the dc current in the capacitor C <br />

must be zero,we have:<br />

I <br />

D I <br />

D (8.103)<br />

It follows that the current conversion ratio is given by:<br />

M D<br />

D<br />

The ideal voltage conversion ratio follows:<br />

M D D<br />

(8.104)<br />

(8.105)<br />

The output voltage,as in the case of the buck-boost converter,is inverted with<br />

respect to the input. An isolated output can be easily obtained by introducing a<br />

transformer between S <br />

and S <br />

(see Problem 8.11).<br />

Figure 8.32


398 PWM switching dc-to-dc converters<br />

Since the dc voltage across each of L <br />

and L <br />

is zero,as we go around the outer<br />

loop containing V <br />

, V <br />

, L <br />

, L <br />

and C <br />

,we find that the dc voltage across C <br />

is equal<br />

to V <br />

V <br />

. It follows that the voltage waveforms across L <br />

and L <br />

,excluding the<br />

ripple component of the voltages across C and C <br />

,are essentially identical,as<br />

shown in Fig. 8.33. The peak-to-peak ripple current in L <br />

and L <br />

can be determined<br />

from the on-time, DT <br />

:<br />

I<br />

<br />

V <br />

DT <br />

L <br />

; i 1,2<br />

V <br />

F <br />

L <br />

1<br />

M <br />

1<br />

⎫<br />

⎬<br />

⎭<br />

(8.106a, b)<br />

An important feature of this converter is that L <br />

and L <br />

can be coupled as shown<br />

in Fig. 8.34 and the ripple current in either inductor can essentially be reduced to<br />

zero by adjusting the coupling coefficient. This can be shown by writing the<br />

equations for v <br />

(t) and v <br />

(t) in Fig. 8.34:<br />

Figure 8.33


399 8.6 The Cuk converter<br />

v <br />

(t) L <br />

di <br />

dt M di <br />

dt<br />

di<br />

v (t) L <br />

dt M di <br />

dt<br />

⎫<br />

⎬<br />

⎭<br />

(8.107a, b)<br />

in which M is the mutual inductance between the windings. In the Cuk converter,<br />

if we ignore the ripple voltages on C <br />

and C,then v <br />

and v <br />

are identical so that we<br />

have from Eq. (8.107):<br />

(L <br />

M) di <br />

dt (L M) di <br />

dt 0 (8.108)<br />

We can deduce from this equation that:<br />

L <br />

M 0 di <br />

dt 0 (8.109a, b)<br />

L <br />

M 0 di <br />

dt 0 ⎫<br />

⎬⎭<br />

Figure 8.34<br />

The disappearance of the derivative of the current implies that the current ripple is<br />

reduced to zero. Hence,if the mutual inductance is set according to Eq. (8.109a),<br />

then the ripple current in L <br />

is reduced to zero. This can be expressed in terms of<br />

the coupling coefficient:<br />

L <br />

M 0 L <br />

kL <br />

L <br />

0 k L <br />

L <br />

1 (8.110)<br />

This result states that if we want to null the ripple current in L <br />

,we must make L <br />

smaller than L <br />

so that we can adjust k to be equal to L <br />

/L <br />

. The coupling<br />

coefficient can be set by adjusting the air gap between the two cores. Similarly,we<br />

see from Eq. (8.109) that the ripple current in L <br />

can be reduced to zero if we set


400 PWM switching dc-to-dc converters<br />

k L <br />

/L <br />

,in which case L <br />

has to be made smaller than L <br />

.<br />

In an isolated Cuk converter, it is possible to reduce the ripple currents in both<br />

inductors to zero by coupling them to the isolation transformer. In reality,the<br />

ripple current is not exactly reduced to zero but is highly reduced. The reason for<br />

this is that the voltage across the inductors are not exactly identical because of the<br />

ripple voltage across the capacitors.<br />

8.7 The PWM switch and its invariant terminal characteristics<br />

The active and passive switches in the four converters discussed earlier can be<br />

lumped together in a single-pole—double-throw switch called the PWM switch, as<br />

shown in Fig. 8.35. The terminals designations a, p and c refer to active, passive and<br />

common,respectively. The common terminal is designated as such simply because<br />

it is common to both switches. All of the four converters discussed earlier are<br />

redrawn in Fig. 8.36 with the PWM switch identified as a three-terminal switching<br />

device. The important thing to see in this figure is that all the elements outside the<br />

PWM switch are linear passive elements which provide filtering,whereas the<br />

PWM switch is the only nonlinear element which performs the dc-to-dc conversion<br />

process. We shall capitalize on this point and show that the conversion<br />

process in the PWM switch is independent of the particular converter in which it<br />

occurs and can be described by a set of invariant equations. This invariance will<br />

lead to a very simple model of the PWM switch which can be used towards the<br />

determination of the dynamics of any (two switched-state) PWM converter.<br />

Figure 8.35<br />

We begin with a qualitative study of the invariance of the terminal voltages and<br />

currents of the PWM switch. The active terminal current is the current in the<br />

active switch S <br />

which has the invariant shape shown in Fig. 8.37a. By invariance<br />

we simply mean that one cannot tell which converter the active switch is in by<br />

looking at its current waveform. The common terminal current is the same as the<br />

total switched inductive current in the converter and has the invariant shape shown<br />

in Fig. 8.37b. For example in the Cuk converter,the current in the common<br />

terminal is the sum of the currents in the two switched inductors L <br />

and L <br />

. The<br />

inductor in the input filter of a buck converter is an example of an inductor which is


401 8.7 The PWM switch: invariant terminal characteristics<br />

Figure 8.36<br />

not switched. Hence,in the buck converter with an input filter,the common<br />

terminal current is the same as the current in the output filter inductor only and<br />

not the sum of the currents in the input and output filter inductors. Next we<br />

examine the port voltages of the PWM switch. Ignoring ripple voltages,the<br />

voltage across port ap in all the converters is a dc voltage while the voltage across<br />

port cp is a pulsating voltage,as shown in Figs. 8.37c and d. We can now write the<br />

following set of invariant equations for the terminal currents and port voltages of<br />

the PWM switch:<br />

i<br />

(t) d (t)i <br />

(t) (8.111a, b)<br />

v<br />

(t) d (t)v (t) ⎫<br />

⎬⎭<br />

Figure 8.37<br />

in which d (t) is the switching function defined in Eq. (8.16). These equations<br />

<br />

describe the entire switching action responsible for the dc-to-dc conversion process<br />

in a converter. By taking the time average of Eqs. (8.111a,b) we obtain the


402 PWM switching dc-to-dc converters<br />

following invariant average equations for the PWM switch:<br />

i <br />

di <br />

(8.112a, b)<br />

v <br />

dv <br />

⎫<br />

⎬⎭<br />

These are the invariant equations that describe the dc-to-dc conversion function of<br />

any two switched-state PWM converter in continuous conduction mode.<br />

If we allow for small-signal variations in the duty-ratio function and other<br />

voltages and currents in the converter about a steady-state operating point,then<br />

the propagation of these variations through the PWM switch can be determined<br />

by taking the differentials in Eqs. (8.112a, b):<br />

î Diˆ I d ⎫<br />

⎬⎭<br />

(8.113a, b)<br />

vˆ<br />

Dvˆ V d<br />

in which D, I <br />

and V <br />

are the steady-state dc operating points of the PWM switch<br />

which satisfy Eqs. (8.112a, b),i.e. I <br />

DI <br />

and V <br />

DV <br />

.<br />

8.8 Average large-signal and small-signal equivalent circuit models of<br />

the PWM switch<br />

An equivalent circuit model for Eqs. (8.112a, b) can most easily be constructed<br />

using dependent sources,as shown in Fig. 8.38. This is a nonlinear average model<br />

because it involves products of the time functions d(t)i (t) and d(t)v (t). This is also<br />

<br />

a large-signal model because it places no restriction on the magnitude of variations<br />

in the time functions. For small-signal variations,we can use the linearized<br />

small-signal equations in (8.113a, b) to construct the equivalent circuit model in<br />

Fig. 8.39a or b. In Fig. 8.39b the dependent sources Dî and Dvˆ have been replaced<br />

<br />

with a 1: D transformer and the control source d V has been moved from the<br />

<br />

common terminal side to the active terminal side. Note that the small-signal<br />

sources are evaluated at the dc operating point. Under steady-state conditions,the<br />

large- and small-signal models reduce to the same transformer model shown in<br />

Fig. 8.40.<br />

The model of the PWM switch is used very much in the same way as the<br />

Figure 8.38


403 8.8 Large- and small-signal equivalent circuit models<br />

Figure 8.39<br />

Figure 8.40<br />

equivalent circuit model of a transistor or a vacuum tube. First,the device is<br />

replaced point-by-point with its equivalent circuit model and a dc analysis is<br />

carried out to determine the operating point (D, I , V ). As usual,in a dc analysis<br />

<br />

all reactive elements and small-signal sources vanish. Second,the small-signal<br />

analysis is carried out using the small-signal model of the PWM switch evaluated<br />

at the dc operating point. As usual,in an ac analysis,all dc sources vanish. In a<br />

small-signal analysis,one of the most commonly determined transfer functions is<br />

the control-to-output transfer function:<br />

H (s) vˆ (s)<br />

(8.114)<br />

d (s)<br />

This transfer function is necessary for the design of a stable feedback loop for a<br />

converter whose output voltage is regulated. Other transfer functions of interest<br />

are the line-to-output transfer function and the input and output impedances. The<br />

line-to-output transfer function relates variations in the output voltage to variations<br />

in the input voltage:<br />

H (s) vˆ (s)<br />

vˆ<br />

(s) (8.115)


404 PWM switching dc-to-dc converters<br />

Ideally,for a regulating converter H <br />

(s) must be zero because the input voltage is<br />

simply a disturbance in the closed-loop system which the feedback circuit must<br />

attenuate and prevent from reaching the output.<br />

Example 8.10<br />

For the buck-boost converter in Fig. 8.41,determine:<br />

(i) The voltage conversion ratio.<br />

(ii) The control-to-output transfer function.<br />

(iii) The line-to-output transfer function.<br />

(iv) The input admittance.<br />

(v) The output impedance.<br />

Figure 8.41<br />

The complete dc and small-signal equivalent circuit model of the buck-boost<br />

converter is obtained by replacing the PWM switch with its equivalent circuit<br />

model as shown in Fig. 8.42. To determine the conversion ratio,we perform a dc<br />

analysis by setting all the small-signal sources to zero,shorting the inductors and<br />

opening all the capacitors,as shown in Fig. 8.43.<br />

In Fig. 8.43,we can see that the voltage across port ap is simply V <br />

/D so that<br />

writing KVL around the outer loop we obtain:<br />

V V D V V 1 D<br />

D<br />

V D<br />

D<br />

(8.116)<br />

The voltage conversion ratio follows immediately:<br />

M <br />

V <br />

V <br />

D D<br />

(8.117)<br />

Hence,we see how the invariant conversion function 1: D of the PWM switch can<br />

produce the conversion ratio D/D of the buck-boost converter by a simple<br />

rotation of the PWM switch. Before going to the small-signal analysis,we should<br />

determine the dc operating point of the PWM switch. The quiescent commonterminal<br />

current is given by:<br />

I <br />

I <br />

I <br />

I 1 1 M <br />

I 1 D D I <br />

D<br />

(8.118)


405 8.8 Large- and small-signal equivalent circuit models<br />

Figure 8.42<br />

Figure 8.43<br />

This establishes I <br />

in terms of the output current of the converter,which can be<br />

expressed in several different convenient forms using the results of the dc analysis:<br />

I I D V /R<br />

D<br />

V <br />

R<br />

D<br />

D<br />

(8.119)<br />

The quiescent port voltage V <br />

is readily seen to be V <br />

/D,which can be expressed in<br />

terms of the input voltage:<br />

V V D V <br />

(8.120)<br />

D<br />

All of the small-signal transfer functions have the same denominator which can<br />

be determined by setting all the independent excitations in Fig. 8.42 to zero as<br />

shown in Fig. 8.44a. The 2-EET can now be applied by taking out the inductor and<br />

the capacitor as shown in the reference circuit in Fig. 8.44b. The following port<br />

resistances required for the 2-EET are determined in reference to Fig. 8.45:<br />

R DR<br />

R 0<br />

(8.121a—c)<br />

R<br />

R<br />

⎫<br />

⎬⎭


406 PWM switching dc-to-dc converters<br />

Hence,the denominator is given by:<br />

D(s) 1 sL<br />

sL<br />

sCR <br />

R R sCR <br />

L LC<br />

1 s s<br />

DR D<br />

(8.122)<br />

Figure 8.44<br />

Figure 8.45


407 8.8 Large- and small-signal equivalent circuit models<br />

The line-to-output transfer function and the input admittance are determined<br />

by retaining only the small-signal source vˆ in the complete equivalent circuit<br />

<br />

model in Fig. 8.42 and examining the transform circuit for nulls in the response of<br />

the particular transfer function. For the line-to-output transfer function we see in<br />

Fig. 8.46 that there are no conditions in the transform circuit which result in a null<br />

in the response vˆ (s) so that the line-to-output transfer function is given by:<br />

<br />

H (s) vˆ (s)<br />

vˆ<br />

(s) M 1<br />

D(s) D 1<br />

(8.123)<br />

D L LC<br />

1 s s<br />

DR D<br />

in which M <br />

is clearly the low-frequency asymptote of H <br />

(s).<br />

The input admittance function is given by:<br />

G (s) iˆ (s)<br />

vˆ<br />

(s) G N (s) (8.124)<br />

D(s)<br />

in which G is the low-frequency asymptote of the input conductance discussed<br />

<br />

earlier and shown in Fig. 8.3. Hence we have:<br />

G <br />

M <br />

R D D 1 R<br />

(8.125)<br />

The numerator N (s) corresponds to conditions of the transform circuit that<br />

<br />

results in a null in the response î (s). Referring to Fig. 8.46,we see that a null in<br />

<br />

either iˆ<br />

(s) orî (s) would result in a null in î (s) simply because when one of the<br />

<br />

terminal currents of the 1: D transformer vanishes,the other two vanish as well.<br />

The impedance encountered by î (s) is: <br />

R<br />

1 sCR<br />

(8.126)<br />

Figure 8.46


408 PWM switching dc-to-dc converters<br />

The pole at s 1/RC corresponds to an ‘‘open-circuit’’ in the transform domain,which<br />

results in a null in î (s) and,hence,in iˆ<br />

(s). It follows that s 1/RC<br />

is a zero of G (s) and that N (s) 1 sCR. Hence,the input admittance is given<br />

<br />

<br />

by:<br />

G (s) D 1 1 sCR<br />

D R L LC<br />

1 s s<br />

DR D<br />

(8.127)<br />

The impedance encountered by iˆ (s) issL,which has no poles and hence does not<br />

<br />

contribute a zero to iˆ<br />

(s).<br />

The output impedance is determined from the equivalent circuit shown in Fig.<br />

8.47,whence we see that a zero of the impedance in the common terminal branch<br />

would cause the terminals a and c to be at the same potential,which in turn would<br />

require that the voltages on both sides of the 1: D transformer be the same,which<br />

could only happen if vˆ (s) 0. The impedance connected to terminal c is sL,which<br />

<br />

has a zero at the origin,so that the output impedance must have a zero at the<br />

origin too. Hence we have:<br />

Z <br />

(s) vˆ (s)<br />

î <br />

(s) sLk<br />

D(s)<br />

(8.128)<br />

in which k is a constant,which can be determined by examining the circuit. It can<br />

be seen from Fig. 8.47 that at high frequencies we have:<br />

lim Z (s) 1<br />

(8.129)<br />

sC<br />

<br />

Substituting this result in Eq. (8.128),we obtain k 1/D,and the output impedance<br />

can be written as:<br />

sL/D<br />

Z (s) L LC<br />

1 s S<br />

DR D<br />

(8.130)<br />

Figure 8.47


409 8.8 Large- and small-signal equivalent circuit models<br />

Finally,we determine the control-to-control transfer function by retaining the<br />

control sources as shown in Fig. 8.48. This transfer function can be written as:<br />

H (s) vˆ (s)<br />

d (s) H N (s) <br />

D(s)<br />

(8.131)<br />

The low-frequency asymptote, H <br />

,is simply the derivative of the output voltage<br />

with respect to the duty ratio and is given by:<br />

H <br />

dV <br />

dD V <br />

D (D)<br />

D<br />

V <br />

D<br />

(8.132)<br />

The numerator, N (s),is determined by examining the transform circuit for a null<br />

<br />

in the output voltage. This is shown in Fig. 8.49 in which we see that the only way<br />

to have a null in vˆ (s) is to have a null in iˆ<br />

(s). With vˆ (s) î (s) 0,from Fig. 8.49<br />

<br />

we have:<br />

î (s) iˆ (s) ⎫<br />

⎬⎭<br />

(8.133a, b)<br />

vˆ<br />

(s) 0<br />

Figure 8.48<br />

Figure 8.49


410 PWM switching dc-to-dc converters<br />

Hence:<br />

î (s)sL <br />

D<br />

V <br />

D d ⎬<br />

(8.134a, b)<br />

Dî I d î ⎫<br />

Solving these we obtain:<br />

1 s L D<br />

⎭<br />

I 0 N (s) 1 s L I <br />

(8.135)<br />

V D V <br />

Substituting for I <br />

and V <br />

from the operating point determined earlier in Eqs.<br />

(8.119) and (8.120),we obtain:<br />

N <br />

(s) 1 s L D<br />

I <br />

D<br />

D<br />

V <br />

(8.136a, b)<br />

1 s L R<br />

D<br />

D<br />

Hence,the control-to-output transfer function has a RHP zero and is given by:<br />

H <br />

(s) V <br />

D<br />

1 s L R<br />

D<br />

D<br />

(8.137)<br />

L LC<br />

1 s s<br />

DR D<br />

The presence of the RHP zero in H (s) above implies that the output voltage<br />

<br />

momentarily dips before rising when the duty cycle is increased abruptly (step<br />

function). The physical explanation for this is that an abrupt increase in the duty<br />

cycle d causes an abrupt decrease in d,which in turn causes an initial decrease in<br />

the average terminal current i (t) because the average inductor current cannot<br />

<br />

reach its higher steady-state value instantaneously. It is this momentary decrease<br />

in i (t) that causes the initial dip in the output voltage. In fact,we can use this<br />

<br />

physical explanation to determine the RHP zero as follows. Let us assume that the<br />

RHP zero in Eq. (8.137) is ω so that its high-frequency response is given by:<br />

<br />

H <br />

(s) V <br />

D<br />

s/ω <br />

s LC<br />

D<br />

<br />

V <br />

sω LC <br />

(8.138)<br />

The initial response to a step increase, ῀,in the duty cycle is then given by:<br />

vˆ<br />

<br />

(s) d (s)<br />

V<br />

<br />

sω LC ῀ V <br />

s sω LC<br />

<br />

(8.139)


411 8.9 The PWM switch in other converter topologies<br />

Taking the inverse Laplace transform,we have:<br />

vˆ<br />

(t) ῀ V <br />

ω <br />

LC t (8.140)<br />

Next,we look at the circuit to determine the initial response to a sudden increase<br />

in the duty cycle by an amount We can see from Fig. 8.50 that the passive<br />

῀.<br />

terminal current i (t) for the first few cycles experiences a step reduction in its<br />

<br />

average value by an amount:<br />

I<br />

δi <br />

῀ D<br />

(8.141)<br />

Figure 8.50<br />

This sudden reduction in the average current is absorbed by the output capacitor<br />

so that the change in the output voltage is given by:<br />

C dv <br />

dt ῀<br />

I <br />

D vˆ I<br />

(t) ῀ <br />

C D t (8.142)<br />

Comparing Eqs. (8.140) and (8.142),we determine the RHP zero:<br />

ω <br />

DV <br />

I <br />

L DV <br />

DI <br />

L DR<br />

DL<br />

which is the same as the RHP in Eq. (8.137).<br />

(8.143)<br />

<br />

8.9 The PWM switch in other converter topologies<br />

The three different types of conversion ratios we have seen so far, D,1/D and D/D,<br />

were generated by the three possible orientations of the PWM switch. It is possible<br />

to generate other types of conversion ratios by arranging the switches differently,<br />

using tapped inductors or inverting transformers,and using more switches. In all<br />

such converters,the PWM switch can be identified after a few simple circuit<br />

manipulations. In this section,we shall consider four such converters which cover<br />

most known types of basic topological variations.


412 PWM switching dc-to-dc converters<br />

Any of the basic converters discussed earlier can be modified by tapping the<br />

inductor and connecting one of the two switches to the tap point. The two<br />

variations of the tapped buck converter are shown in Figs. 8.51a, b.<br />

Figure 8.51<br />

The PWM switch cannot be identified directly in these converters because the<br />

common terminal,through which the inductive current flows,is lost. Since S and <br />

V are in series,one may interchange their positions and establish a common point<br />

<br />

between S and S and incorrectly identify the PWM switch. The mistake here is<br />

<br />

that the current through this common point is i (t),which is not a purely inductive<br />

<br />

current and has the shape shown in Figs. 8.51a,b. Immediately we recognize that<br />

the tapped inductor in these converters is actually acting as an auto-transformer so<br />

that the current i is actually a winding current rather than a magnetizing or<br />

<br />

inductive current. In order to recover the inductive current,we replace the tapped<br />

inductor with an untapped inductor L and an ideal transformer with the same<br />

turn-ratio as the tapped inductor as shown in Fig. 8.52a. The energy stored in L is<br />

the inductive energy of the converter and the current in L is the inductive current<br />

in the converter. The PWM switch can now be identified by moving S to the <br />

opposite side of the ideal transformer as shown in Fig. 8.52b. Now,the common<br />

terminal between S and S clearly carries a purely inductive current. The dc and<br />

<br />

small-signal characteristics can be determined by replacing the PWM switch with<br />

its equivalent circuit model as explained in the following example.<br />

Example 8.11 The voltage conversion ratio of the tapped buck converter is<br />

determined by replacing the PWM switch with its dc model as shown in Fig. 8.53.<br />

By applying KVL around the loop shown,we obtain:


413 8.9 The PWM switch in other converter topologies<br />

Figure 8.52<br />

V <br />

V <br />

nD V <br />

n V <br />

(8.144)<br />

from which the voltage conversion ratio is obtained:<br />

M 1<br />

<br />

1 D<br />

nD<br />

(8.145)<br />

The operating point of the PWM switch is given by:<br />

V V nD V <br />

nD D<br />

I I D M I <br />

D<br />

⎫<br />

⎬<br />

⎭<br />

(8.146a, b)<br />

The advantage of tapping the inductor can be immediately seen from Eq. (8.145)<br />

in which we see that by letting n 1 we can obtain large step-down conversion<br />

Figure 8.53


414 PWM switching dc-to-dc converters<br />

ratios without making the duty cycle too small. For example,we can convert 120<br />

to 5 V by making D 0.25 and n 3/23.<br />

The control-to-output transfer is obtained by replacing the PWM switch with<br />

its small-signal equivalent circuit model as shown in Fig. 8.54,in which the input<br />

dc voltage is set to signal ground. This transfer function is given (see Problem 8.12)<br />

by:<br />

1 s ω<br />

H (s) H <br />

<br />

1 s<br />

ω Q s<br />

(8.147)<br />

ω <br />

in which:<br />

H <br />

V (nD D)<br />

ω DR 1<br />

ML<br />

n 1 <br />

ω <br />

D M <br />

1<br />

LC<br />

Q R<br />

ω <br />

L D M <br />

<br />

⎫<br />

⎬<br />

⎭<br />

(8.148)<br />

Figure 8.54<br />

Note that for n 1,the zero is in the LHP,while for n 1,zero is the RHP. The<br />

reason for this is the same as that for the buck-boost converter given earlier (see<br />

Problem 8.12).<br />

<br />

Another topological variation is shown in Fig. 8.55,in which an inverting<br />

transformer is used. This converter,sometimes referred to as the Watkins—<br />

Johnson converter,is analyzed in the same way as the tapped buck converter.<br />

This is shown in Fig. 8.56,in which the inverting transformer is replaced with its


415 8.9 The PWM switch in other converter topologies<br />

equivalent circuit model and S <br />

is moved to the N <br />

-side of the transformer in order<br />

to identify the PWM switch.<br />

The complete equivalent circuit is the same as that of the tapped buck converter<br />

except for the 1: n transformer,which in this case is inverting. It follows that the<br />

voltage conversion ratio is the same as that of the tapped buck converter given in<br />

Eq. (8.145) with n replaced by n:<br />

M <br />

1<br />

1 D<br />

nD<br />

(8.149)<br />

Figure 8.55<br />

Figure 8.56<br />

A plot of M <br />

for n 1 is shown in Fig. 8.57,in which we notice that not only the<br />

conversion ratio becomes singular at D 0.5 but also the polarity of the output<br />

voltage changes. It is relatively easy to show that M <br />

becomes zero,and not<br />

infinite,at D 0.5,if the slightest parasitic resistance is included in the circuit (see<br />

Problem 8.13). By interchanging the source and load,another variation of this<br />

converter can be obtained,as shown in Fig. 8.58,whose conversion ratio monotonically<br />

increases from negative to positive values passing through zero at<br />

D 0.5 (see Problem 8.14).<br />

By rearranging the switches in a fourth-order converter,such as the Cuk<br />

converter,one can obtain new converters such as the one shown in Fig. 8.59a. In<br />

such a converter,the PWM switch cannot be identified immediately,but a simple<br />

circuit transformation can do the trick. The idea,of course,is to move one of the<br />

switches without altering the operation of the circuit. This is shown in Fig. 8.59b in


416 PWM switching dc-to-dc converters<br />

Figure 8.57<br />

Figure 8.58<br />

Figure 8.59


417 8.9 The PWM switch in other converter topologies<br />

which S <br />

is lifted from the input side and brought to its new position while<br />

maintaining the same potential difference across it with the help of the dependent<br />

source V <br />

. To preserve the input current,the dependent current source I <br />

is<br />

introduced. The PWM switch is identified in Fig. 8.59c simply by interchanging<br />

the positions of S <br />

and v <br />

. The voltage conversion ratio is determined by replacing<br />

the PWM switch with its dc model as shown in Fig. 8.60 in which,going around<br />

the outer loop,we have:<br />

V V V V V (8.150)<br />

D <br />

It follows that the conversion ratio is given by:<br />

M <br />

1 2D<br />

D<br />

(8.151)<br />

A plot of M <br />

is shown in Fig. 8.61,which shows that the polarity of the output<br />

voltage changes as the duty cycle is increased beyond 0.5.<br />

Figure 8.59 (cont.)<br />

Figure 8.60<br />

It is possible to cascade any two basic converters to obtain an ideal conversion<br />

ratio which has a quadratic dependence on the duty cycle. Furthermore,it is<br />

possible to rearrange the switches in a cascaded converter in such a way to drive<br />

only a single active switch instead of two. The formal synthesis procedure of such<br />

converters has been reported by Maksimovich and Cuk and one such converter is<br />

shown in Fig. 8.62. In this converter, D <br />

turns on in synchronism with the main<br />

active switch S <br />

during T <br />

,while D <br />

and D <br />

are turned off. During T off<br />

, D <br />

turns


418 PWM switching dc-to-dc converters<br />

Figure 8.61<br />

off in synchronism with S <br />

,while D <br />

and D <br />

are turned on together. For purposes<br />

of analysis in continuous conduction mode,the nature of these switches is immaterial.<br />

Our aim is to analyze this converter using the model of the PWM switch,<br />

which clearly cannot be identified directly. Since the PWM switch is applicable to<br />

all converters that are switched between two states,all we need to know are the<br />

two states of the converter during T <br />

and T off<br />

. These are shown in Fig. 8.63a. In<br />

Figure 8.62<br />

Fig. 8.63b,the on-state is redrawn by separating the L <br />

and L <br />

loops using the<br />

dependent sources V <br />

and I <br />

. The purpose of I <br />

in shunt with V <br />

is to preserve<br />

the input current I <br />

. The off-state is redrawn simply by interchanging the positions<br />

of L <br />

and C <br />

. We can now see that the on- and off-states in Fig. 8.63b correspond<br />

to the operation of two buck converters connected in cascode as shown in Fig.<br />

8.63c. The PWM switch in each converter is clearly identified and the complete dc<br />

and small-signal equivalent circuit model is shown in Fig. 8.64.<br />

Example 8.12 To determine the voltage conversion ratio of the converter in Fig.<br />

8.62 we set all the small-signal sources to zero,short the inductors,and open the<br />

capacitors in the equivalent circuit in Fig. 8.64. This yields the circuit in Fig. 8.65,<br />

whence we have for the first PWM switch:


419 8.9 The PWM switch in other converter topologies<br />

Figure 8.63<br />

Figure 8.64


420 PWM switching dc-to-dc converters<br />

V DV (8.152)<br />

<br />

For the second PWM switch we have:<br />

V V V V (DV ) V (1 D) (8.153)<br />

<br />

The output voltage is given by:<br />

V V V DV V (8.154)<br />

<br />

Substituting Eqs. (8.152) and (8.153) in (8.154),we obtain:<br />

V DV (1 D) DV DV (8.155)<br />

<br />

Hence,the voltage conversion ratio is given by:<br />

M D (8.156)<br />

<br />

Figure 8.65<br />

The dc operating point of each PWM switch is determined before performing<br />

the small-signal analysis. For the first and second PWM switches we have:<br />

V V <br />

I I DI DI <br />

V V (1 D)<br />

<br />

I <br />

V <br />

R DV <br />

R<br />

⎫<br />

⎬<br />

⎭<br />

The control-to-output transfer function has the following form:<br />

(8.157a—d)<br />

H (s) vˆ (s)<br />

d (s) H N (s) <br />

D(s)<br />

(8.158)<br />

in which H <br />

is the low-frequency asymptote and is given by:


421 8.9 The PWM switch in other converter topologies<br />

H <br />

dV <br />

dD 2DV <br />

(8.159)<br />

The denominator is obtained by the application of the 4-EET to the reference<br />

circuit in Fig. 8.66,whence we have by inspection:<br />

R R 0 ⎫<br />

⎬<br />

R R ⎭<br />

(8.160a, b)<br />

Figure 8.66<br />

From Fig. 8.67 we have:<br />

R R D<br />

(8.160c)<br />

Since L <br />

is connected across port (4) and L <br />

is connected across port (3),we shall<br />

renumber them after their port numbers to make the writing of the terms in the<br />

4-EET easier. Hence,we shall temporarily reassign L <br />

and L <br />

:<br />

L <br />

L <br />

; L <br />

L <br />

The fourth-order denominator is given by:<br />

D(s) 1 a <br />

s a <br />

sa <br />

sa <br />

s (8.161)<br />

Figure 8.67


422 PWM switching dc-to-dc converters<br />

Substituting for R in the coefficient a <br />

,we obtain:<br />

a <br />

RC <br />

RC <br />

L <br />

R L <br />

R<br />

L DL <br />

R<br />

(8.162)<br />

Since the reference circuit is almost purely reactive,we should expect indeterminate<br />

forms in the higher-order coefficients. We shall remove these indeterminate<br />

forms by changing the order of the ports. The coefficient a <br />

is given by:<br />

a RC R<br />

C RC L L RC <br />

R R<br />

<br />

L L<br />

RC RC <br />

R R<br />

<br />

By inspection of Fig. 8.66,we have:<br />

L <br />

R<br />

L <br />

R<br />

<br />

(8.163)<br />

R<br />

R R R 0<br />

⎫<br />

R<br />

<br />

⎬⎭<br />

(8.164a—c)<br />

R<br />

R<br />

It follows that the first two terms and the last term in the expression of a are all <br />

zero and the remaining terms in the middle have an indeterminacy of the form 0/0,<br />

which can easily be removed by changing the order in which the ports are taken:<br />

a <br />

L <br />

R R C L <br />

R R C L <br />

R R C <br />

(8.165)<br />

Once again by inspecting Fig. 8.66,we have:<br />

⎫<br />

⎬⎭<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

Substituting these in Eq. (8.165),we obtain:<br />

(8.166a—c)<br />

a <br />

L <br />

C <br />

(L <br />

DL <br />

)C <br />

(8.167)<br />

The coefficient a <br />

is given by:<br />

a RC R<br />

C L RC R<br />

R C L <br />

R


423 8.9 The PWM switch in other converter topologies<br />

RC <br />

L <br />

R<br />

<br />

L <br />

R<br />

<br />

RC <br />

L <br />

R<br />

<br />

L <br />

R<br />

<br />

in which we can determine the following by inspection:<br />

(8.168)<br />

R<br />

R R 0<br />

R<br />

(8.169)<br />

<br />

The indeterminacy in the first term of a is removed by changing the order of the<br />

<br />

ports from 1,2,3 to 1,3,2. Using the fact that R 0,we obtain:<br />

<br />

RC R C L L RC R<br />

R R C 0 (8.170)<br />

<br />

The indeterminacy in the second term of a is removed by changing the order of<br />

<br />

the ports from 1,2,4 to 4,1,2. Using the fact that R<br />

0:<br />

RC R C L L <br />

R R R C R C 0 (8.171)<br />

<br />

In the third term of a ,the indeterminacy is removed by changing the order from 1,<br />

<br />

3,4 to 4,1,3. Using the fact that R R,we obtain:<br />

<br />

L L<br />

RC L <br />

R R R R<br />

<br />

C <br />

L L L C <br />

R R<br />

<br />

(8.172)<br />

In the last term of a ,the indeterminacy is removed by changing the order from 2,<br />

<br />

3,4 to 3,2,4. Using the fact that R<br />

:<br />

L L<br />

RC L <br />

R R R R C L 0 (8.173)<br />

R<br />

<br />

<br />

Hence, a is given by:<br />

<br />

a <br />

L <br />

C <br />

L <br />

R<br />

(8.174)<br />

Finally,we obtain a <br />

by continuing the order in a <br />

:<br />

a <br />

L <br />

R R<br />

C <br />

L R<br />

R C L C L <br />

R RC <br />

<br />

(8.175)<br />

Substituting for a <br />

in Eq. (8.161) and reverting the notation to L <br />

and L <br />

from L <br />

and L <br />

,we obtain the denominator:<br />

D(s) 1 s L DL s[L C (C DC )L ]<br />

R


424 PWM switching dc-to-dc converters<br />

sL <br />

C <br />

L <br />

R sL L C C <br />

(8.176)<br />

This denominator can be factored into the product of two quadratics:<br />

D(s) 1 s s<br />

ω Q ω <br />

1 s s<br />

(8.177)<br />

ω Q ω <br />

<br />

whose frequencies and damping factors are approximately given by:<br />

1<br />

ω L C (C DC )L <br />

R<br />

Q ω (L DL )<br />

<br />

ω 1 1<br />

<br />

L C L C C <br />

D<br />

Q <br />

RC ω C L <br />

ω 1 ω <br />

(8.178)<br />

The approximations for ω and ω are fairly good when they are separated by a<br />

<br />

factor of 2.5 or better. The second Q-factor, Q ,generally is very high and the<br />

<br />

accuracy of its approximation above is only moderate. In a real converter, Q is a <br />

strong function of parasitic resistances,so that the accuracy of Eq. (8.178d) is not<br />

very relevant.<br />

The numerator is determined by studying the nulls of vˆ (s) as shown in Fig. 8.68<br />

<br />

in which we see that a null in vˆ<br />

(s) requires a null in î (s) which in turn requires<br />

<br />

î (s) I d (s). It follows that the transform voltage across C is given by:<br />

<br />

vˆ<br />

(s) V d 1/sC <br />

sL <br />

1/sC <br />

I <br />

d [sL <br />

(1/sC <br />

)]<br />

d<br />

V 1<br />

sL<br />

I <br />

1 sL C 1 sL C <br />

<br />

(8.179)<br />

This transform voltage must be the same as the transform voltage across the<br />

D-side of the second PWM switch so that we have:<br />

vˆ<br />

(s) V <br />

D d vˆ (s) D (8.180)<br />

Equations (8.179) and (8.180) yield:


425 8.9 The PWM switch in other converter topologies<br />

DV <br />

1<br />

1 sL <br />

C <br />

DI <br />

sL <br />

1 sL <br />

C <br />

V <br />

0 (8.181)<br />

Multiplying out and substituting for V <br />

, V <br />

and I <br />

in Eq. (8.157),we obtain the<br />

numerator:<br />

DD<br />

N (s) 1 sL 2R sL C 1 D<br />

2D<br />

(8.182)<br />

Figure 8.68<br />

We can rewrite this in standard quadratic form:<br />

N (s) 1 <br />

s s<br />

(8.183)<br />

ω Q ω <br />

in which:<br />

ω <br />

1<br />

L <br />

C <br />

2<br />

1 1/D<br />

Q <br />

R 1<br />

L /C <br />

DD 1 D<br />

2D<br />

⎫<br />

⎬<br />

⎭<br />

(8.184a, b)<br />

To summarize,the control-to-output transfer function is given by:<br />

1 s s<br />

ω Q ω<br />

H (s) H <br />

<br />

1 <br />

s s<br />

ω Q ω <br />

1 s s<br />

ω Q ω <br />

<br />

(8.185)


426 PWM switching dc-to-dc converters<br />

A plot of H <br />

(s) using numerical values is discussed in Problem 8.15.<br />

<br />

8.10 The effect of parasitic elements on the model of the PWM switch<br />

The four important parasitic elements in a converter that affect the average model<br />

of the PWM switch are:<br />

(a) the high-frequency resistance across port a—p<br />

(b) the on-resistance of the switches<br />

(c) the storage-time modulation in bipolar transistors<br />

(d) the general saturation characteristics of the switches.<br />

These parasitic elements affect only the relationship between the average port<br />

voltages of the PWM switch but not its average terminal currents. In this section,<br />

we shall formulate their effect in an invariant way and model them by a resistor in<br />

series with the common terminal of the PWM switch. The first of these parasitic<br />

elements is the most subtle because it concerns the general problem of modeling<br />

the nonlinear part of a system (in our case the PWM switch) by separating it from<br />

its linear part. Naturally,the accuracy of such a modeling technique depends on<br />

how carefully the quantitative interaction between the linear and nonlinear parts<br />

is accounted for when separating both parts. In the absence of parasitic elements<br />

and in continuous conduction mode there is no quantitative interaction between<br />

the linear elements of the filter and the average voltages and currents of the PWM<br />

switch,so that the switch can easily be separated from the rest of the circuit and<br />

modeled accurately. In the presence of certain parasitic elements,a small amount<br />

of interaction between these elements and the average voltages and currents of the<br />

PWM switch exists which warrants a refinement of the ideal models in Figs. 8.38<br />

and 8.39.<br />

(a) The high-frequencyresistance across port a–p The pulsating active terminal<br />

current, i (t),in a converter is absorbed entirely by those elements which lie<br />

<br />

between terminals a and p of the PWM switch. All other elements lying between<br />

terminals c and p absorb the continuous inductive current in the common terminal.<br />

Hence,if i<br />

(t) encounters a resistance r it will give rise to a pulsating voltage<br />

<br />

ripple, r i (t),which will be superimposed on top of the smooth voltage across port<br />

<br />

a—p. To determine r ,one simply shorts the capacitive and input voltage ports,<br />

<br />

opens the inductive ports and determines the resistance between terminals a and p.<br />

This is best illustrated by examples. For the buck converter with an input filter<br />

shown in Fig. 8.69a, r is equal to the parasitic equivalent series resistance (ESR) of<br />

<br />

the input filter capacitor,i.e. r r . For the buck-boost converter with an input<br />

<br />

filter shown in Fig. 8.69b, r r R r . For the converter in Fig. 8.59 and for


427 8.10 The effect of parasitic elements on the model of the PWM switch<br />

the Cuk converter in Fig. 8.32, r r . For other converters, r is determined in a<br />

<br />

similar manner (see Problem 8.16).<br />

In all cases,we see that the high-frequency parasitic resistance across port a—p is<br />

due to the ESR of the filter capacitors connected effectively across that port. Since<br />

the pulsating current is absorbed by the filter capacitors,the ripple voltage it<br />

generates is balanced about the average value of the port voltage V as shown in<br />

<br />

Fig. 8.70. There is of course another ripple component in the port voltage v<br />

(t)<br />

(not shown in Fig. 8.70) which is essentially a triangular one and due to the<br />

capacitance,as explained earlier and shown in Fig. 8.22. The main difference<br />

between these two ripple components is that the average value of the capacitive<br />

ripple component in Fig. 8.22 is zero in each subinterval, T and T ,whereas the<br />

<br />

average value of the ripple due to the ESR in Fig. 8.70 is zero only over the entire<br />

switching interval, T ,and not over each subinterval. Hence,the average value of<br />

<br />

v<br />

(t) during T is not equal to the average value of v (t) over T ,which is simply<br />

<br />

the average value v<br />

(t). According to Fig. 8.70,the average value of v (t) during<br />

<br />

T is given by:<br />

<br />

Figure 8.69


428 PWM switching dc-to-dc converters<br />

v<br />

(t) v di r <br />

(8.186)<br />

All we have to do now is fix the relationship between the average values of the<br />

voltages across ports a—p and c—p:<br />

v dv (t) <br />

dv ddi r <br />

(8.187)<br />

The relationship between the average terminal currents i <br />

and i <br />

remains unaffected<br />

and is still given by i <br />

di <br />

. The interaction term, ddi <br />

r <br />

,can now be easily<br />

modeled by a parasitic resistance ddr <br />

in series with the common terminal in the<br />

large-signal average model of the PWM switch,as shown in Fig. 8.71. The<br />

small-signal model is obtained by perturbing Eq. (8.187):<br />

vˆ<br />

Dvˆ V d iˆ<br />

r DD (8.188)<br />

<br />

in which:<br />

V <br />

V <br />

I <br />

r <br />

(D D) V <br />

(8.189)<br />

The relationship between î and iˆ remains unaffected and is still given by Eq.<br />

<br />

(8.116a). The dc and small-signal model corresponding to Eqs. (8.188) and (8.116)<br />

now follows and is shown in Fig. 8.72.<br />

(a)<br />

(b)<br />

(c)<br />

Figure 8.70


429 8.10 The effect of parasitic elements on the model of the PWM switch<br />

Figure 8.71<br />

Figure 8.72<br />

(b) The on-resistance of the switches When MOSFETS are used to realize the<br />

active and passive switches,the effect of their finite on-resistance can easily be<br />

incorporated in the model of the PWM switch. Let r and r be the resistances of<br />

<br />

the active and passive switches of the PWM switch,respectively,as shown in Fig.<br />

8.73. Intuitively,one can see that since the common terminal spends D% of its time<br />

in series with r and D% of its time in series with r ,the effective resistance<br />

<br />

appearing in series with the common terminal must be Dr Dr . We can verify<br />

<br />

this by re-examining the relationship between v and v . We can see from Fig.<br />

<br />

8.73 that during T the voltage across port c—p is less than v by a factor of i r ,<br />

<br />

while during T it is less than zero by a factor of i r . It follows that the<br />

<br />

relationship between v and v is:<br />

<br />

v d(v i r d i r ) di r ⎫<br />

⎬<br />

(8.190a, b)<br />

dv i (r dd dr dr ) ⎭<br />

<br />

This result is consistent with our expectation,so that the effect of r <br />

and r <br />

can be<br />

modeled by adding another parasitic resistor, dr <br />

dr <br />

,in series with ddr <br />

in the<br />

Figure 8.73


430 PWM switching dc-to-dc converters<br />

average large-signal model of the PWM switch in Fig. 8.71. The small-signal<br />

model is determined by perturbing Eq. (8.190) and obtaining:<br />

vˆ<br />

Dvˆ V d i r <br />

in which:<br />

V V I [r (D D) r r ] ⎫ ⎬⎭<br />

r <br />

DDr <br />

Dr <br />

Dr <br />

(8.191)<br />

(8.192)<br />

Since the relationship between iˆ<br />

and iˆ is still given by Eq. (8.116),the small-signal<br />

<br />

model corresponding to Eqs. (8.191) and (8.116a) looks the same as in Fig. 8.72 in<br />

which V is given by Eq. (8.191b) and Dr Dr is added to DDr .<br />

<br />

(c) The storage-time modulation of BJTs When a bipolar junction transistor is<br />

used to realize the active switch,the modulation in the duty ratio at the collector<br />

generally differs from the modulation in the duty ratio applied to the base of the<br />

BJT. It has been shown that:<br />

d d<br />

in which:<br />

î <br />

I <br />

(8.193)<br />

d modulation in the duty ratio at the collector of the BJT<br />

d modulation in the duty ratio applied to the base of the BJT<br />

(8.194a—c)<br />

I modulation parameter<br />

<br />

⎫<br />

⎬<br />

⎭<br />

The modulation parameter has a negative value for constant base drive and a<br />

positive value for proportional base drive. More sophisticated types of base drive<br />

can render the value of I infinite so that d d . Since storage-time modulation<br />

<br />

modifies the duty-ratio,the relationships between the port voltages and the<br />

terminal currents are both affected. The effect of storage-time modulation on the<br />

port voltages is determined by substituting Eq. (8.193) in (8.191):<br />

vˆ<br />

Dvˆ V d î (r r ) (8.195)<br />

in which:<br />

r <br />

V <br />

I <br />

Storage-time modulation resistance (8.196)<br />

The effect of storage-time modulation on the average terminal currents is determined<br />

by substituting Eq. (8.193) in (8.113a):<br />

î <br />

D I <br />

I <br />

iˆ d I <br />

(8.197)


431 8.10 The effect of parasitic elements on the model of the PWM switch<br />

Typically D I <br />

/I <br />

,so that Eq. (8.197) reduces back to its original form:<br />

î Dî d I (8.198)<br />

<br />

Equations (8.197) and (8.198) correspond to the small-signal model shown in Fig.<br />

8.74 in which r is an ac resistance which,unlike r ,vanishes under dc conditions.<br />

<br />

Figure 8.74<br />

Storage-time modulation can have a pronounced effect on the high-frequency<br />

response of certain converters (see Problem 8.17).<br />

(d) Simple and general saturation models for the switches When a BJT and a<br />

diode are used for the active and passive switches,respectively,their simple<br />

saturation models can be easily included in the model of the PWM switch. If we<br />

assume that a transistor or a diode in its on-state sustains a fixed voltage across its<br />

terminals,then we can write the relationship between v and v : <br />

v <br />

d(v <br />

V<br />

<br />

) dV <br />

(8.199)<br />

in which V<br />

<br />

is the saturation voltage of the transistor and V <br />

is the diode<br />

voltage. The relationship between the average terminal currents remains unaffected<br />

and is still given by i <br />

di <br />

. Equation (8.199) can be rewritten as:<br />

v <br />

dv <br />

(dV<br />

<br />

dV <br />

) (8.200)<br />

which,along with i <br />

di <br />

,can be incorporated in the large-signal average model of<br />

the PWM switch,as shown in Fig. 8.75a. It can easily be shown that the smallsignal<br />

model is still given by Fig. 8.72,in which V <br />

is given by:<br />

V <br />

V <br />

V<br />

<br />

V <br />

V <br />

(8.201)<br />

Figure 8.75


432 PWM switching dc-to-dc converters<br />

Instead of assuming a fixed on-voltage or an on-resistance when a switch is<br />

closed,we can assume a general relationship V <br />

(i <br />

,. . .) so that:<br />

v <br />

d[v <br />

i <br />

r <br />

V <br />

(i <br />

,. . .)] dV <br />

(i <br />

,...)<br />

i <br />

di <br />

d d(v <br />

, i <br />

,...)<br />

⎫<br />

⎬<br />

⎭<br />

(8.202a—c)<br />

In these equations, V <br />

(i <br />

,. . .) and V <br />

(i <br />

,. . .) are the on-voltages of the active and<br />

passive switches,respectively,which depend on the current i <br />

and possibly upon<br />

other parameters which depend on drive mechanisms. The duty ratio is shown to<br />

be a function of the control voltage, v <br />

,and possibly the current i <br />

and other<br />

parameters which also depend on drive mechanisms. An equivalent circuit model<br />

corresponding to Eqs. (8.202a—c) is shown in Fig. 8.75b.<br />

Figure 8.75 (cont.)<br />

8.11 Feedback control of dc-to-dc converters<br />

The output voltage or current of a dc-to-dc converter can be regulated using one of<br />

the feedback schemes shown earlier in Fig. 8.2. With output voltage feedback,an<br />

optional current feedback loop can also be added to form a two-loop,or two-state,<br />

feedback system. There are several ways of implementing the current feedback<br />

loop,all of which require special modeling techniques. We shall discuss only one<br />

popular method of current feedback,known as peak current-mode control,and<br />

show two different ways of modeling it. We shall use a buck converter to illustrate<br />

the use of single-loop and two-loop feedback control circuits.<br />

Regardless of the type of feedback used,the most common way of converting the<br />

control signal to a PWM waveform is to compare it to a sawtooth waveform. This<br />

is shown in Fig. 8.76,in which a pulse with a fixed repetition rate,T <br />

,is initiated at<br />

the beginning of the ramp and is terminated when the ramp voltage exceeds the


433 8.11 Feedback control of dc-to-dc converters<br />

control signal. In this figure we have ignored the small ripple component in control<br />

voltage. By similar triangles we have,from Fig. 8.76:<br />

v V t d (8.203)<br />

V T <br />

It follows that:<br />

d vˆ <br />

V <br />

K <br />

vˆ<br />

<br />

(8.204)<br />

in which:<br />

K <br />

1 V <br />

modulator gain (8.205)<br />

Typical values of V <br />

range from 1 to 2 V.<br />

Figure 8.76<br />

8.11.1 Single-loop voltage feedback control<br />

The buck converter in Fig. 8.77 operates from a fixed bus voltage of 5 V and<br />

delivers 0—10 A at 2.5 V. The converter is designed to operate at 100 kHz and uses<br />

power MOSFET switches. The feedback compensation is designed to yield a<br />

stable loop which has a very large gain (10) at dc and a crossover frequency of<br />

17 kHz. The large loop gain at dc ensures excellent regulation against quasi-static<br />

load and line variations (even though the line in this application is fixed at 5 V).<br />

The crossover frequency at 17 kHz ensures the smallest deviation in the output<br />

voltage when the load current changes abruptly from 0 to 10 A,or vice versa. An<br />

approximate expression of the overshoot (or undershoot) in the output voltage is<br />

given by:<br />

῀V <br />

῀I <br />

2πf <br />

C ; r 1<br />

2πf <br />

C<br />

(8.206)


434 PWM switching dc-to-dc converters<br />

in which f <br />

is the crossover frequency, ῀I <br />

is the step load current and C is the<br />

output capacitor. This expression is valid when the change in the load current<br />

takes place over one or more switching cycles. For faster changes in the load<br />

current,other factors need to be considered which will not be discussed here.<br />

Another restriction on the validity of Eq. (8.206) is that the value of the ESR has to<br />

be less than the reactance of the output filter capacitor at the crossover frequency.<br />

Figure 8.77<br />

The purpose of the relatively large value of the output capacitor is to ensure that<br />

the output voltage ripple stays within 0.3% of the output voltage (7.5 mV) under<br />

worst case conditions. Such a large capacitance is typically obtained by paralleling<br />

several capacitors made of solid tantalum which have significant equivalent series<br />

resistance (ESR). The capacitor in this converter has an ESR of 2 mΩ and is<br />

obtained by paralleling twenty 250-μF solid tantalum capacitors each with an<br />

ESR of 40 mΩ. When the capacitive reactance at the switching frequency is much<br />

smaller than the ESR,the output ripple voltage,instead of being piecewise<br />

parabolic as discussed earlier,is triangular and is given by the product of the ripple<br />

current in the inductor and the value of the ESR. In this converter,the reactance of<br />

C at 100 kHz is 3.2 10 Ω,which is much less than 2 10 Ω.<br />

The control-to-output transfer function is determined from the equivalent<br />

circuit diagram shown in Fig. 8.78,where:<br />

r Dr Dr r ⎫<br />

⎬⎭<br />

(8.207a, b)<br />

V V <br />

In Eq. (8.207b), r is the on-resistance of the MOSFETs and has a typical value


435 8.11 Feedback control of dc-to-dc converters<br />

of 28 mΩ at a gate-drive voltage of 10 V. The transfer function relating the output<br />

voltage to the control voltage is given by:<br />

G (s) vˆ (s) d vˆ<br />

K G (s) (8.208)<br />

vˆ (s) vˆ d <br />

<br />

in which G (s) is given by:<br />

<br />

1 s/ω<br />

G (s) V <br />

1 s/(ω Q) (s/ω )<br />

<br />

(8.209)<br />

Figure 8.78<br />

Using the numerical values shown,we compute the following values for the<br />

zero,the resonant frequency and the characteristic impedance:<br />

ω 1 (2π)15.9 10 rad/s<br />

r C <br />

ω 1 (2π)1.24 10 rad/s<br />

LC (8.210a—c)<br />

⎬⎭<br />

⎫<br />

Z L 25.7 mΩ<br />

C<br />

The Q-factor is computed for the cases of resistive and current loading:<br />

1<br />

Q <br />

Z <br />

r r R r (r r ) R <br />

Z <br />

⎫<br />

⎬<br />

⎭<br />

0.83; R <br />

0.85; R 250 mΩ<br />

(8.211)<br />

The compensation network has a transfer function H(s) of the form:<br />

H(s) K ω <br />

s<br />

(1 s/ω <br />

)<br />

[1 s/(ω <br />

/2)]<br />

(8.212)<br />

An asymptotic construction of H(s) is shown in Fig. 8.79. The pole at the origin


436 PWM switching dc-to-dc converters<br />

provides infinite gain at dc for excellent dc regulation. The double zero at ω <br />

is<br />

placed on top of ω <br />

of the power stage in Eqs. (8.209) and (8.210) to compensate for<br />

the 180° phase shift due to ω <br />

. The double pole at ω <br />

/2 provides 20 dB/dec<br />

attenuation for the switching ripple. In terms of the circuit elements in Fig. 8.77,<br />

H(s) is given by:<br />

1<br />

H(s) <br />

sR (C C )<br />

<br />

(1 sC <br />

R <br />

)[1 sC <br />

(R <br />

R <br />

)]<br />

(1 sC <br />

C <br />

R <br />

)(1 sC <br />

R <br />

)<br />

(8.213)<br />

Since ω <br />

ω <br />

/2,we can deduce from the expressions of ω <br />

and ω <br />

/2 that C <br />

C <br />

and R <br />

R <br />

,so that Eq. (8.213) can be simplified to:<br />

H(s) 1<br />

sR <br />

C <br />

(1 sC <br />

R <br />

)(1 sC <br />

R <br />

)<br />

(1 sC <br />

R <br />

)(1 sC <br />

R <br />

)<br />

(8.214)<br />

Figure 8.79<br />

The loop gain is given by:<br />

T (s) G <br />

(s)H(s) (8.8.215)<br />

An asymptotic construction of the magnitude of the loop gain,with ω <br />

placed<br />

on top of ω <br />

,is shown in Fig. 8.80. The closed-loop model can be simulated using<br />

Figure 8.80


437 8.11 Feedback control of dc-to-dc converters<br />

OrCAD/Pspice in which the large-signal average model of the PWM switch in<br />

continuous conduction mode is available as a subcircuit called VMLSCCM<br />

(voltage-mode large-signal continuous conduction mode). The simulation circuit<br />

is shown in Fig. 8.81a,and a magnitude and phase plot of T ( jω) is shown in Fig.<br />

8.81b. The phase margin and the crossover frequency are seen to be 96° and<br />

17.6 kHz,respectively. Note that the simulation program uses the large-signal<br />

average model of the PWM switch to determine the dc operating point automatically.<br />

Subsequently,the simulation program expands the large-signal model numerically<br />

at the dc operating point to determine the small-signal response.<br />

U1<br />

rL1<br />

29m<br />

L1<br />

3.3uH<br />

VMLSCCM<br />

3<br />

Vg<br />

5Vdc<br />

1<br />

A<br />

C<br />

4<br />

VC<br />

P<br />

2<br />

rC1<br />

2m<br />

C1<br />

5000uF<br />

I1<br />

10Adc<br />

0<br />

0<br />

0<br />

0<br />

Vinj<br />

1mV<br />

C1c<br />

31pf<br />

C2c<br />

2.58nF<br />

R2c<br />

1.23k<br />

R3c<br />

105k<br />

C3c<br />

1.24nF<br />

R1c<br />

50k<br />

0<br />

-<br />

+<br />

+<br />

-<br />

E_amp<br />

0<br />

Vref<br />

2.5Vdc<br />

Figure 8.81<br />

To complete the design,a properly damped input filter is added to reduce the<br />

input ripple current to about 170 mA,as shown in Fig. 8.82. The effect of the input<br />

filter on loop gain is shown in Fig. 8.83,in which the crossover frequency is seen to<br />

remain the same as before.<br />

The time-domain response of the converter in Fig. 8.82,to a 0—10-A step change<br />

in the load current,is shown in Fig. 8.84. In this figure,the predicted response of<br />

the output voltage obtained by the large-signal average model of the PWM switch


438 PWM switching dc-to-dc converters<br />

Figure 8.81 (cont.)<br />

Figure 8.82<br />

and the actual response obtained by cycle-by-cycle simulation of the actual circuit<br />

are compared. The agreement between the average and the actual response is quite<br />

satisfactory considering the fact that the simulation run time of the average model<br />

is much shorter than that of the cycle-by-cycle simulation. If we substitute the


439 8.11 Feedback control of dc-to-dc converters<br />

Figure 8.83<br />

value of the crossover frequency from Fig. 8.83 in Eq. (8.206),we obtain the<br />

estimated undershoot in the output voltage:<br />

῀V ῀I 2πf C <br />

10A<br />

19 mV (8.216)<br />

2π(16.6 10)(5000 10) <br />

which is about 4 mV away from the average value of 23 mV observed in Fig. 8.84.<br />

The reason for this discrepancy is that Eq. (8.206) is at the limit of its validity<br />

because the reactance of the output capacitor at the crossover frequency is<br />

1.92 mΩ,which is larger than the value of its ESR.<br />

Figure 8.84


440 PWM switching dc-to-dc converters<br />

8.11.2 Current feedback control<br />

A very popular type of current feedback control,known as peak current-mode<br />

control, is shown in Fig. 8.85. In this type of control,the positive ramp of the<br />

active switch current during the on-time serves as the sawtooth waveform in the<br />

pulse-width-modulating circuit. When the peak current reaches a specified threshold,<br />

V <br />

,the comparator resets a flip—flop terminating the on-time. A clock with a<br />

fixed period, T <br />

,always sets the flip—flop to initiate the on-time. It is not hard to see<br />

that it is the common terminal current that is effectively being fedback,since the<br />

active and common terminal currents of the PWM switch are coincident during<br />

the on-time. Therefore,it should be possible to derive an invariant model for peak<br />

current mode control similar to that of the PWM switch. This is shown in Fig. 8.86<br />

in which the PWM switch and the current feedback loop are combined in a new<br />

invariant structure called the current-controlled PWM switch (CC-PWM<br />

switch). The sawtooth waveform which is added to the current waveform is called<br />

the external ramp and its purpose is to provide stability,as we shall see presently.<br />

The steady-state current waveform for D 0.5 is shown in Fig. 8.87a. It is fairly<br />

easy to see by a simple geometric construction that a steady-state duty cycle<br />

greater than 0.5 cannot be sustained as shown in Fig. 8.87b. Here we see that peak<br />

Figure 8.85<br />

current control becomes unstable for D 0.5 where it breaks into subharmonic<br />

instability,i.e. the duty cycle increases with a subharmonic periodicity resulting in<br />

a periodic waveform at half the switching frequency. In Fig. 8.87a we see how an<br />

initial disturbance in the current waveform settles down for D 0.5. The addition<br />

of an external sawtooth waveform,or ramp,as shown in Fig. 8.88 extends the<br />

stable operation of peak current control to D 0.5. It can be seen from these<br />

figures that the dynamics of peak current mode control is independent of any<br />

particular converter so that it should be possible to derive an invariant model of<br />

the CC-PWM switch. Such a model should contribute to the characteristic equation<br />

of a converter,a quadratic factor whose frequency is at half the switching


441 8.11 Feedback control of dc-to-dc converters<br />

Figure 8.86<br />

frequency and whose damping becomes negative for D 0.5 in the absence of an<br />

external ramp.<br />

In order to describe the action of peak current control in invariant terms,all we<br />

need to do is describe the slopes of the common terminal current in terms of the<br />

terminal quantities of the PWM switch. It is not hard to verify that the slopes of<br />

the current signal during the on-time and off-time for any converter are given by:<br />

Figure 8.87


442 PWM switching dc-to-dc converters<br />

Figure 8.88<br />

S V L R V D<br />

L<br />

R <br />

S <br />

V <br />

L R <br />

⎫<br />

⎬<br />

⎭<br />

(8.217a, b)<br />

in which R <br />

is a scaling constant which transforms the current signal into a voltage<br />

signal and L is the effective inductance which dictates the slope of the current. In a<br />

single inductor converter, L is the same as the switched inductor in that converter.<br />

For example,in the buck converter with an input filter,shown earlier in Fig. 8.69a,<br />

L L; whereas in the Cuk converter, L L <br />

L <br />

. According to Fig. 8.88,the<br />

following dc equation holds at the switching instants:<br />

I R S DT S DT V (8.218)<br />

2 <br />

When time variations in the duty cycle are considered,all quantities in Eq. (8.218)<br />

must be replaced with their instantaneous values resulting in a sampled-data<br />

equation. If,for the moment,we ignore the effects of sampling,then we can replace<br />

all the quantities in Eq. (8.218) with their average values to determine the effect of<br />

the control law on these quantities. Hence,Eq. (8.218) together with the invariant<br />

equation of the PWM switch yield:<br />

i <br />

v <br />

R <br />

S <br />

dT <br />

R <br />

s (1 d)T <br />

2R <br />

i <br />

di <br />

v <br />

dv <br />

⎫<br />

⎬<br />

⎭<br />

(8.219a—c)<br />

If we substitute d v <br />

/v <br />

and s <br />

v <br />

R <br />

/L in Eqs. (8.219a, b),we obtain:


443 8.11 Feedback control of dc-to-dc converters<br />

i <br />

v <br />

R <br />

v <br />

v <br />

T <br />

S <br />

R <br />

v 1 v <br />

v <br />

T <br />

2L<br />

⎫<br />

⎬⎭<br />

(8.220a, b)<br />

i <br />

i <br />

v <br />

v <br />

These two equations correspond to the large-signal average model of the CC-<br />

PWM switch shown in Fig. 8.89. The capacitance C <br />

in this figure does not follow<br />

from Eqs. (8.220a, b) and has been added to predict the subharmonic instability of<br />

the current loop,as will be discussed shortly. Equations (8.220a, b) were written<br />

assuming positive i <br />

flowing out of the common terminal. If positive i <br />

flows into<br />

the common terminal,then the direction of the control and external ramp sources<br />

should be reversed. Although we can always identify the PWM switch with<br />

positive i <br />

flowing out of the common terminal,we can allow,in general,for i <br />

to<br />

flow in either direction and automatically reverse the control and ramp control<br />

sources by multiplying these sources by i <br />

/ i <br />

(with positive i <br />

defined flowing out<br />

of the common terminal). This is particularly useful in creating a user-defined<br />

subcircuit for simulation purposes. The dc model of the CC-PWM switch is<br />

essentially the same as the large-signal average model without C <br />

. Generally,it is<br />

not possible to solve for the dc operating point in terms of V <br />

in closed form<br />

because the solution is generally given by the roots of a cubic equation,as we shall<br />

see in Example 8.13.<br />

Figure 8.89<br />

The equivalent small-signal circuit model of the CC-PWM switch is obtained by<br />

perturbing the large-signal average equations in Eqs. (8.220):<br />

î <br />

vˆ<br />

k vˆ g g vˆ <br />

î <br />

Dî <br />

g <br />

vˆ<br />

g vˆ <br />

⎫<br />

⎬<br />

⎭<br />

(8.221a, b)<br />

in which the reader can verify:


444 PWM switching dc-to-dc converters<br />

k 1 I R I <br />

g T L D S 1 S 2 D <br />

<br />

g <br />

Dg <br />

DDT <br />

2L<br />

g <br />

I <br />

V <br />

⎫<br />

⎬<br />

⎭<br />

(8.222a—e)<br />

g <br />

I <br />

V <br />

These equations correspond to the circuit model shown in Fig. 8.90. Clearly,there<br />

are many different ways of expressing the small-signal parameters in Eqs. (8.222).<br />

For example,we have expressed g <br />

explicitly in terms of S <br />

/S <br />

because it is typical<br />

to specify the amount of the external ramp by its ratio to the natural current ramp<br />

during the on-time.<br />

The capacitance C <br />

in the model of the CC-PWM switch is determined quite<br />

easily by examining the dynamics of peak current control in the vicinity of half the<br />

switching frequency,as shown in fig. 8.87b. As mentioned earlier,the dynamics<br />

Figure 8.90<br />

shown in Fig. 8.87b is independent of the type of converter and is characteristic of<br />

peak current control only. This observation is verified by examining the equivalent<br />

circuit of any converter with peak current control using the model of CC-PWM<br />

switch in Fig. 8.90. Hence,with the control voltage and input held constant and the<br />

output voltage essentially at signal ground in the vicinity of half the switching<br />

frequency,the equivalent circuit model of any converter in peak current control<br />

reduces to the parallel resonant circuit shown in Fig. 8.91b. To see this,we use the<br />

buck-boost converter in Fig. 8.91a as an example and write:<br />

V <br />

constant vˆ<br />

0 (8.223)<br />

V <br />

, V <br />

constant V <br />

constant vˆ<br />

0<br />

We could have started with any other converter and arrived at the same circuit in


445 8.11 Feedback control of dc-to-dc converters<br />

Fig. 8.91b using the conditions in Eq. (8.223). This is the circuit which contributes<br />

to the characteristic equation a quadratic factor at half the switching frequency<br />

which becomes unstable for D 0.5 when S <br />

0. In fact,the characteristic<br />

equation for this parallel resonant circuit is:<br />

῀(s) 1 sLg <br />

s<br />

LC <br />

(8.224)<br />

If this circuit were to resonate at half the switching frequency,the value of C <br />

would have to be such that:<br />

ω <br />

2 1<br />

LC <br />

C <br />

4<br />

Lω <br />

(8.225)<br />

According to Eq. (8.222b),the value of g <br />

in the absence of an external ramp is<br />

given by:<br />

g T L 1 2 D (8.226)<br />

<br />

which for D 0.5 becomes negative and the parallel resonant circuit oscillates at<br />

half the switching frequency. The addition of an external ramp allows g <br />

to remain<br />

Figure 8.91<br />

positive for D 0.5,as can be seen from Eq. (8.222),thereby stabilizing the current<br />

loop. Hence,the predictions of the model of the CC-PWM switch in Fig. 8.90 and<br />

the behavior of peak current control are consistent. In the following example we


446 PWM switching dc-to-dc converters<br />

shall determine the dynamics of a boost converter with peak current control.<br />

The quadratic factor in Eq. (8.224) is common to the denominator of the<br />

small-signal dynamics of PWM converters operating in CCM with peak current<br />

control. Performing the necessary substitutions,Eq. (8.224) can be written as:<br />

῀(s) 1 <br />

s s<br />

(8.227)<br />

ω Q ω <br />

in which<br />

ω <br />

ω <br />

2<br />

1<br />

Q <br />

π S D 1 S 2 D <br />

<br />

1<br />

<br />

π D S <br />

S <br />

1 1 2<br />

⎫<br />

⎬<br />

⎭<br />

(8.228a, b)<br />

Example 8.13 A boost converter with peak current control is shown in Figs.<br />

8.92a and b. In Fig. 8.92a the CC-PWM switch is identified with positive i flowing <br />

into the common terminal and in Fig. 8.92b it is identified with positive i flowing <br />

out of the common terminal. Using the circuit in Fig. 9.92a,we replace the<br />

CC-PWM switch with its dc model as shown in Fig. 8.93,in which the arrows of<br />

the ramp and control source have been reversed. According to Fig. 8.93,we have:<br />

Figure 8.92


447 8.11 Feedback control of dc-to-dc converters<br />

I <br />

V <br />

R <br />

V <br />

V <br />

T <br />

S <br />

R <br />

V 1 V <br />

V <br />

T <br />

2L<br />

V <br />

I I <br />

V <br />

V <br />

<br />

V <br />

V <br />

V <br />

V <br />

V <br />

⎫<br />

⎬<br />

⎭<br />

(8.229a—d)<br />

Solving these simultaneously,we obtain the following cubic equation in V <br />

:<br />

V <br />

V <br />

V T S R<br />

R <br />

RT V <br />

2L<br />

R V<br />

R <br />

T RS V RT V <br />

R 2L 0 (8.230)<br />

<br />

Clearly it is not possible to obtain an analytical answer for V <br />

for a given control<br />

voltage V <br />

. Unfortunately,this is the case with peak current control regardless of<br />

the type of converter. The best that we can do is get an approximate idea by letting<br />

L be very large and ignore S <br />

. This yields:<br />

R<br />

V V V V 0 V R V V R<br />

(8.231)<br />

R <br />

The control-to-output transfer function is determined by replacing the CC-<br />

PWM switch with its small-signal model as shown in Fig. 8.94 and has the form:<br />

vˆ N (s)<br />

A <br />

vˆ D(s)<br />

<br />

(8.232)<br />

Figure 8.93


448 PWM switching dc-to-dc converters<br />

Figure 8.94<br />

At dc,the circuit in Fig. 8.94 reduces to the one in Fig. 8.95,whence the lowfrequency<br />

asymptote can be obtained:<br />

k D<br />

A <br />

g g G D(g g )<br />

<br />

R 1<br />

R 2M RT <br />

LM 1 2 S <br />

S <br />

<br />

(8.233a, b)<br />

in which G 1/R. The same result can be obtained by an implicit differentiation of<br />

Eq. (8.230) with respect to V <br />

.<br />

Figure 8.95<br />

The demoninator is obtained by setting the control source vˆ in Fig. 8.94 to zero.<br />

<br />

We already know that at high frequencies this circuit reduces to the parallel<br />

resonant circuit in Fig. 8.91b,which contributes the quadratic term at half the<br />

switching frequency in Eq. (8.224) as discussed earlier. Hence we have:<br />

D(s) (1 s/ω <br />

)[1 s/(ω <br />

Q <br />

) s/ω <br />

] (8.234)


449 8.11 Feedback control of dc-to-dc converters<br />

in which:<br />

ω <br />

ω <br />

2<br />

Q <br />

1<br />

ω <br />

Lg <br />

<br />

1<br />

π D S <br />

S <br />

1 2 D <br />

⎫<br />

⎬<br />

⎭<br />

(8.235a, b)<br />

The dominant pole ω <br />

is determined by examining the circuit in Fig. 8.94 at low<br />

frequencies in which the output filter capacitor is seen to dominate the dynamics.<br />

The conductance looking into the capacitive port is determined from Fig. 8.95,<br />

which the reader can verify to be:<br />

1<br />

R g g G D(g g ) ⎫<br />

(8.236)<br />

⎬<br />

2G T <br />

LM 1 2 S <br />

S <br />

⎭<br />

Hence,the dominant pole in Eq. (8.234) is given by:<br />

ω 1 2G T <br />

<br />

LM 1<br />

RC 2 S <br />

S <br />

<br />

C<br />

(8.237)<br />

The numerator, N (s),in Eq. (8.232) is determined by examining the null response<br />

of the circuit as shown in Fig. 8.96. A null in the output voltage implies<br />

<br />

vˆ 0,which in turn implies that:<br />

<br />

vˆ<br />

iˆ<br />

sL (8.238a, b)<br />

î <br />

Dî <br />

g <br />

vˆ<br />

<br />

⎫<br />

⎬<br />

⎭<br />

The simultaneous solution of these equations yields:<br />

D g <br />

sL 0 (8.239)<br />

Substituting g <br />

1/DR we obtain the numerator:<br />

L<br />

N (s) 1 s RD<br />

(8.240)


450 PWM switching dc-to-dc converters<br />

Figure 8.96<br />

This is the same RHP zero in the duty-ratio-to-output transfer function in continuous<br />

conduction mode as explained earlier in Fig. 8.50 and in Eqs. (8.141—<br />

8.143). This is expected since a step change in the control voltage v in peak current<br />

<br />

control results in a simultaneous step change in the duty cycle.<br />

<br />

Another model for peak current control,which actually preceded the model of<br />

the CC-PWM switch,was developed by R. Ridley and is shown in Fig. 8.97. In<br />

this figure,the power stage is modeled using the PWM switch with duty ratio<br />

control,while the current loop is modeled using the blocks k <br />

, k <br />

, F <br />

and H <br />

(s). The<br />

blocks k <br />

and k <br />

model the effect of the input and output voltages and their<br />

expressions for certain converters are:<br />

k <br />

<br />

⎫<br />

⎬<br />

⎭<br />

DT R <br />

L<br />

T R <br />

2L<br />

1 D 2 buck,buck-boost<br />

boost<br />

(8.241)<br />

k <br />

<br />

⎫<br />

⎬<br />

⎭<br />

T R <br />

L<br />

DT R <br />

2L<br />

buck<br />

boost,buck-boost<br />

(8.242)<br />

The modulator gain is modeled by F <br />

,while the effect of sampling is modeled by<br />

H <br />

(s). These are given by:<br />

1<br />

F (S S )T <br />

(8.243a, b)<br />

H (s) <br />

sT e 1 1 s π<br />

ω 2 s ; ω ω <br />

ω 2<br />

<br />

The approximation of H <br />

(s) by a quadratic is valid up to the neighborhood of half<br />

the switching frequency.<br />

⎫<br />

⎬<br />


451 8.11 Feedback control of dc-to-dc converters<br />

Figure 8.97<br />

Both modeling techniques yield the same results for the control-to-output<br />

transfer functions,as shown in the next example.<br />

Example 8.14 The complete small-signal equivalent circuit of the boost converter<br />

in peak current control using the model in Fig. 8.97 is shown in Fig. 8.98. The<br />

denominator D(s) in Eq. (8.232) is determined by setting all the excitations to zero<br />

in Fig. 8.98 and examining the resulting circuit at low and high frequencies shown<br />

in Figs. 8.99a, b,respectively. The dominant pole is obtained from Fig. 8.99a and<br />

can be shown to be given by Eq. (8.237). The roots of the high-frequency factor are<br />

obtained from Fig. 8.99b:<br />

[d ] V <br />

D D [î R H (s)F ] V <br />

D D sLî <br />

(8.244)<br />

Figure 8.98


452 PWM switching dc-to-dc converters<br />

The quadratic factor follows by canceling î <br />

in the last two equalities:<br />

H (s) <br />

sL 0 (8.245)<br />

F R V <br />

Substituting S <br />

from Eq. (8.217a) in the expression for F <br />

,we obtain:<br />

F <br />

R <br />

V <br />

1<br />

T <br />

S <br />

R V L<br />

1 S /S T D <br />

1<br />

1 S <br />

/S <br />

(8.246)<br />

Substituting Eqs. (8.245) and (8.243) in (8.246),we obtain the same quadratic factor<br />

as in Eq. (8.234).<br />

The numerator of the control-to-output transfer function is determined by<br />

examining the null response of the circuit as shown in Fig. 8.101,whence we have:<br />

Figure 8.99


453 8.11 Feedback control of dc-to-dc converters<br />

Figure 8.100<br />

d V <br />

D D î sL ⎫<br />

(8.247a, b)<br />

⎬<br />

⎭<br />

î I d Dî <br />

The simultaneous solution of these equations yields:<br />

1 sL I <br />

V <br />

D 0 (8.248)<br />

When the dc operating point, I I /D andV V ,is substituted in the<br />

<br />

above,the same RHP zero as in Eq. (8.240) is obtained.<br />

<br />

8.11.3 Voltage feedback control with peak current control<br />

In this section we shall demonstrate one of the advantages of adding a peak<br />

current feedback loop to a voltage feedback loop. In Eq. (8.215),we saw that the<br />

loop gain of the regulated buck converter was directly proportional to the input<br />

voltage because of the dc gain G of G (s) given by Eq. (8.209). Hence,if the input<br />

<br />

voltage was to vary significantly,the crossover frequency would vary proportionally,which<br />

in certain applications could be undesirable. To show how peakcurrent<br />

control renders the crossover frequency of the loop gain insensitive to the<br />

input voltage,consider the small-signal equivalent circuit of a simple buck converter<br />

without an input filter in peak-current mode control,as shown in Fig. 8.101.<br />

The control-to-output transfer function is obtained after setting vˆ 0 and is given<br />

<br />

by:<br />

vˆ 1 s/ω 1<br />

G <br />

vˆ 1 s/ω 1 s/(ω Q ) (s/ω )<br />

<br />

<br />

(8.249)


454 PWM switching dc-to-dc converters<br />

in which the quadratic factor is the same as the one discussed earlier in Eqs. (8.234)<br />

and (8.235a, b). The zero at ω <br />

is the usual zero due to r <br />

of the output filter<br />

capacitor and is given by:<br />

ω <br />

1<br />

r <br />

C <br />

(8.250)<br />

If we let s 0,then the circuit in Fig. 8.101 reduces to the current source k <br />

vˆ<br />

<br />

feeding the parallel combination of the load resistance and g <br />

. It follows that G <br />

in<br />

Eq. (8.249) is given by:<br />

G <br />

k <br />

(8.251)<br />

g G <br />

Figure 8.101<br />

in which g and k are given by Eqs. (8.222a, b).<br />

<br />

The low-frequency pole at ω is obtained by examining the circuit in Fig. 8.101<br />

<br />

at low frequencies with vˆ<br />

vˆ 0. At low frequencies, L is ineffective and the<br />

<br />

dominant time constant is formed by C C parallel with g and the load<br />

<br />

resistance. Hence,the dominant pole is given by:<br />

ω <br />

g G <br />

C <br />

C <br />

g G <br />

C <br />

(8.252)<br />

The crossover frequency is normally well above ω <br />

and well below ω <br />

ω <br />

/2.<br />

Hence,in the vicinity of the crossover,G <br />

and ω <br />

combine together in the<br />

approximate behavior of the control-to-output transfer function:<br />

1 s/ω<br />

G (s) G k (1 s/ω ) (8.253)<br />

s/ω sC <br />

in which we have made use of Eqs. (8.251) and (8.252). Since k is independent of<br />

<br />

the input voltage,it follows that the control-to-output transfer function and,<br />

hence,the loop gain are both independent of the input voltage near the crossover<br />

frequency. It follows that the crossover frequency itself is practically independent<br />

of the input voltage. An asymptotic sketch of G(s) is shown in Fig. 8.102.


455 8.11 Feedback control of dc-to-dc converters<br />

Figure 8.102<br />

The voltage feedback compensation of a dc-to-dc converter with peak-current<br />

control is somewhat simpler than that of a converter without peak-current control.<br />

The reason of course is that the power stage in current mode has a dominant<br />

single pole whereas a power stage without peak-current control and operating in<br />

CCM has a dominant complex pole-pair. A typical compensation scheme for<br />

converters in peak-current control is shown in Fig. 8.103. The transfer function<br />

relating the control voltage to the converter output voltage of the amplifier in Fig.<br />

8.103 is given by:<br />

H(s) vˆ (s)<br />

vˆ<br />

in which:<br />

(s) H <br />

1 ω <br />

s<br />

1 s<br />

ω <br />

(8.254)<br />

H R R <br />

ω 1<br />

R C <br />

1<br />

ω <br />

1<br />

R C C <br />

R <br />

C <br />

⎫<br />

⎬⎭<br />

(8.255a—c)<br />

The pole at ω <br />

is optional and is placed at or above half the switching frequency<br />

mainly to attenuate high-frequency switching noise. The zero at ω <br />

is placed<br />

between the dominant pole of the power stage and the desired crossover frequency.<br />

It should be placed low enough to provide adequate phase margin but not so low<br />

as to cause a sluggish response. A numerical illustration of a practical voltage<br />

feedback loop around a power stage with peak-current control is given in the<br />

following example.


456 PWM switching dc-to-dc converters<br />

Figure 8.103<br />

Example 8.15 An OrCAD/Pspice simulation of the equivalent circuit of a buck<br />

converter with peak-current control and output voltage feedback control is shown<br />

in Fig. 8.104. The subcircuit CMLSCCM (current-mode large-signal continuous<br />

conduction mode) is a large-signal model of the current-controlled PWM switch in<br />

continuous conduction mode. The converter operates at 100 kHz from an input<br />

voltage range of 13 to 26 V and has an output voltage of 5 V at 0—10 A. The load is<br />

assumed to behave as a current source so that its incremental resistance is infinite,<br />

i.e. G 0. <br />

The reader can verify that the output ripple voltage is dictated by r of the <br />

output filter capacitor C instead of C and that it has a maximum value of 25 mV,<br />

<br />

which occurs when the input voltage is 26 V.<br />

rL1<br />

50m<br />

L1<br />

16uH<br />

1<br />

Vg<br />

13Vdc<br />

4<br />

A<br />

VC C<br />

2<br />

P<br />

3<br />

U1<br />

CMLSCCM<br />

rC1<br />

10m<br />

C1<br />

1000uF<br />

0<br />

I_Load<br />

10Adc<br />

0<br />

V_inj<br />

10mV<br />

0<br />

C2c<br />

500pF<br />

C1c<br />

20pF<br />

R2c<br />

160K<br />

R1c<br />

10K<br />

0<br />

-<br />

+<br />

+<br />

-<br />

E_amp<br />

V_ref<br />

5Vdc<br />

0<br />

0<br />

Figure 8.104


457 8.11 Feedback control of dc-to-dc converters<br />

The two parameters of peak-current control that must be determined are the<br />

amount of the external stabilizing ramp, S ,and the current-to-voltage conversion<br />

<br />

resistance R ,both of which are shown in the model of the CC-PWM switch in Fig.<br />

<br />

8.86. The value of R is dictated by the maximum value of the current-sense voltage<br />

<br />

signal which,for most commercially available PWM control chips,is in the range<br />

of a few volts. In this design,we shall assume the maximum value of the currentsense<br />

signal to be 2.5 V and that the maximum current to be sensed is about 12 A.<br />

Hence:<br />

R 2.5 V 0.2 Ω (8.256)<br />

12 A<br />

Also,in this design,the amount of external ramp is chosen to yield Q <br />

0.5 in the<br />

subharmonic quadratic factor in Eq. (8.228). Hence,according to Eq. (8.228):<br />

Q <br />

<br />

1<br />

π D S <br />

S <br />

1 1 2<br />

0.5 (8.257)<br />

The minimum duty cycle,assuming an efficiency of η 85%,is computed to be:<br />

D <br />

V <br />

5V 0.225 (8.258)<br />

ηV (0.85)26 V<br />

<br />

The slope of the inductor current during the off-time can now be computed:<br />

S <br />

V R <br />

L<br />

5 V(0.2 Ω)<br />

6.25 V/μs (8.259)<br />

16 μH<br />

Substituting Eqs. (8.258) and (8.259) in Eq. (8.257) yields the amount of external<br />

ramp:<br />

S <br />

10 V/μs (8.260)<br />

The values of R <br />

, S <br />

, L and the switching frequency are the arguments which are<br />

supplied to the subcircuit CMLSCCM,which in turn computes the value of C <br />

according to Eq. (8.225).<br />

The loop gain is given by the product of H(s) and G <br />

(s):<br />

1 s 1 ω <br />

ω s 1<br />

T (s) T <br />

1 s 1 s 1 s s<br />

(8.261)<br />

ω ω ω Q ω <br />

in which T <br />

is given by:<br />

T <br />

k <br />

g <br />

R <br />

R <br />

(8.262)


458 PWM switching dc-to-dc converters<br />

The numerical values of k <br />

and g <br />

are given by:<br />

k <br />

1 R <br />

5 Ω (8.263)<br />

g <br />

T <br />

L <br />

D S <br />

S <br />

1 2 D <br />

⎫<br />

⎬<br />

⎭<br />

0.416 Ω; V <br />

13 V<br />

0.364 Ω; V <br />

26 V<br />

(8.264)<br />

The following values are computed for the numerical determination of the loop<br />

gain:<br />

T k R 192; V 13 V<br />

<br />

g R 219; V 26 V <br />

⎫<br />

ω 1<br />

1<br />

<br />

(2π)15.9 krad/s<br />

r C (10 mΩ)(1000 μF) <br />

ω 1<br />

1<br />

<br />

(2π)1989 rad/s<br />

R C (160 kΩ)(500 pF) <br />

ω 1<br />

1<br />

<br />

(2π)50 krad/s (8.265a—g)<br />

R C (160 kΩ)(20 pF) <br />

⎬<br />

ω ω (2π)50 krad/s<br />

2<br />

⎫<br />

⎬<br />

⎭<br />

Q <br />

<br />

1<br />

π D S <br />

S <br />

1 1 2 <br />

ω <br />

g <br />

C <br />

<br />

⎫<br />

⎬<br />

⎭<br />

(2π)66 rad/s; V <br />

13 V<br />

(2π)58 rad/s; V <br />

26 V<br />

⎫<br />

⎬<br />

⎭<br />

0.5; V <br />

26 V<br />

0.4; V <br />

13 V<br />

⎭<br />

Note that the shape of the loop gain past the dominant pole, ω <br />

,is practically<br />

independent of the input voltage for the same reason given earlier in Eq. (8.253).<br />

In Fig. 8.105,a magnitude and phase plot of the loop gain is obtained using an<br />

injection signal,as shown in the simulation program in Fig. 8.104. As expected the<br />

shape of the loop gain and the crossover frequency are independent of the input<br />

voltage.


459 8.11 Feedback control of dc-to-dc converters<br />

Figure 8.105<br />

Figure 8.106<br />

The dynamic response of the output voltage to a 0—10 A step change in the<br />

output load current is shown in Fig. 8.106. The continuous trace shows the<br />

response obtained using the large-signal average model of the CC-PWM switch<br />

(CMLSCCM) in Fig. 8.105. Also shown in Fig. 8.106 is the actual response of the<br />

converter obtained by cycle-by-cycle simulation. The agreement between the<br />

predictions of the cycle-by-cycle simulation and the large-signal average model<br />

simulation is generally good.


460 PWM switching dc-to-dc converters<br />

8.12 Review<br />

An ideal dc-to-dc converter transforms the dc level of a voltage or a current source<br />

in a controllable and nondissipative manner using switches,inductors and capacitors.<br />

The inductors and capacitors form effective low-pass filters which extract the<br />

dc component of the switching waveforms and provide smooth dc voltages and<br />

currents at the input and output ports of the converter. A practical converter<br />

dissipates a relatively small amount of power in comparison with its output power<br />

because of nonideal components. The ratio of the output voltage to the input<br />

voltage is defined as the conversion ratio and is controlled by the duty cycle of the<br />

switches. Although,in principle,a myriad number of switches,driven in myriad<br />

ways,can be used to generate nonisolated converters ad nauseam,a pair of<br />

switches,driven in a complementary fashion,is sufficient to generate basic converters<br />

which accomplish all the necessary functions of dc-to-dc power conversion.<br />

The buck,the boost,the buck-boost,the Cuk,the Watkins—Johnson and its<br />

bilateral inverse are among the basic converters discussed in this chapter. The<br />

buck converter steps down the input voltage and the boost converter steps up the<br />

input voltage. The sign of the output voltage in both of these converters follows the<br />

sign of the input voltage. The Cuk and the buck-boost converters can either step<br />

up or step down the input voltage and the sign of their output voltage is always<br />

opposite that of the input voltage. The Watkins—Johnson and its bilateral inverse<br />

can either step up or step down the input voltage while the sign of their output<br />

voltage can either be the same or opposite that of the input voltage. Other<br />

converters,some of which use four switches,are also discussed.<br />

Like amplifiers,dc-to-dc converters are nonlinear circuits whose exact solutions<br />

can only be determined numerically using circuit simulation programs. Nevertheless,the<br />

vast amount of design-oriented analytical techniques available for amplifier<br />

circuits are also desirable for dc-to-dc converter circuits. In an amplifier circuit,<br />

these techniques are applied once an equivalent circuit model of the amplifier is<br />

obtained by replacing the transistor,or the vacuum tube,with its equivalent circuit<br />

model. In order to apply these techniques to a PWM converter circuit,we have<br />

introduced the concept of the PWM switch and derived an equivalent circuit<br />

model for it. The PWM switch,just like the transistor,is a three-terminal nonlinear<br />

device which can be replaced with its equivalent circuit model to yield an<br />

equivalent circuit model of a PWM converter circuit. The model of the PWM<br />

switch does not depend on any particular converter topology,just like the model<br />

of a transistor does not depend on any particular amplifier topology. Hence,the<br />

analyses of the dynamics of amplifiers and PWM converters are identical. For


461 Problems<br />

example,to determine the small-signal characteristics of a PWM converter,first a<br />

dc analysis is performed and the dc operating point of the PWM switch is<br />

determined. Second,the small-signal parameters in the model of the PWM switch<br />

are evaluated at the dc operating point and a small-signal equivalent circuit of the<br />

converter is obtained from which the input and output impedance,the line-tooutput<br />

and the control-to-output transfer functions are determined.<br />

Various feedback control techniques can be used to regulate the output voltage<br />

of a converter against variations in the input voltage and the load current. In a<br />

single-loop feedback system,only the output voltage is fed back into the PWM<br />

control circuit where it is compared with a reference voltage. In a two-loop<br />

feedback system,in addition to the output voltage,the current in the active switch<br />

is fed back to improve the loop-gain characteristics of the voltage feedback loop.<br />

The nature of the sampled data of the active-switch current feedback loop must be<br />

correctly accounted for whenever a continuous-time model of the converter is<br />

sought. This can be done either by deriving a model for the current feedback loop<br />

alone or by deriving a model for the PWM switch and the current feedback loop<br />

combined together. The combination of the PWM switch and the current feedback<br />

loop is called the current-controlled PWM switch.<br />

Problems<br />

8.1 Linear series voltage regulator. A simplified diagram of a series regulator<br />

using a bipolar transistor is shown in Fig. 8.107a. An equivalent circuit diagram is<br />

shown in Fig. 8.107b.<br />

(a) Show that the line-to-output transfer function and the output impedance are<br />

given by:<br />

v (s) <br />

v (s) 1<br />

1<br />

a r 1 sC R R α <br />

r <br />

αa <br />

(8.266a, b)<br />

Z <br />

(s) <br />

R r <br />

αa <br />

1 sC R r <br />

αa <br />

⎫<br />

⎬<br />

⎭<br />

(b) Ifa <br />

is an operational amplifier,then its gain can be approximated by<br />

a(s) ω <br />

/s. Show that the regulator in this case becomes unstable as R <br />

.<br />

One way to prevent this oscillation is to connect a large capacitance from the<br />

emitter to ground in order to shunt r <br />

. Determine the transfer functions in part


462 PWM switching dc-to-dc converters<br />

(a) with C connected from emitter to ground and discuss how the circuit<br />

becomes stable. (When a linear regulator is placed far from the source, r <br />

accounts for the resistance of the connecting wires. This is why manufacturers<br />

of linear regulator ICs recommend that a large capacitance (100 μF,solid<br />

tantalum) be connected immediately to the input terminals of the linear<br />

regulator whenever it is placed far from V <br />

.)<br />

Figure 8.107<br />

8.2 Linear shunt regulator. Show that for the shunt regulator in Fig. 8.108a we<br />

have:<br />

r<br />

R r<br />

v (s)<br />

<br />

<br />

<br />

i (s) Z (s) Z (s) <br />

1 a <br />

(8.267)<br />

r 1 sC R r <br />

<br />

1 a <br />

8.3 Incremental output resistance.<br />

(a) Show that the incremental output resistance of an ideal unregulated converter<br />

is given by:


463 Problems<br />

Figure 8.108<br />

M /I<br />

r V <br />

(8.268)<br />

1 V M /V <br />

Hint: Recall that M <br />

,in general,can be a function of α, V <br />

and I <br />

. Also we have:<br />

r dV d(M V ) dM<br />

V <br />

(8.269)<br />

dI dI dI <br />

(b) Deduce that when M is only a function of control parameter,then r 0.<br />

<br />

(c) Certain converters have certain modes of operation in which they act as<br />

gyrators,i.e. they transform the input voltage source to a current source which<br />

is linearly proportional to the input voltage:<br />

I <br />

g <br />

(α)V <br />

(8.270)<br />

in which g <br />

is some transconductance that depends on the control parameter α.<br />

(An example of such a converter is the series resonant converter operating in an<br />

even-type discontinuous conduction mode.) It is clear then that the output<br />

impedance for such a converter is infinite. Show that r <br />

indeed is infinite in Eq.<br />

(8.268) for such converters.<br />

Hint: Show that M <br />

can be written as:


464 PWM switching dc-to-dc converters<br />

M <br />

g <br />

R <br />

g <br />

V <br />

I <br />

(8.271)<br />

8.4 Transfer function of the LC low-pass filter. Use the 2-EET to determine the<br />

transfer function of the LC low-pass filter shown in Fig. 8.109.<br />

Figure 8.109<br />

8.5 Output ripple voltage in the buck converter.<br />

(a) Derive the expression of the output ripple voltage in the buck converter<br />

starting with the expressions of the individual components of the ripple voltage<br />

in Eqs. (8.29a, b).<br />

(b) Derive the same expression by recognizing that the peak-to-peak ripple voltage<br />

on the capacitor is equal to the amount of charge delivered to the capacitor<br />

in the time interval T /2 t (T T )/2 divided by the capacitance. This is<br />

<br />

shown in Fig. 8.110 in which I (t) is the ripple component of the inductor<br />

<br />

current.<br />

Figure 8.110<br />

8.6 Input ripple current of a buck converter with an input filter. Using simple<br />

geometry,derive the expression of the peak-to-peak ripple current of the input<br />

filter of the buck converter in Eq. (8.55).<br />

Hint: Recognize that the double integral in Eq. (8.54) is nothing more than the area under the<br />

triangle shown in Fig. 8.111,whose height is half the area of the rectangular voltage pulse during<br />

T <br />

.


465 Problems<br />

Figure 8.111<br />

8.7 Parallel damping of the input filter. An LC filter with parallel damping is<br />

shown in Fig. 8.112a. Use the 3-EET to show that the characteristic equation is<br />

given by:<br />

D(s) 1 s C R R L s LC LC R <br />

R R <br />

<br />

sLCC <br />

R <br />

(8.272)<br />

In order to ensure that R <br />

C <br />

damps the LC resonance (and does not create a new<br />

lower resonance),it should be chosen such that:<br />

1<br />

R <br />

C <br />

ω <br />

1<br />

LC<br />

(8.273)<br />

Figure 8.112<br />

If R 0,as in the case of loading by a regulating switching converter,we should<br />

further require that:<br />

R <br />

R (8.274)<br />

so that:<br />

R R <br />

0 (8.275)<br />

Hence,provided R is not too small,practical values of R <br />

can be realized. Show<br />

that under these considerations D(s) can be factored:


466 PWM switching dc-to-dc converters<br />

D(s) (1 sC R ) s L<br />

R R sLC (8.276)<br />

<br />

<br />

in which we see that the Q-factor of the quadratic term is given by Q <br />

in Eq. (8.59).<br />

Hint: Use the reference circuit in Fig. 8.112b to derive D(s) in Eq. (8.272).<br />

8.8 Series damping of the input filter. Following the same procedure as in<br />

Problem 8.7,derive similar results for the series-damped input filter shown in Fig.<br />

8.113.<br />

Figure 8.113<br />

8.9 Output ripple voltage of the boost converter under conditions of no load. Show<br />

that under conditions of no load (R <br />

) the current through S <br />

(assuming S <br />

is<br />

a bi-directional switch) in the boost converter in Fig. 8.19 has the shape shown in<br />

Fig. 8.114. Determine the ripple voltage across the capacitor and show that its<br />

peak-to-peak value is given by:<br />

V<br />

<br />

V <br />

DDT <br />

8LC<br />

T M 1<br />

<br />

8LC M <br />

⎫<br />

⎬<br />

⎭<br />

(8.277a,b)<br />

Figure 8.114<br />

8.10 Output ripple voltage of the buck-boost converter under conditions of no<br />

load. Show that the peak-to-peak ripple voltage in the buck-boost converter<br />

under no-load conditions (assuming bi-directional switches) is given by:


467 Problems<br />

V<br />

(DT )<br />

⎫<br />

V 8LC <br />

<br />

8LC<br />

1 T ⎬⎭<br />

<br />

1 M <br />

<br />

(8.278a,b)<br />

8.11 Isolated Cuk converter. The isolated Cuk converter is shown in Fig. 8.115.<br />

Show that the conversion ratio is given by:<br />

M <br />

n D D<br />

(8.279)<br />

Figure 8.115<br />

The magnetizing inductance of the transformer can have a significant effect on<br />

the control-to-output transfer function because it can resonate with C <br />

and C <br />

,<br />

both of which must be properly damped.<br />

8.12 The control-to-output transfer function of the tapped buck converter.<br />

(a) Determine the transfer function in Eq. (8.147).<br />

(b) Examine the current waveform i (t) in Figs. 8.51a, b,and explain why the zero<br />

<br />

in the control-to-output transfer function is in the right-half plane for n 1<br />

and in the left-half plane for n 1.<br />

(c) Derive the analytical expression of this zero using a similar argument given for<br />

the boost converter in Eqs. (8.138—8.143).<br />

8.13 Effect of parasitic elements on the voltage conversion ratio of the Watkins–<br />

Johnson converter.<br />

(a) Substitute the dc model of the PWM switch in the converter shown in Fig. 8.56<br />

and include a parasitic resistance, r <br />

,in series with the active terminal (or at any<br />

other place that you like). Determine the new conversion ratio using the EET<br />

with r <br />

as the designated extra element.<br />

(b) Show that the conversion in the presence of r <br />

is zero for D 0.5.<br />

(c) Sketch the conversion ratio in part (b) and determine its maximum value.


468 PWM switching dc-to-dc converters<br />

8.14 Inverse of the Watkins–Johnson converter. Identify the PWM switch in the<br />

converter shown in Fig. 8.58 and determine its voltage conversion ratio.<br />

8.15 Frequencyresponse of a quadratic converter. An OrCAD/Pspice simulation<br />

of the quadratic converter in Fig. 8.64 is shown below in which the control-tooutput<br />

transfer function is determined by expanding the large-signal model of the<br />

PWM switch (VMLSCCM) at a duty cycle of D 0.35. This is accomplished by<br />

setting the control voltage at a dc value of 1.35 V with a small-signal ac voltage<br />

superimposed on it.<br />

Using the numerical values of the components in Fig. 8.116a,verify the controlto-output<br />

transfer function derived in Eq. (8.185) against Fig. 8.116b.<br />

rL2<br />

0.233<br />

L2<br />

1200uH<br />

3<br />

Vg<br />

25V<br />

F1<br />

GAIN = 1<br />

1<br />

U1<br />

VMLSCCM<br />

A<br />

C<br />

4<br />

VC<br />

P<br />

2<br />

C2<br />

5uF<br />

0<br />

R1<br />

8.05<br />

0<br />

0<br />

rL1<br />

0.133<br />

L1<br />

524uH<br />

V_control<br />

ACMAG = 10mV<br />

DC = 1.35Vdc<br />

E1<br />

GAIN = -1<br />

+<br />

+<br />

-<br />

-<br />

0<br />

0<br />

1<br />

A<br />

3<br />

C<br />

4<br />

VC<br />

P<br />

U2<br />

VMLSCCM<br />

2<br />

0<br />

C1<br />

5uF<br />

0<br />

0<br />

Figure 8.116<br />

Notes: (a) Pspice simply ignores the actual magnitude of the ac voltage,shown here as 10 mV,<br />

and numerically expands the model of the PWM switch at the dc operating point and determines<br />

the numerical transfer function of the linearized circuit. (b) In the specification of the<br />

parameters of VMLSCCM,the height of the ramp is set to 1 V and the valley voltage at 1 V.<br />

Hence,a dc value of 1.35 V in the control voltage results in a duty cycle of 0.35.<br />

8.16 The high-frequencyresistance r e<br />

in the model of the PWM switch. (a) Show<br />

that r <br />

r<br />

<br />

for the converter in Fig. 8.59. (b) Show that r <br />

(r <br />

R)(1 n)/n for<br />

the Watkins—Johnson converter in Fig. 8.56. (c) Determine r <br />

for the converter in<br />

Fig. 8.58.<br />

8.17 Storage-time modulation in the Cuk converter. The effect of storage-time<br />

modulation on the line-to-output transfer function of the Cuk converter can be


469 Problems<br />

Figure 8.116 (cont.)<br />

easily studied by using the model of the PWM switch in Fig. 8.74 as shown in Fig.<br />

8.117. In particular,we are interested in determining the numerator of the line-tooutput<br />

transfer function. Using the technique explained in (Section 2.4),show that:<br />

v (s)<br />

s<br />

<br />

v (s) 1 ω <br />

1 s<br />

ω <br />

<br />

D(s)<br />

<br />

(8.280)<br />

where:<br />

ω 1<br />

r C ⎫<br />

(8.281a, b)<br />

DD<br />

ω C (DDr Dr Dr r )<br />

<br />

in which the modulation resistance is given by:<br />

⎬<br />

⎭<br />

r <br />

V <br />

I <br />

V <br />

DI <br />

(8.282)<br />

It can be seen that ω <br />

can be either in the left-half plane or the right-half plane<br />

depending on the relative magnitudes of the parasitic resistances and the modulation<br />

resistance which can have either a positive or a negative value depending<br />

upon the type of base drive used.


470 PWM switching dc-to-dc converters<br />

Figure 8.117<br />

REFERENCES<br />

1. S. Cuk and R. D. Middlebrook,‘‘A New Optimum Topology Switching dc-to-dc<br />

Converter’’, Proceedings of the 1977 IEEE Power Electronics Specialist Conference,PESC<br />

77 Record,<br />

pp. 160—179.<br />

2. S. Cuk,‘‘Switching dc-to-dc Converter with Zero Input or Output Current’’, Proceedings of<br />

the 1978 IEEE Industry and Applications Society Annual Meeting,October 1—5,Record,pp.<br />

1131—1146.<br />

3. S. Cuk,‘‘A New Zero-Ripple dc-to-dc Converter and Integrated Magnetics’’,Proceedings of<br />

the 1980 IEEE Power Electronics specialist Conference,PESC 80 Record,pp. 12—32.<br />

4. V. Vorpérian,‘‘Simplified analysis of PWM Converters Using the Model of the PWM<br />

Switch: Parts I and II’’, IEEE Transactions on Aerospace Electronic Systems,Vol. 26,No. 3,<br />

1990,<br />

pp. 490—505.<br />

5. B. Israelson,J. Martin,C. Reeve and V. Scown,‘‘A 2.5-kV High Reliability TWT Power<br />

Supply: Design <strong>Techniques</strong> for High Efficiency and Low Ripple’’, Proceedings of the 1977<br />

IEEE Power Electronics Specialist Conference,PESC 77 Record,pp. 109—130.<br />

6. D. Maksimovic and S. Cuk,‘‘General Unified Properties and Synthesis or PWM<br />

Converters’’, Proceedings of the 1989 IEEE Power Electronics Specialist Conference,PESC<br />

89 Record,<br />

pp. 515—525.<br />

7. W. Polivka,P. Chetty and R. Middlebrook,‘‘State-Space Average Modelling of Converters<br />

with Parasitics and Storage-Time Modulation’’, Proceedings of the 1980 IEEE Power<br />

Electronics Specialists Conference,PESC 80 Record.<br />

8. C. Deisch,‘‘Switching Control Method Changes Power Converter into a Current Source’’,<br />

Proceedings of the 1978 Power Electronics Specialist conference,PESC 78 Record,pp.<br />

300—306.<br />

9. V. Vorpérian,‘‘Analysis of Current-Controlled PWM Converters Using the Model of the<br />

Current-Controlled PWM Switch’’, Power Conversion and Intelligent Motion Conference,<br />

1990,pp. 183—195.


471 References<br />

10. R. B. Ridley,‘‘A New Continuous-Time Model for Current-Mode Control’’,IEEE<br />

Transactions of Power Electronics,Vol. 6,April 1991,pp. 271—280.<br />

11. V. Vorpérian and S. Cuk,‘‘A Complete DC Analysis of the Series Resonant Converter’’,<br />

Proceedings of the 1982 Power Electronics Specialist Conference,PESC 82 Records,pp.<br />

85—100.<br />

12. R. D. Middlebrook,‘‘Input Filter Considerations in the Design and Application of<br />

Switching Regulators’’, Proceedings of the 1976 IEEE Industry and Applications Society<br />

Annual Meeting,October 11—14,1976 Record,pp. 366—382.<br />

13. V. Vorpérian,‘‘The Effect of the Magnetizing Inductance on the Small-Signal Dynamics of<br />

the Isolated Cuk Converter’’, IEEE Transactions on Aerospace and Electronic Systems,<br />

Vol. 32, No. 3,July 1996,pp. 967—983.


台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />

電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />

[References]<br />

Introduction<br />

[1] A. J. Forsyth and S. V. Mollov, "Modelling and control of DC-DC converters," IEEE<br />

Power Engineering Journal, vol. 12, no. 5, pp. 229-236, 1998. [8 pages]<br />

[2] D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, G. C. Verghese, "<strong>Modeling</strong> and<br />

simulation of power electronic converters," Proceedings of the IEEE, vol. 89, no. 6,<br />

pp. 898-912, June 2001. [15 pages]<br />

[3] V. Ramanarayanan, "DC to DC Converters - Dynamics," Switched Mode Power<br />

Conversion Course Note, Indian Institute of Science, 2002. [28 pages]<br />

[4] V. Ramanarayanan, "Closed Loop Control of Power Converters," Switched Mode<br />

Power Conversion Course Note, Indian Institute of Science, 2002. [16 pages]<br />

[5] V. Ramanarayanan, "Current Programmed Control of DC to DC Converters,"<br />

Switched Mode Power Conversion Course Note, Indian Institute of Science, 2002.<br />

[10 pages]<br />

[6] V. Ramanarayanan, "Computer Aided Simulation of a Few Power Supplies,"<br />

Switched Mode Power Conversion Course Note, Indian Institute of Science, 2002.<br />

[20 pages]<br />

<strong>Modeling</strong> <strong>Techniques</strong>: State-Space Averaging<br />

[7] R. D. Middlebrook and S. C'uk, "A general unified approach to modeling switching<br />

converter power stages," IEEE PESC Conf. Rec., pp. 18-34, 1976. [17 pages]<br />

[Pioneer paper]<br />

[8] R. D. Middlebrook, "Small-signal modeling of PWM switched-mode power<br />

converters," IEEE Proc. vol. 76, no. 4, pp. 343-354, April 1988. [12 pages]<br />

[9] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, "Generalized<br />

averaging method for power conversion circuits," IEEE Trans. Power Electron., vol.<br />

6, pp. 251–259, Apr. 1991. [9 pages]<br />

[10] B. Lehman and R. M. Bass, "Recent advances in averaging theory for PWM DC-DC<br />

converters," Proceedings of the 35th IEEE Decision and Control, pp. 4467-4471,<br />

Dec. 1996. [5 pages]<br />

<strong>Modeling</strong> <strong>Techniques</strong>: PWM Switch<br />

[11] Christophe Basso, "A tutorial introduction to simulating current mode power stages,"<br />

PCIM, February 1997.<br />

[12] V. Voperian, "Simplified analysis of PWM converters using model of PWM switch,<br />

part I: CCM mode & part II: DCM mode," IEEE Trans. Aerospace Electronic<br />

Systems, vol. 26, no. 3, May 1990. [16 pages]<br />

[13] K.D.T. Ngo, "Alternate forms of the PWM switch models," IEEE Trans. Aerospace<br />

Electronic Systems, vol. 35, no. 4, 1283-1292, Oct. 1999. [10 pages]<br />

<strong>Modeling</strong> <strong>Techniques</strong>: Equivalent Circuit <strong>Modeling</strong><br />

[14] P. R. K. Chetty, "CIECM modeling of switching DC-DC converters in CIC mode,"<br />

IEEE Trans. Aerospace Electronic Systems, vol. 17, no. 6,pp. 802-808, Nov 1981. [9<br />

pages]<br />

[15] P. R. K. Chetty, "CIECM modeling of switching DC-DC converters in DIC mode,"<br />

IEEE Trans. on IE, vol. 18, no.3, pp. 295-299, May/June 1982. [5 pages]<br />

[16] P. R. K. Chetty, "<strong>Modeling</strong> and design of switching regulators," IEEE Trans.<br />

Aerospace Electronic Systems, vol. 18, no. 3, pp. 333-344, May 1982. [12 pages]


台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />

電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />

[17] S. R. Sanders and G. C. Verghese, "Synthesis of averaged circuit models for<br />

switched power converters," IEEE Trans. Circuits Syst., vol. 38, pp. 905–915, Aug.<br />

1991.<br />

<strong>Modeling</strong> <strong>Techniques</strong>: Large-Signal <strong>Modeling</strong><br />

[18] F. Guinjoan, J. Calvente, A. Poveda, and L. Martinez, "Large-signal modeling and<br />

simulation of switching DC-DC converters," IEEE Trans. on Power Electronics, vol.<br />

12, no. 3, 485-494, May 1997. [10 pages]<br />

[19] G. Nirgude, R. Tirumala, and N. Mohan, "A new, large-signal average model for<br />

single-switch DC-DC converters operating in both CCM and DCM," IEEE PESC<br />

Conf. Rec., pp. 1736-1741, 2001. [6 pages]<br />

[20] D. Maksimovic and S. Cuk, "A unified analysis of PWM converters in discontinuous<br />

modes," IEEE Trans. on Power Electronics, vol. 6, no. 3, 476-490, July 1991. [15<br />

pages]<br />

<strong>Modeling</strong> <strong>Techniques</strong>: Comparison and Evaluation<br />

[21] W. M. Moussa and J. E. Morris, "Comparison between state space averaging and<br />

PWM switch for switch mode power supply analysis," IEEE Proc. of Southern Tier<br />

Technical Conference, 25 April 1990. [7 pages]<br />

<strong>Modeling</strong> <strong>Techniques</strong>: Computer Simulation Technique<br />

[22] Sam Ben-Yaakov, "Simulation of Power Conversion Systems: From the State of the<br />

Art to Future Trends," pp. 13-24, PCIM Proc., Nuremberg, 1999. [12 pages]<br />

[23] N. Mohan, W. P. Robbins, T. M. Undeland, R. Nilssen, and O. Mo, "Simulation of<br />

Power Electronic and Motion Control Systems-An Overview (Invited Paper),"<br />

Proceedings of the IEEE, vol. 82, no. 8, pp. 1287-1302, Aug. 1994. [16 pages]<br />

[24] H. Jin, "Behavior-mode simulation of power electronic circuits," IEEE Trans. on<br />

Power Electronics, vol. 12, no. 3, pp. 443-452, May 1997. [10 pages]<br />

[25] Sun Jian and H. Grotstollen, "Symbolic analysis methods for averaged modeling of<br />

switching power converters," IEEE Trans. on Power Electronics, vol. 12, no. 3, pp.<br />

537-546, May 1997. [10 pages]<br />

[26] Christophe Basso, "Average simulations of FLYBACK converters with SPICE3," May<br />

1996. [19 pages]<br />

CAD of SPS<br />

[27] Y. S. Lee, Chap. 8: CAD of Converters and Regulators, Marcel Dekker, Inc., 1993.<br />

[89 pages]<br />

[28] S. Chwirka, "Power converter design using the Saber simulator," A step-by-step<br />

guide to the design of a two-switch, voltage-mode, forward converter using the<br />

Saber simulator," Analogy, Inc., 1991. [32 pages]<br />

[29] Edited by Charles E. Hymowitz, Power Specialists Application Note Book, Intusoft,<br />

1998. [171 pages]<br />

[30] Michele Sclocchi, SWITCHING POWER SUPPLY DESIGN: DISCONTINUOUS<br />

MODE FLYBACK CONVERTER, National Semiconductor. (MATHCAD Design<br />

Example)<br />

[31] Michele Sclocchi, SPS Design: PWM current mode dual synchronous buck<br />

converter using LM5642, National Semiconductor. (MATHCAD Design Example)


台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />

電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />

Frequency Response Measurement<br />

[32] R. D. Middlebrook, "Measurements of loop gain in feedback systems," International<br />

J. of Electronics, vol. 38, no. 4, pp. 485-512, April 1975. [28 pages]<br />

[33] Cho and Lee, "Measurement of loop gain with the digital modulator," IEEE Trans. on<br />

Power Electronics, vol. 1, no. 1, pp. 55-62, Jan. 1986. [8 pages]<br />

[34] R. B. Ridley, B. H. Cho, and F. C. Lee, "Analysis and interpretation of loop gains of<br />

multiloop-controlled SPS," IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 489-<br />

498, Oct. 1988. [10 pages]<br />

[35] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, "Generalized<br />

averaging method for power conversion circuits," IEEE Trans. on Power Electronics,<br />

vol. 6, no. 2, pp. 251-259, April 1991. [9 pages]<br />

[36] S. R. Sanders and G. C. Verghese, "Synthesis of averaged circuit models for<br />

switched power converters," IEEE Trans. on Circuits and Systems, vol. 38, no. 8, pp.<br />

905-915, Aug. 1991. [10 pages]<br />

[37] Ray Ridley, Frequency Response Measurements for Switching Power Supplies,<br />

Ridley Engineering, Inc., 2001.<br />

[38] LeCroy, Measure The Phase Margin of Power Supply Control Loops, LeCroy<br />

Application Brief No. LAB 748.<br />

[39] Powertek Technical Note, "Measuring closed loop feedback system response,"<br />

application note of Powertek GP102 Frequency Response Analyzer.<br />

[40] Venable Technical Paper #02: Specify Gain and Phase Margins On All Your Loops,<br />

Venable Instruments.<br />

[41] Venable Technical Paper #13: Testing Power Factor Correction Circuits For Stability,<br />

Venable Instruments.<br />

[42] Venable Technical Paper #14: New <strong>Techniques</strong> for Loop Stability Testing in PFC<br />

Circuits, Venable Instruments.<br />

[43] Venable Technical Paper #16: Practical Testing <strong>Techniques</strong> for Modern Control<br />

Loops, Venable Instruments.<br />

[44] Venable Technical Paper #17: Testing and Stabilizing Feedback Loops in Today's<br />

Power Supplies, Venable Instruments.<br />

[45] Venable Technical Paper #18: New <strong>Techniques</strong> for Measuring Feedback Loop<br />

Transfer Function, Venable Instruments.<br />

Control Loop Design<br />

[46] L. H. Dixon, Closing the Feedback Loop, Unitrode Application Note, 1988. [31 pages]<br />

[47] Sable, Ridley, and Cho, "Comparison of performance of single-loop and currentinjection-control<br />

for PWM converters which operate in both continuous and<br />

discontinuous modes of operation," IEEE PESC Conf. Rec., 1990. [6 pages]<br />

[48] G. K. Schoneman and D. M. Mitchell, "Closed-loop comparisons of switching<br />

regulators with current-injected control," IEEE Trans. on Power Electronics, vol. 3,<br />

no. 1, pp. 31-43, Jan. 1988. [13 pages]<br />

[49] R. D. Middlebrook, "Topics in multiple-loop regulators and current-mode<br />

programming," IEEE Trans. on Power Electronics, vol. 2, no. 2, pp. 109-124, April<br />

1987. [16 pages]<br />

[50] G. Ioannidis, A. Kandianis, and S. N. Manias, "Novel control design for the buck<br />

converter," IEE Proceedings-Electric Power Applications, vol. 145, no. 1, pp. 39-47,<br />

Jan. 1998. [9 pages]


台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />

電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />

[51] S. Hiti and D. Boroyevich, "Control of boost converter with adjustable output voltage<br />

and unknown resistive load," IEEE PESC Conf. Rec., pp. 294-300, 1994. [7 pages]<br />

[52] F. C. Lee, Y. Yu, and M. F. Mahmoud, "A unified analysis and design procedure for<br />

the standardized control module for DC-DC switching regulators," VPEC<br />

Publications. [18 pages]<br />

[53] F. C. Lee and R. A. Carter, "Investigations of stability and dynamic performances of<br />

switching regulators employing current-injected control," VPEC Publications. [13<br />

pages]<br />

[54] F. C. Lee, Z. D. Fang, and T. H. Lee, "Optimal design strategy of switching<br />

converters employing current injected control," VPEC Publications. [15 pages]<br />

Control Loop Design: Output Impedance<br />

[55] G. K. Schoneman and D. M. Mitchell, "Output impedance considerations for<br />

switching regulators with current-injected control," IEEE Trans. on Power Electronics,<br />

vol. 4, no. 1, pp. 25-35, Jan. 1989. [10 pages]<br />

Control Loop Design: Input Filter Effect<br />

[56] H. Tsafrin and S. Ben-Yaakov, "The dynamic response of PWM DC-DC converters<br />

with input filters," IEEE APEC Conf. Rec., 764-771, Boston, 1992. [8 pages]<br />

<strong>Modeling</strong> and Control of Flyback and Forward Converters<br />

[57] M. K. Kazimierczuk and S. T. Nguyen, "Small-signal analysis of open-loop PWM<br />

flyback dc-dc converter for CCM," IEEE Aerospace and Electronics Conference,<br />

1995. [8 pages]<br />

[58] Z. D. Fang, T. H. Lee, and F. C. Lee, "Some design considerations of switching<br />

regulator employing current injected control," Power Conversion International, 1983.<br />

[20 pages]<br />

[59] T. H. Chen, W. L. Lin, and C. M. Liaw, "Dynamic modeling and controller design of<br />

flyback converter," IEEE Trans, on Aerospace and Electronic Systems, vo. 35, no. 4,<br />

pp. 1230-1239, Oct. 1999. [10 pages]<br />

[60] I. D. Jitaru and Seban Birca-Galateanu, "Small-signal characterization of the<br />

forward-flyback converters with active clamp," IEEE APEC Conf. Rec., pp. 626-632,<br />

1998. [7 pages]<br />

<strong>Modeling</strong> and Control of Converters with Multiple Outputs<br />

[61] Yie-Tone Chen ( 陳 一 通 ), "Small-signal analysis of a synchronous-switch post<br />

regulator with coupled inductors," IEEE Transactions on Industrial Electronics, vol.<br />

47, no. 1, pp. 55-66, Feb. 2000. [12 pages]<br />

[62] A. Ferreres, J. A. Carrasco, E. Maset, and J. B. Ejea, "Small-signal modeling of a<br />

controlled transformer parallel regulator as a multiple output converter high efficient<br />

post-regulator," IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 183-191, Jan.<br />

2004. [9 pages]<br />

[63] Youhao Xi and P. K. Jain, "A single-stage converter topology to achieve efficient onboard<br />

power distribution for multi-points loads," IEEE APEC Conf. Rec., pp. 885-891,<br />

2002. [7 pages]<br />

[64] D. Maksimovic, R. W. Erickson, and C. Griesbach, "<strong>Modeling</strong> of cross-regulation in<br />

converters containing coupled inductors," IEEE Transactions on Power Electronics,<br />

vol. 15, no. 4, pp. 607-615, July 2000. [9 pages]


台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />

電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />

[65] Y. Xi, P.K. Jain and Y. Liu, "A precisely regulated multiple output forward converter<br />

topology," IEEE APEC Conf. Rec., pp. 986-992, 2000.<br />

[66] Xi Youhao and P. K. Jain, "Small signal model and control of an independently<br />

regulated multiple output forward converter topology," IEEE APEC Conf. Rec., pp.<br />

221-227, 2000. [7 pages]<br />

[67] Q. Chen, F. C. Lee, and M. M. Jovanovic, "Small-signal analysis and design of<br />

weighted voltage-mode control for a multiple-output forward converter," IEEE Trans.<br />

Power Electronics, vol. 10, pp. 589–596, Sept. 1995.<br />

[68] Y. L. Lin and K. H. Liu, "A new synchronous-switch post regulator for multi-output<br />

forward converters," IEEE PESC Conf. Rec., 1990, pp. 693–696, 1990.<br />

[69] I. J. Lee, D. Y. Chen, Y. P. Wu, and C. Jamerson, "<strong>Modeling</strong> of control loop behavior<br />

of magamp post regulators," IEEE Trans. on Power Electronics, pp. 476–483, Oct.<br />

1990.<br />

[70] Y. T. Chen and F. Y. Shih, "New multi-output switching converters with MOSFETrectifier<br />

post regulators," IEEE Transactions on Industrial Electronics, vol. 45, pp.<br />

609–616, Aug. 1998.<br />

[71] M. Goldman and A. F. Witulski, "Small signal effects of the coupled inductor in a<br />

multiple-output converter," Proc. HFPC, pp. 510–523, 1994.<br />

[72] A. F. Witulski, "<strong>Modeling</strong> and design of transformers and coupled inductors," IEEE<br />

PESC Conf. Rec., pp. 589–595, 1993.<br />

[73] S. Cuk and Z. Zhang, "Coupled-inductor analysis and design," IEEE PESC Conf.<br />

Rec., pp. 655–665, 1986.<br />

[74] J. A. Carasco, J. B. Ejea, A. Ferreres, E. J. Dede, "A multiple output regulator using<br />

the variable transformer turns ratio regulator technique," IEEE PESC Conf. Rec.,<br />

pp.1098-1103, 1995.<br />

[75] Y. Xi, P. K. Jain, Y. Liu and R. Orr, "A zero voltage switching and self reset forward<br />

converter topology," IEEE APEC Conf. Rec., pp. 827-833, 1999.<br />

[76] C. Jamerson and T. Long, "Design techniques for synchronous-switch post<br />

regulators," Proc. HFPC, 1993, pp. 10–20.<br />

[77] Y. Lin and K. Liu, "A new synchronous switch post regulator for multi-output<br />

forward," IEEE APEC Conf. Rec., pp. 693-696, 1990.<br />

[78] H. Matsuo and F. Kurokawa, "Precise Regulation of multiple output voltages in a dcdc<br />

converter," IEEE PESC Conf. Rec., pp. 275-283, 1980.<br />

[79] H. Matsuo, "Comparison of multiple output dc/dc converter using cross regulation,"<br />

IEEE PESC Conf. Rec., pp.169-185, 1979.<br />

[80] K. Harada, T. Ninomiya and T. Nabeshima, "On the precise regulation of multiple<br />

outputs in a dc-dc converter with an energy storage reactor," IEEE PESC Conf. Rec.,<br />

1979.<br />

[81] T. G. Wilson, Jr., "Cross regulations in an energy-storage DC-to-DC converter with<br />

two regulated outputs," IEEE PESC Conf. Rec., pp. 190–199, 1977.<br />

Design Examples<br />

[82] Unitrode, General Power Supply Selection Guides, [13 pages]<br />

[83] Unitrode, UC3842/3/4/5 provides low-cost current mode control, [UC3842/3/4/5 data<br />

sheet] [21 pages]<br />

[84] J.-J. Shieh, "Closed-form oriented loop compensator design for peak current-mode<br />

controlled DC-DC regulators," IEE Proc. Elect. Power Appli., vol. 150, no. 3, pp. 351-<br />

355, May 2003. [6 pages]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!