Modeling Techniques - é»åé»å 系統èæ¶çè¨è¨å¯¦é©å®¤ - åç«äº¤é大å¸
Modeling Techniques - é»åé»å 系統èæ¶çè¨è¨å¯¦é©å®¤ - åç«äº¤é大å¸
Modeling Techniques - é»åé»å 系統èæ¶çè¨è¨å¯¦é©å®¤ - åç«äº¤é大å¸
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
台 灣 新 竹 ‧ 交 通 大 學 ‧ 前 瞻 電 力 電 子 中 心 808 實 驗 室 ( 電 力 電 子 系 統 與 晶 片 實 驗 室 )<br />
課 程 名 稱 : 數 位 電 源 控 制 (Digital Power Control)<br />
<strong>Modeling</strong> and Control of DC-DC Converters<br />
直 流 / 直 流 轉 換 器 之 模 型 與 控 制<br />
鄒 應 嶼<br />
教 授<br />
國 立 交 通 大 學<br />
電 機 與 控 制 工 程 研 究 所<br />
2012 年 3 月 12 日<br />
Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
Advanced Power Electronics Center, NCTU, Taiwan
台 灣 新 竹 交 通 大 學 808 實 驗 室 ( 電 力 電 子 系 統 與 晶 片 實 驗 室 )<br />
<strong>Modeling</strong> and Control of DC-DC Converters<br />
Switching power converters<br />
+<br />
+<br />
+ − +<br />
+<br />
−<br />
− − +<br />
−<br />
−<br />
PWM<br />
Modulator<br />
Loop<br />
Compensator<br />
−<br />
+<br />
Switching converter<br />
power input<br />
Load<br />
+<br />
v g (t) +<br />
–<br />
R v(t)<br />
–<br />
feedback<br />
connection<br />
transistor<br />
gate driver<br />
δ( t)<br />
δ (t)<br />
Pulse-width<br />
modulator<br />
v( t)<br />
v c<br />
compensator<br />
G c<br />
( s)<br />
voltage<br />
reference<br />
+ – Hv<br />
vref<br />
dT s<br />
T s<br />
t<br />
t<br />
Controller<br />
Efficiency<br />
Output Impedance<br />
Power Electronic Systems & Chips Lab., NCTU, Taiwan
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 力 電 子 系 統 晶 片 、 數 位 電 源 、DSP 控 制 、 馬 達 與 伺 服 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
DC-DC Converters: <strong>Modeling</strong> <strong>Techniques</strong><br />
鄒 應 嶼<br />
教 授<br />
國 立 交 通 大 學<br />
電 機 與 控 制 工 程 研 究 所<br />
2012 年 3 月 10 日<br />
LAB808<br />
NCTU<br />
Lab808: 電 力 電 子 系 統 與 晶 片 實 驗 室<br />
Power Electronic Systems & Chips, NCTU, TAIWAN<br />
台 灣 新 竹 • 交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />
Filename: \B01 投 影 片 :【1】 電 力 電 子 ( 研 究 所 )\PE-07:【1 基 礎 】02:DC-DC - <strong>Modeling</strong> <strong>Techniques</strong>.ppt<br />
1/107<br />
DC-DC Converters: <strong>Modeling</strong> <strong>Techniques</strong><br />
1. <strong>Modeling</strong> of Switching Converters<br />
2. State-Space Averaging Technique<br />
3. PWM Switch <strong>Modeling</strong> Technique<br />
4. CIECM <strong>Modeling</strong> <strong>Techniques</strong><br />
5. <strong>Modeling</strong> of Current-Mode DC-DC Converters<br />
6. Difficulties with <strong>Modeling</strong> and Control of SPS<br />
2/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
1
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
<strong>Modeling</strong> of Switching Converters<br />
電 力 電 子 系 統 與 晶 片 實 驗 室<br />
Power Electronic Systems & Chips Lab.<br />
交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />
3/107<br />
<strong>Modeling</strong> of Switching Converters<br />
• Why <strong>Modeling</strong> ?<br />
• Classification of <strong>Modeling</strong> <strong>Techniques</strong><br />
• <strong>Modeling</strong> of Switching Power Converters<br />
• State-Space Averaging Technique<br />
• Transfer Functions<br />
• Small-Signal Equivalent Circuit Model<br />
4/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
2
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Objective of <strong>Modeling</strong><br />
Static Characteristics<br />
Objective of <strong>Modeling</strong><br />
Analysis<br />
Simulation<br />
Design<br />
Efficiency<br />
Output Impedance<br />
5/107<br />
Difficulties with <strong>Modeling</strong> of SPS<br />
Nonsmooth Systems (time and state discontinuity)<br />
Nonlinearity due to operating point<br />
Concepts of existence, uniqueness, stability not clearly<br />
defined for systems with discontinuous right half-plan zero<br />
Inherent Nonlinear Dynamic Behavior!<br />
Concept of chaotic dynamics relatively new to power<br />
electronics<br />
Magnetics<br />
Noises and EMI<br />
Thermal and Temperature Distribution<br />
6/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
3
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Working Profile of a Switching Converter<br />
v o<br />
Power-on<br />
i o<br />
Dell power edge 2400 (web/SQL server)<br />
Power-off<br />
Watts<br />
% CPU time<br />
7/107<br />
Static Characteristics of a DC-DC Converter<br />
L<br />
Buck<br />
v i<br />
D<br />
C<br />
v o<br />
L<br />
D<br />
Boost<br />
v i<br />
C<br />
v o<br />
D<br />
Buck-Boost v i L C<br />
v o<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
4
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Operating Region Operating Point Operating Mode?<br />
1.0<br />
V<br />
V<br />
OUT<br />
IN<br />
D = 1.0<br />
0.9<br />
V IN<br />
= constant<br />
0.75<br />
0.50<br />
DCM<br />
CRM<br />
0.7<br />
0.5<br />
CCM<br />
V<br />
OUT(max)<br />
V<br />
IN(min)<br />
0.25<br />
0.3<br />
0.1<br />
V<br />
OUT(min)<br />
V<br />
IN(max)<br />
0<br />
0 0.5 1.0 1.5 2.0<br />
I OUT(min)<br />
I OUT(max)<br />
I<br />
(<br />
I<br />
o<br />
LB, max<br />
)<br />
9/107<br />
Operating Point Steady-State Trajectory<br />
1.0<br />
V o /V i = 1.0<br />
D = 1.0<br />
Itest<br />
0.75<br />
0.9<br />
0.7<br />
I test<br />
2A<br />
R o<br />
= 500Ω<br />
CCM<br />
0.5<br />
0.5<br />
5msec<br />
100msec<br />
0.25<br />
0<br />
0.3<br />
DCM<br />
0.1<br />
20% 40% 50% 60% 80% 90% 100% 110%<br />
If the components are not ideal, its parasitic<br />
parameters will change its static curves. The<br />
illustrated example is obtained with the<br />
following parameters:<br />
R DS(ON) = 50 mΩ<br />
MOSFET reverse diode voltage drop = 0.7V<br />
Diode voltage drop = 0.7V<br />
Inductor ESR = 25mΩ<br />
Capacitor ESR = 2mΩ<br />
10/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
5
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Operating Point Small-Signal Perturbations<br />
1.0<br />
V o /V i = 1.0<br />
D = 1.0<br />
電 流 負 載 的 步 階 切 換 !<br />
0.9<br />
0.75<br />
0.7<br />
CCM<br />
Step Load Change<br />
1A<br />
B<br />
0.5<br />
0.5<br />
Output Voltage<br />
0A<br />
0.3<br />
0.25<br />
DCM<br />
0.1<br />
Inductor Current<br />
0<br />
20% 40% 50% 60% 80% 90% 100% 110%<br />
11/107<br />
Operating Point Frequency Response<br />
Q Y = 7.070<br />
R o<br />
Q B = 3.535<br />
Q A = 1.414<br />
Q X = 0.707<br />
D = 1.0<br />
0.9<br />
OPY<br />
0.7<br />
Q B<br />
= 3.535 Q A<br />
= 1.414<br />
CCM<br />
0.5<br />
Q Y<br />
= 7.07<br />
0.3<br />
OPX<br />
Q X<br />
= 0.707<br />
DCM<br />
0.1<br />
20% 40% 50% 60% 80% 90% 100% 110%<br />
12/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
6
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Operating Region State-Variable Plane<br />
1.0<br />
0.75<br />
0.5<br />
0.25<br />
V o /V i = 1.0<br />
DCM<br />
D = 1.0<br />
0.9<br />
0.7<br />
0.5<br />
0.3<br />
0.1<br />
CCM<br />
則<br />
有<br />
部<br />
分<br />
會<br />
進<br />
入<br />
不<br />
連<br />
續<br />
導<br />
通<br />
工<br />
作<br />
區<br />
。<br />
通<br />
工<br />
作<br />
區<br />
內<br />
,<br />
但<br />
是<br />
從<br />
工<br />
作<br />
點<br />
到<br />
工<br />
作<br />
點<br />
從<br />
工<br />
作<br />
點<br />
到<br />
工<br />
作<br />
點<br />
的<br />
軌<br />
跡<br />
均<br />
在<br />
連<br />
續<br />
導<br />
0<br />
10% 20%<br />
40% 60% 80% 90% 100% 110%<br />
13/107<br />
<strong>Modeling</strong> of Switching Power Converters<br />
• <strong>Modeling</strong> of Voltage-Mode DC-DC Converters<br />
- Power Stage <strong>Modeling</strong><br />
• State-space average model (Middlebrook and C'uk 1977)<br />
• Discrete time-domain model (Lee 1979)<br />
• Equivalent circuit model (Chetty 1981)<br />
• Unified topological model (Pietkiewicz and Tollik, 1987)<br />
• PWM switch model (Voperian 1988)<br />
• Injected-absorbed-current model (Kisovski 1991)<br />
- Error Processor <strong>Modeling</strong> (Chetty 1982)<br />
- Pulsewidth Modulator <strong>Modeling</strong><br />
• Describing function model (Lee 1983)<br />
• Equivalent circuit model (Bello 1981)<br />
- Larger Signal <strong>Modeling</strong> (Vicua 1992)<br />
• <strong>Modeling</strong> of Current-Mode DC-DC Converters<br />
- Equivalent Circuit Model (Chetty 1981)<br />
- y-parameter Model (Middlebrook 1989)<br />
14/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
7
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
<strong>Modeling</strong> <strong>Techniques</strong><br />
State Space Averaging Method<br />
[1] R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter<br />
stages,” IEEE PESC Conf. Rec., pp. 18-34, 1976. [Pioneer Paper]<br />
[2] S. Cuk and R. D. Middlebrook, “A general unified approach to modeling switching DC-to-DC<br />
converters in discontinuous conduction mode,” IEEE PESC Conf. Rec., pp. 36-57, 1977.<br />
<strong>Modeling</strong> of Switching Converters in DCM Operation<br />
[1] D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE<br />
Trans. Power Electron., vol. 6, pp. 476–490, May 1991.<br />
[2] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of PWM<br />
converters operating in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 16, pp.<br />
482-492, July 2001.<br />
R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter stages,”<br />
IEEE PESC Conf. Rec., pp. 18-34, 1976.<br />
15/107<br />
<strong>Modeling</strong> <strong>Techniques</strong> ..<br />
PWM Switch Method<br />
[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I:<br />
Continuous Conduction Mode,” IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496,<br />
May 1990.<br />
[2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II:<br />
Discontinuous Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp.<br />
497-505, May 1990.<br />
Fast Analytical <strong>Techniques</strong> for Electrical and Electronic Circuits,<br />
V. Vorperian, Cambridge Press, 2004.<br />
Vatche Vorperian, (1984) Analysis of resonant converters. Dissertation (Ph.D.), California<br />
Institute of Technology, Advised by S. Cuk.<br />
1. Introduction<br />
2. Transfer functions<br />
3. The extra element theorem<br />
4. The N-extra element theorem<br />
5. Electronic negative feedback<br />
6. High-frequency and microwave circuits<br />
7. Passive filters<br />
8. PWM switching dc-to-dc converters<br />
16/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
8
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
<strong>Modeling</strong> <strong>Techniques</strong> ..<br />
Discrete Time-Domain Method<br />
[1] F. C. Lee, R. P. Iwens, Y. Yu, and J. E. Triner, “Generalized computer-aided discrete time-domain<br />
modeling and analysis of DC-DC converters,” IEEE Trans. IECI, vol. 26, pp. 58-69, May 1979.<br />
Equivalent Circuit Method<br />
[1] P.R.K. Chetty, Switch-Mode Power Supply Design, TAB BOOKS, Inc., 1986.<br />
<strong>Modeling</strong> of Current-Programmed Converter<br />
[1] R. D. Middlebrook, “<strong>Modeling</strong> current programmed buck and boost converters,” IEEE Trans. on<br />
Power Electronics, vol. 4, pp. 36-52, January 1989.<br />
[2] Teuvo Suntio, “Analysis and modeling of peak-current-mode-controlled buck converter in DICM,”<br />
IEEE Trans. on Ind. Electron., vol. 48, no. 1, pp. 127-135, Feb. 2001.<br />
Unified Topological Method<br />
[1] Pietkiewicz, A. and D. Tollik, “Unified topological modeling method of switching dc-dc converters<br />
in duty-ratio programmed mode,” IEEE Trans. on Power Electron., vol. 2, no. 3, pp. 218-226, July<br />
1987.<br />
Injected-Absorbed-Current Method<br />
[1] Kislovski, A. S., R. Redl, and N. O. Sokal, Dynamic Analysis of Switching-Mode DC/DC<br />
Converters, Van Nostrand Reinhold, 1991.<br />
17/107<br />
<strong>Modeling</strong> <strong>Techniques</strong> ..<br />
Small-Signal z-Domain Analysis<br />
[1] D. M.Van de Sype, K. De Gusseme, F.M.L.L. DeBelie, A. P. Van den Bossche, and J. A. Melkebeek,<br />
“Small-signal z -domain analysis of digitally controlled converters,” IEEE Transactions on Power<br />
Electronics, vol. 21, no. 2, pp. 470- 478, March 2006.<br />
[2] D. M.Van de Sype, K. De Gusseme, A. P. Van den Bossche, and J. A. Melkebeek, “Experimental<br />
verification of the z-domain model for digitally controlled converters,” IEEE Power Electronics<br />
Specialists Conference, vol., no., pp.2164-2170, 16-16 June 2005.<br />
[3] Yu-Cheng Lin; Dan Chen; Yen-Tang Wang; Wei-Hsu Chang; “A novel loop gain correction method<br />
for digitally controlled DC-DC power converters,” IEEE Energy Conversion Congress and Exposition<br />
(ECCE) pp.3530-3535, 20-24 Sept. 2009.<br />
Digital Current-Mode Control<br />
[1]Y. S. Jung, “Small-signal model-based design of digital current-mode control,” IEE Proceedings -<br />
Electric Power Applications, vol.152, no.4, pp. 871- 877, 8 July 2005.<br />
[2] S. Chattopadhyay and S. Das, “A digital current-mode control technique for DC–DC converters,”<br />
IEEE Transactions on Power Electronics, vol.21, no.6, pp.1718-1726, Nov. 2006.<br />
18/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
9
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
<strong>Modeling</strong> of DC-DC Converters<br />
Switch-Mode Power Supplies -<br />
SPICE Simulations and Practical<br />
Designs, Christophe Basso,<br />
McGraw-Hill, Feb. 1, 2008.<br />
Fast Analytical <strong>Techniques</strong> for Electrical and Electronic Circuits,<br />
V. Vorperian, Cambridge Press, 2004.<br />
Computer-Aided Analysis<br />
and Design of Switch-Mode<br />
Power Supplies, Yim-Shu<br />
Lee, Marcel Dekker, Inc., Feb.<br />
23, 1993.<br />
Mikko Hankaniemi, Dynamical<br />
Profile of Switched-Mode<br />
Converter – Fact or Fiction?, PhD<br />
Thesis, Tampere University of<br />
Technology, 2007.<br />
SMPS Simulation with SPICE 3,<br />
Steven M. Sandler, McGraw-Hill<br />
Professional, Dec. 1, 1996.<br />
δ()<br />
t<br />
δ (t)<br />
T s dT s<br />
Pulse-width<br />
modulator<br />
t<br />
v( t)<br />
v c<br />
G c ( s)<br />
t<br />
+ – H v<br />
voltage<br />
reference vref<br />
Teuvo Suntio, Dynamic Profile of<br />
Switched-Mode Converter:<br />
<strong>Modeling</strong>, Analysis and Control,<br />
John Wiley, May 2009.<br />
Dynamic Analysis of Switching-Mode<br />
DC/DC Converters, Andre'S. Kislovski,<br />
Richard Redl and Nathan O. Sokal, Van<br />
Nostrand Reinhold, New York, USA, 1991<br />
Complex Behavior of Switching<br />
Power Converters,<br />
Chi Kong Tse, CRC Press, 2004.<br />
PWM Switch <strong>Modeling</strong> of DC-DC Converters<br />
Advances in Averaged Switch <strong>Modeling</strong> and Simulation<br />
Dragan Maksimovic and Robert Erickson<br />
Colorado Power Electronics Center (CoPEC)<br />
IEEE PESC1999 Seminar<br />
The “PWM Switch” in mode transitioning SPICE models<br />
PCIM Germany 2005.<br />
Christophe Basso – On-Semi Application Manager<br />
20/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
10
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Timothy Hegarty, Voltage-mode control<br />
and compensation - Intricacies for buck<br />
regulators, EDN 2008.<br />
Control of DC-DC Converters<br />
Ray Ridley, 30 Years of currentmode<br />
control, 2008.<br />
Robert Mammano, SPS Topology -<br />
voltage Mode versus current-mode,<br />
DN-62 slua119.<br />
Lloyd Dixon, Control loop cookbook,<br />
TI-Unitrode slup113a.<br />
Lloyd Dixon, Average Current<br />
Mode Control of Switching<br />
Power Supplies, 1990.<br />
BUCK Converter Control Cookbook,<br />
Zach Zhang, Alpha & Omega<br />
Semiconductor, Inc. PIC-003.<br />
δ (t)<br />
gate driver<br />
Pulse-width<br />
modulator<br />
v c<br />
compensator<br />
G c ( s)<br />
+ –<br />
H. P. Forghani-Zadeh and G.A. Rincon-Mora,<br />
"Current-sensing techniques for DC-DC converters,"<br />
The IEEE 45th Midwest Symposium on Circuits and<br />
Systems (MWSCAS), Aug. 2002.<br />
δ()<br />
t<br />
T s dT s<br />
t<br />
v( t)<br />
t<br />
voltage<br />
reference vref<br />
J. T. Mossoba and P. T. Krein, "Design and control<br />
of sensorless current mode DC-DC converters,"<br />
IEEE APEC Conf. Rec., 2003.<br />
Brian Lynch, Current-mode vs. voltage-mode<br />
control in synchronous buck converters, TI.<br />
<strong>Modeling</strong> and Control of DC-DC Converters<br />
Define the Source<br />
Output Impedance!<br />
L<br />
L<br />
D<br />
Define the Operating Point!<br />
v i<br />
D<br />
C<br />
v o<br />
v i<br />
C<br />
v o<br />
Define the Load<br />
Disturbance<br />
Z os<br />
v g<br />
v o<br />
i o<br />
v~s<br />
Buck Converter<br />
Boost Converter<br />
V s<br />
d<br />
v i<br />
L<br />
D<br />
C<br />
v o<br />
v i<br />
L 1 C 1<br />
D C 2<br />
v o<br />
R L<br />
~<br />
i d<br />
Define the<br />
Line<br />
Disturbance<br />
<br />
Buck/Boost Converter<br />
PW M<br />
Modulator<br />
digital signal processor<br />
C , uk Converter<br />
Switching power converters<br />
Loop<br />
Compensator<br />
analog signal processor<br />
v R<br />
load<br />
Output voltage<br />
feedback only!<br />
22/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
11
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Small-Signal <strong>Modeling</strong> of a<br />
Buck Converter<br />
1.0<br />
0.75<br />
0.50<br />
0.25<br />
V<br />
V<br />
OUT<br />
IN<br />
V IN<br />
= constant<br />
D = 1.0<br />
0.9<br />
CRM<br />
0.7<br />
CCM<br />
0.5<br />
0.3<br />
DCM<br />
0.1<br />
I<br />
(<br />
I<br />
0<br />
0 0.5 1.0 1.5 2.0<br />
o<br />
LB, max<br />
)<br />
V. Vorperian, "Simplified<br />
Analysis of PWM Converters<br />
Using Model of PWM Switch<br />
Part I: Continuous Conduction<br />
Mode," IEEE Trans. on Aero. and<br />
Elec. Sys., vol. 26, no. 3, pp. 490-496,<br />
May 1990.<br />
V. Vorperian, "Simplified<br />
Analysis of PWM Converters<br />
Using Model of PWM Switch<br />
Part II: Discontinuous<br />
Conduction Mode," IEEE Trans. on<br />
Aero. and Electron. Sys., vol. 26, no. 3,<br />
pp. 497-505, May 1990.<br />
Averaged Switch <strong>Modeling</strong> of<br />
Boundary Conduction Mode DCto-DC<br />
Converters<br />
J, Chen, R. Erickson, and D.<br />
Maksimovic, IECON 2001.<br />
<strong>Modeling</strong> of Switching Converters in DCM Operation<br />
1.0<br />
V<br />
V<br />
OUT<br />
IN<br />
D = 1.0<br />
0.9<br />
V IN<br />
= constant<br />
V. Vorperian, "Simplified<br />
Analysis of PWM Converters<br />
Using Model of PWM Switch<br />
Part II: Discontinuous<br />
Conduction Mode," IEEE Trans. on<br />
Aero. and Electron. Sys., vol. 26, no. 3,<br />
pp. 497-505, May 1990.<br />
0.75<br />
0.50<br />
CRM<br />
0.7<br />
0.5<br />
CCM<br />
D. Maksimovic and S. Cuk, “A<br />
unified analysis of PWM<br />
converters in discontinuous<br />
modes,” IEEE Trans. Power<br />
Electron., vol. 6, pp. 476–490,<br />
May 1991.<br />
0.3<br />
DCM<br />
0.25<br />
0.1<br />
I<br />
(<br />
I<br />
0<br />
0 0.5 1.0 1.5 2.0<br />
o<br />
LB, max<br />
)<br />
J. Sun, D. M. Mitchell, M. F.<br />
Greuel, P. T. Krein, and R. M.<br />
Bass, “Averaged modeling of<br />
PWM converters operating in<br />
discontinuous conduction mode,”<br />
IEEE Trans. Power Electron.,<br />
vol. 16, pp. 482-492, July 2001.<br />
24/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
12
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Systematic View of DC-DC Converters<br />
Selection of Switching Frequency and PWM Strategies<br />
Efficiency<br />
Time Responses<br />
Frequency Responses<br />
Output Impedance<br />
Current Injection Testing<br />
PWM DC-DC Power Conversion and Regulation<br />
v i<br />
v o<br />
v p<br />
v x<br />
D<br />
Z f<br />
Z i<br />
D T ON<br />
=<br />
T ON<br />
T<br />
T<br />
v x<br />
v ref<br />
CLOCK RAMP<br />
26/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
13
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Signal Composition of a PWM DC-DC Converters<br />
v g<br />
$v g<br />
v $v<br />
V<br />
V g<br />
i g<br />
I g<br />
i $i<br />
I<br />
load<br />
$d<br />
$i g<br />
clock ramp<br />
D<br />
v c<br />
$v c<br />
modulatorpower-stage<br />
subsystem<br />
comparator<br />
V c<br />
analog<br />
amplifier<br />
reference<br />
27/107<br />
Frequency Spectrum<br />
output<br />
spectrum<br />
bandpass<br />
filter<br />
frequency<br />
f 2f 3f f s - f f s f s+ f 2f s 3f s<br />
28/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
14
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
AC and DC Quantities in a PWM Switching DC-DC<br />
Converter<br />
v o<br />
$v o<br />
Analysis of Dynamic Responses<br />
V o<br />
I + i$<br />
i<br />
i<br />
v d<br />
i o<br />
$i o<br />
I o<br />
INPUT<br />
V + v$<br />
I<br />
i<br />
L i o<br />
v d C R v o<br />
o<br />
Load<br />
v c $v c<br />
V c<br />
Z f<br />
Z i<br />
v c<br />
v ref<br />
CLOCK RAMP<br />
29/107<br />
Small-Signal <strong>Modeling</strong> of a Switching Power Converter<br />
i = I + iˆ<br />
i<br />
I<br />
i<br />
power stage<br />
L<br />
i = I + iˆ<br />
v = V + v$<br />
o<br />
O<br />
o<br />
o O o<br />
vi = VI +$ vi<br />
C<br />
open<br />
Z<br />
= + $ f<br />
d D d<br />
v c<br />
R L<br />
v o<br />
Z i<br />
$v i<br />
îo<br />
$d<br />
Averaged<br />
Power Stage<br />
The concerned transfer functions under<br />
small perturbations can be measured<br />
under an open loop condition.<br />
$v o<br />
v ref<br />
duty cycle<br />
modulator<br />
error processor<br />
30/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
15
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Definition of<br />
∧<br />
d<br />
power switch gating waveform<br />
vo( t)<br />
io( t)<br />
v t i( )<br />
vˆ<br />
, iˆ<br />
, vˆ<br />
o<br />
small signal perturbation<br />
o<br />
i<br />
V , I , V<br />
O O I<br />
t<br />
t on<br />
T<br />
d(t)<br />
D<br />
dt ()<br />
t<br />
D =<br />
on<br />
T<br />
t<br />
dˆ<br />
x<br />
=<br />
T<br />
V , I , V<br />
O<br />
O<br />
I<br />
t<br />
t x<br />
t<br />
31/107<br />
Small-Signal <strong>Modeling</strong> of Voltage-Mode DC-DC<br />
Converters<br />
$v i<br />
$i o<br />
$ d<br />
Buck<br />
Boost<br />
Buck/Boost<br />
Power Stage<br />
$v o<br />
Pulse<br />
Modulator<br />
$v c<br />
Error<br />
Processor<br />
$v r<br />
32/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
16
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
<strong>Modeling</strong> of Single-Loop DC-DC Converters<br />
$v i v<br />
$i $<br />
o<br />
$d<br />
$ ; $ $ ; $ o<br />
vo<br />
vo<br />
v i d$<br />
i o<br />
$v o<br />
$v i<br />
$i o<br />
$ d<br />
$v c<br />
$v o<br />
G v<br />
K PWM<br />
34/107<br />
v$ = f( v$ , i$ , d $ )<br />
o i o<br />
Z p<br />
G d<br />
-A(s)<br />
K PWM<br />
$v c<br />
A(s)<br />
33/107<br />
Small Signal Transfer Functions<br />
v$<br />
Gv<br />
() s =<br />
v<br />
Z<br />
G<br />
k<br />
p<br />
d<br />
v$<br />
=<br />
i<br />
v $<br />
o<br />
=<br />
d<br />
PWM<br />
o<br />
$<br />
i d $ = 0,$<br />
i o = 0<br />
o<br />
$<br />
o d $ = 0, v$<br />
i = 0<br />
$<br />
v $ i= 0 , i$<br />
o=<br />
0<br />
dˆ<br />
=<br />
ˆ<br />
v c<br />
: Open-loop input-to-output<br />
: Open-loop output impedance<br />
: Control to output transfer function<br />
: PWM modulator gain<br />
KPWM = 1<br />
V p<br />
: PWM dc gain<br />
v$<br />
As () =<br />
v$<br />
c<br />
o<br />
: Compensator gain<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
17
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
<strong>Modeling</strong> of PWM DC-DC Converters<br />
• A dc-to-dc switching regulator incorporating a three-port duty ratio<br />
programmed modulator-power-stage subsystem whose transfer functions are<br />
defined in terms of ratios of small-signal ac quantities (hats) superimposed<br />
upon large-signal dc quantities (capitals).<br />
• The spectrum of the output signal contains the switching frequency, the<br />
control frequency, their respective harmonics, and sidebands.<br />
• The modeling objective is to find, as function of frequency, the loop gain and<br />
the closed properties of the regulator.<br />
• The essential prerequisite is to find the transfer function of the three-port<br />
subsystem of the modulator-power-stage.<br />
35/107<br />
Concerned Transfer Functions<br />
• Control-to-output transfer function<br />
• Line-to-output transfer function (audio susceptibility)<br />
• Reference-to-output transfer function<br />
• Input impedance<br />
• Output impedance<br />
A voltage sourcing power supply should have a low (zero) output<br />
impedance, while a current sourcing power supply should have a high<br />
(infinite) output impedance.<br />
36/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
18
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Closed-Loop Transfer Functions<br />
$v i v<br />
$i $<br />
o<br />
$d<br />
$ ; $ $ ; $ o<br />
vo<br />
vo<br />
v i d$<br />
i o<br />
$v o<br />
$v i<br />
$i o<br />
$ d<br />
$v c<br />
$v o<br />
G v<br />
K PWM<br />
38/107<br />
v$ = f( v$ , i$ , d $ )<br />
o i o<br />
Z p<br />
G d<br />
-A(s)<br />
K PWM<br />
$v c<br />
A(s)<br />
G v,CL (Closed-loop Audio Susceptibility)<br />
v$ = G v$ + G d$<br />
o v i d<br />
d$ =−AK PWM v$<br />
o<br />
v$<br />
v$<br />
o<br />
i<br />
Gv<br />
Gv<br />
= = 1+ GK A 1+<br />
T<br />
d<br />
PWM<br />
Z p,CL (Closed-loop Output Impedance)<br />
v$ = Z i$ + G d$<br />
o p o d<br />
d$ =−AK v$<br />
PWM o<br />
$v<br />
i<br />
o<br />
o<br />
Zp<br />
= 1+<br />
T<br />
Loop Gain: T = A( s)<br />
K<br />
PWM<br />
G d<br />
37/107<br />
Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
State-Space Averaging Technique<br />
電 力 電 子 系 統 與 晶 片 實 驗 室<br />
Power Electronic Systems & Chips Lab.<br />
交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
19
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Averaging <strong>Techniques</strong><br />
• State Space Averaging <strong>Modeling</strong><br />
• Static Analysis<br />
• Small-Signal Model at CCM<br />
• Small-Signal Model at DCM<br />
• Frequency Response Analysis<br />
39/107<br />
Concept of Time Averaging (Low Frequency Response<br />
Behavior)<br />
v o<br />
$v o<br />
V o<br />
Ii<br />
+ i $ i<br />
v d io<br />
$<br />
i o<br />
L<br />
I o<br />
V<br />
I<br />
+ v$<br />
i<br />
i o<br />
v d C R L<br />
v o<br />
v c $v c<br />
V c<br />
Z f<br />
Z i<br />
v c<br />
v ref<br />
CLOCK RAMP<br />
40/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
20
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Linear Approximation of State Space Trajectories<br />
x( t)<br />
x( )<br />
&x= A1⋅ x+ B1⋅u<br />
dT s<br />
x ( )<br />
&x = A ⋅ x+ B ⋅ u<br />
2 2<br />
T s<br />
x( 0)<br />
&x = A⋅ x+ B⋅<br />
u<br />
t<br />
dT s<br />
( 1 − d ) T s<br />
( T on<br />
)<br />
( )<br />
T off<br />
41/107<br />
State-Space Averaging Method (CCM)<br />
During<br />
During<br />
T<br />
T<br />
ON<br />
OFF<br />
⎧x&<br />
= A<br />
1x<br />
+ B<br />
1u<br />
⎨<br />
⎩y<br />
= C<br />
1x<br />
+ E1u<br />
⎧x&<br />
= A<br />
2x<br />
+ B<br />
2u<br />
⎨<br />
⎩ y = C<br />
2x<br />
+ E<br />
2u<br />
When the circuit time constant is far greater than the switching period, the<br />
above equations can be averaged as:<br />
Switch-ON Period<br />
Switch-OFF Period<br />
&x = A x + B u<br />
1 1<br />
y = C x+<br />
E u<br />
1 1<br />
x d 1<br />
+<br />
&x = A x+<br />
B u<br />
2 2<br />
y= C x+<br />
E u<br />
2 2<br />
x d 2<br />
averaging by using state duty ratio weighting<br />
42/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
21
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Averaging Method<br />
x& = ( A d + A d ) x+ ( B d + B d ) u<br />
1 1 2 2 1 1 2 2<br />
y= ( C d + C d ) x+ ( E d + E d ) u<br />
1 1 2 2 1 1 2 2<br />
x = Ax + Bu<br />
y = Cx + Du<br />
where<br />
A = A d + A d<br />
1 1 2 2<br />
B = B d + B d<br />
1 1 2 2<br />
C = C d + C d<br />
1 1 2 2<br />
E = E d + E d<br />
1 1 2 2<br />
43/107<br />
State Averaging by Active Duty Ratios<br />
During<br />
During<br />
T<br />
T<br />
ON<br />
OFF<br />
⎧x&<br />
= A<br />
1x<br />
+ B<br />
1u<br />
⎨<br />
⎩y<br />
= C<br />
1x<br />
+ E<br />
1u<br />
⎧x&<br />
= A<br />
2x<br />
+ B<br />
2u<br />
⎨<br />
⎩ y = C<br />
2x<br />
+ E<br />
2u<br />
When the circuit time constant is far greater than the switching<br />
period, the above equations can be averaged as:<br />
x& = ( A d + A d ) x + ( B d + B d ) u<br />
1 1 2 2 1 1 2 2<br />
y = ( C d + C d ) x + ( E d + E d ) u<br />
1 1 2 2 1 1 2 2<br />
Switch-ON Period<br />
&x = A x + B u<br />
1 1<br />
y = C x + E u<br />
1 1<br />
Switch-OFF Period<br />
d 2<br />
&x = A x + B u<br />
2 2<br />
y = C x+<br />
E u<br />
2 2<br />
x = Ax + Bu<br />
y = Cx + Du<br />
where<br />
A = A d + A d<br />
1 1 2 2<br />
B = B d + B d<br />
1 1 2 2<br />
C = C d + C d<br />
1 1 2 2<br />
E = E d + E d<br />
1 1 2 2<br />
d 1<br />
state averaging by using duty ratio weighting<br />
44/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
22
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Small-Signal Perturbation at a DC Operating Point<br />
Substitute x = X + x$ ; y = Y + y$ ; u = U + u$ ;<br />
d = D + d$ ; d = D − d$<br />
1 1 2 2<br />
d<br />
( X+ x $) = A ( D d$ ) ( D d$ )( $) ( D d$ ) ( D d$ 1 1 + + A<br />
2 2 − X+ x + B<br />
1 1 + + B<br />
2 2 − )( U+<br />
u$)<br />
dt<br />
}<br />
terms = 0<br />
d<br />
X +<br />
dt<br />
dc<br />
d<br />
dt<br />
6444444dc<br />
terms<br />
74=<br />
0<br />
444448<br />
xˆ<br />
= ( A D + A D ) X + ( B D + B D ) U +<br />
1<br />
1<br />
[(<br />
A − A ) X + ( B − B ) U]<br />
1<br />
1<br />
( A D<br />
1<br />
+ A<br />
2<br />
2<br />
2<br />
2<br />
D ) xˆ<br />
+ ( B D<br />
2<br />
( A<br />
141<br />
− A<br />
444<br />
2<br />
) dˆˆ<br />
x + ( B<br />
24444<br />
1<br />
− B<br />
2<br />
) dˆˆ<br />
u<br />
3<br />
1<br />
ignore nonlinear term<br />
1<br />
1<br />
2<br />
1<br />
1<br />
+ B<br />
2<br />
2<br />
dˆ<br />
+<br />
2<br />
2<br />
D ) uˆ<br />
+<br />
Note:<br />
The nonlinear dynamic system is linearized around a selected operating point!<br />
i<br />
45/107<br />
DC Model and AC Model<br />
DC Model<br />
X<br />
= −A −1 BU<br />
−1<br />
Y = ( − CA B+<br />
E)U<br />
AC Model<br />
d<br />
x$ = Ax$ + Bu$ + Fd$<br />
dt<br />
y$ = Cx$ + Eu$ + Gd$<br />
where<br />
A = A D + A D<br />
1 1 2 2<br />
B = B D + B D<br />
1 1 2 2<br />
C= C D + C D<br />
1 1 2 2<br />
E = E D + E D<br />
1 1 2 2<br />
F = ( A − A ) X+ ( B −B ) U<br />
1 2 1 2<br />
G = ( C − C ) X+ ( E −E ) U<br />
1 2 1 2<br />
46/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
23
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Transfer Function Matrix<br />
x(<br />
s)<br />
= ( sI<br />
− A)<br />
−1<br />
= H ( s)<br />
u(<br />
s)<br />
+<br />
u<br />
H d<br />
−1<br />
H ( s) = ( sI−A)<br />
B<br />
u<br />
Bu(<br />
s)<br />
+ ( sI<br />
− A)<br />
( s)<br />
d(<br />
s)<br />
−1<br />
H ( s) = ( sI−A) Fd( s)<br />
d<br />
−1<br />
Fd(<br />
s)<br />
−1 −1<br />
y() s = [ C( sI− A) B+ E]() u s + [ C( sI− A) F+<br />
G]()<br />
d s<br />
= G ()() s u s + G ()() s d s<br />
u<br />
−1<br />
Gu() s = C( sI− A)<br />
B+<br />
E<br />
−1<br />
Gd () s = C( sI− A)<br />
F+<br />
G<br />
d<br />
⎡vo(<br />
s)<br />
⎤ ⎡G<br />
⎢ =<br />
ii<br />
( s)<br />
⎥ ⎢<br />
⎣ ⎦ ⎣G<br />
u11<br />
u21<br />
( s)<br />
( s)<br />
G<br />
G<br />
u12<br />
u22<br />
( s)<br />
⎤⎡vi<br />
( s)<br />
⎤ ⎡G<br />
( s)<br />
⎥⎢<br />
id<br />
( s)<br />
⎥ + ⎢<br />
⎦⎣<br />
⎦ ⎣G<br />
d1<br />
d 2<br />
( s)<br />
⎤<br />
d(<br />
s)<br />
( s)<br />
⎥<br />
⎦<br />
47/107<br />
Open Loop Transfer Functions<br />
• control-to-output (open-loop transfer function):<br />
vo()<br />
s<br />
−1<br />
= Gd<br />
1() s = Gd() s = C( sI− A)<br />
F+<br />
G<br />
1<br />
ds ()<br />
• line-to-output (audio susceptibility):<br />
vo()<br />
s<br />
−1<br />
= Gu<br />
11() s = Gu() s = C( sI− A)<br />
B+<br />
E<br />
11<br />
v () s<br />
i<br />
• output impedance:<br />
vo()<br />
s<br />
= Gu<br />
() s =<br />
u() s = ( s − )<br />
− 1<br />
12<br />
G C I A B+<br />
E<br />
12<br />
i () s<br />
d<br />
1<br />
11<br />
12<br />
48/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
24
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Example: Buck Converter<br />
Step 1. Draw the linear equivalent circuit for each switching state of the converter.<br />
Q L i L<br />
i o<br />
x 1<br />
x 2<br />
r L<br />
R v o<br />
i d<br />
y i 2 i c i R<br />
r<br />
u c<br />
1 v i D<br />
u 2<br />
C v c y 1<br />
Q closed, D open<br />
D closed, Q open<br />
L<br />
r L<br />
i L<br />
i o<br />
i d<br />
L<br />
i L<br />
i o<br />
i d<br />
i i<br />
i c<br />
i R<br />
i c<br />
r L<br />
R v o<br />
i R<br />
i i<br />
50/107<br />
v i R v o<br />
r c<br />
r c<br />
C<br />
v c<br />
C<br />
v c<br />
49/107<br />
Select State Variables<br />
Select the inductor current i L and capacitor voltage v L state variables.<br />
⎡x1<br />
⎤ ⎡ ⎤<br />
⎥ = iL<br />
x=<br />
⎢ ⎢ ⎥<br />
⎣x2<br />
⎦ ⎣v<br />
c⎦<br />
Select the input dc voltage and output disturbance current as input variables.<br />
⎡u1<br />
⎤ ⎡ ⎤<br />
⎥ = vi<br />
u=<br />
⎢ ⎢ ⎥<br />
⎣u<br />
2⎦<br />
⎣i<br />
d⎦<br />
Select the output voltage and input current as output variables.<br />
⎡y1<br />
⎤ ⎡ ⎤<br />
= ⎢ ⎥ = vo<br />
y ⎢ ⎥<br />
⎣y2<br />
⎦ ⎣i<br />
⎦<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
25
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Derive Circuit Equations: State Equations<br />
Step 2. Write the circuit equations for each equivalent circuit in a state-variable format.<br />
r L<br />
i L<br />
i o<br />
i d<br />
Q-ON and D-OFF State:<br />
i i<br />
L<br />
r c<br />
i c<br />
i R<br />
v i<br />
R<br />
v o<br />
C<br />
v c<br />
<br />
<br />
v L di ir rC dv<br />
L<br />
c<br />
i<br />
= +<br />
LL+ C<br />
+ v<br />
dt dt<br />
dvc<br />
rC<br />
C + vC<br />
= ( iL<br />
−iC<br />
−id<br />
) R<br />
dt<br />
dvc<br />
= ( iL<br />
−C<br />
+ id<br />
) R<br />
dt<br />
dvc<br />
= iLR−<br />
RC + idR<br />
dt<br />
C<br />
dvc<br />
( R+ rC<br />
) C = iLR−vC<br />
−idR<br />
dt<br />
dvc<br />
R 1 R<br />
= iL<br />
− vC<br />
− id<br />
dt ( R+<br />
r ) C ( R+<br />
r ) C ( R+<br />
r ) C<br />
C<br />
C<br />
C<br />
51/107<br />
State-Space Average <strong>Modeling</strong>: State Equations<br />
<br />
R 1 R<br />
Replace C dv in with iL<br />
− vC<br />
− i<br />
dtc<br />
d<br />
( R+<br />
r ) ( R+<br />
r ) ( R+<br />
r )<br />
C<br />
C<br />
C<br />
We can obtain:<br />
di<br />
= +<br />
⎛<br />
+ ⎜<br />
⎝<br />
R<br />
L<br />
v<br />
i<br />
L iLrL<br />
rC<br />
iL<br />
vC<br />
id<br />
vC<br />
dt ⎜<br />
+<br />
( R+<br />
rC<br />
) ( R+<br />
rC<br />
) ( R+<br />
rC<br />
)<br />
−<br />
1<br />
−<br />
R<br />
⎞<br />
⎟ ⎠<br />
diL<br />
RrC<br />
rC<br />
RrC<br />
L = vi<br />
−iLr<br />
L<br />
− iL<br />
+ vC<br />
− id<br />
−v<br />
dt ( R+<br />
r ) ( R+<br />
r ) ( R+<br />
r )<br />
C<br />
⎛ Rr ⎞ ⎛<br />
C<br />
=−<br />
⎜ + rL<br />
iL<br />
−<br />
R r<br />
⎟<br />
⎜<br />
⎝ +<br />
C ⎠ ⎝<br />
C<br />
R ⎞ Rr<br />
vC<br />
vi<br />
R r<br />
⎟ + −<br />
+<br />
C ⎠ R+<br />
C<br />
i<br />
C<br />
d<br />
rC<br />
C<br />
diL<br />
1 ⎛ Rr ⎞<br />
C 1 ⎛ R ⎞ 1 1 ⎛ Rr ⎞<br />
C<br />
= − rL<br />
iL<br />
vC<br />
vi<br />
id<br />
dt L<br />
⎜ +<br />
R r<br />
⎟ −<br />
+ −<br />
C<br />
L<br />
⎜<br />
R r<br />
⎟<br />
C<br />
L L<br />
⎜<br />
R r<br />
⎟<br />
⎝ + ⎠ ⎝ + ⎠ ⎝ +<br />
C ⎠<br />
52/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
26
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong>: State Equations<br />
<br />
<br />
i = i<br />
i<br />
o<br />
L<br />
L<br />
v = ( i −i<br />
−i<br />
) R<br />
L<br />
C<br />
= i R−i<br />
R−i<br />
R<br />
C<br />
C<br />
d<br />
d<br />
⎛ R 1 R ⎞<br />
= iLR−<br />
RC<br />
⎜ iL<br />
− vC<br />
− id<br />
idR<br />
( R rC<br />
) C ( R rC<br />
) C ( R rC<br />
) C<br />
⎟−<br />
⎝ + + + ⎠<br />
RrC<br />
R RrC<br />
= iL<br />
+ vC<br />
− id<br />
( R+<br />
r ) ( R+<br />
r ) ( R+<br />
r )<br />
C<br />
C<br />
RrC<br />
R RrC<br />
vo<br />
= iL<br />
+ vC<br />
− id<br />
( R+<br />
r ) ( R+<br />
r ) ( R+<br />
r )<br />
C<br />
C<br />
C<br />
⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />
⎡<br />
C<br />
1 R 1<br />
⎢−<br />
⎜ + r<br />
⎟<br />
L<br />
−<br />
⎜<br />
⎟⎥<br />
⎢<br />
⎡i&<br />
L<br />
⎤<br />
⎢ L⎝<br />
R+<br />
rC<br />
⎠ L⎝R+<br />
r ⎠⎥⎡i<br />
C L ⎤ ⎢<br />
⎥⎢<br />
⎥ + L<br />
⎢ ⎥ =<br />
⎣v&<br />
⎢ ⎛ ⎞ ⎛ ⎞ ⎣ ⎦ ⎢<br />
C⎦<br />
1 R 1 1 vC<br />
⎢<br />
⎜<br />
⎟ −<br />
⎜<br />
⎟⎥<br />
⎢0<br />
⎣ C⎝<br />
R+<br />
rC<br />
⎠ C⎝<br />
R+<br />
rC<br />
⎠⎦<br />
⎣<br />
⎡ RrC<br />
R ⎤ ⎡ RrC<br />
⎤<br />
⎡vo<br />
⎤<br />
⎢<br />
⎥<br />
⎡ ⎤<br />
⎢<br />
−<br />
⎥<br />
⎡ ⎤<br />
⎢ ⎥ =<br />
iL<br />
+ + ⎢ ⎥ + 0 vi<br />
R rC<br />
R rC<br />
R+<br />
rC<br />
⎢<br />
⎥ ⎢ ⎥<br />
⎢ ⎥<br />
⎣i<br />
⎦<br />
⎣vC<br />
⎦<br />
⎣id<br />
⎦<br />
⎣ 1 0 ⎦ ⎣0<br />
0 ⎦<br />
1 ⎛ Rr ⎞⎤<br />
C<br />
−<br />
⎜<br />
⎟⎥<br />
L⎝<br />
R+<br />
r ⎠⎥⎡v<br />
C i⎤<br />
⎛ ⎞⎥<br />
⎢ ⎥<br />
1 R<br />
−<br />
⎣id<br />
⎦<br />
⎜<br />
⎟⎥<br />
C ⎝ R+<br />
rC<br />
⎠⎦<br />
Q-OFF and D-ON<br />
State Equation<br />
53/107<br />
State-Space Average <strong>Modeling</strong>: State Equations<br />
r L<br />
i L<br />
i o<br />
i d<br />
Q-OFF and D-ON State:<br />
i i<br />
L<br />
r c<br />
C<br />
i c<br />
v c<br />
R<br />
i R<br />
v o<br />
<br />
<br />
0= L di + ir + rC dv<br />
L<br />
c<br />
LL C<br />
+ v<br />
dt dt<br />
dvc<br />
rC<br />
C + vC<br />
= ( iL<br />
−iC<br />
−id<br />
) R<br />
dt<br />
dvc<br />
= ( iL<br />
−C<br />
−id<br />
) R<br />
dt<br />
dvc<br />
= iLR−RC<br />
−idR<br />
dt<br />
C<br />
dvc<br />
( R+ rC<br />
) C = iLR−vC<br />
−idR<br />
dt<br />
dvc<br />
R 1 R<br />
= iL<br />
− vC<br />
− i<br />
dt ( R+<br />
r ) C ( R+<br />
r ) C ( R+<br />
r ) C<br />
C<br />
C<br />
C<br />
d<br />
54/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
27
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong>: State Equations<br />
dvc<br />
( R+ rC<br />
) C = iLR−vC<br />
−idR<br />
dt<br />
dvc<br />
R 1 R<br />
= iL<br />
− vC<br />
− id<br />
dt ( R+<br />
r ) C ( R+<br />
r ) C ( R+<br />
r ) C<br />
C<br />
C<br />
C<br />
R 1 R<br />
Replace C dv c<br />
in with iL<br />
− vC<br />
− id<br />
dt<br />
( R+<br />
r ) ( R+<br />
r ) ( R+<br />
r )<br />
We can obtain:<br />
<br />
di<br />
0=<br />
+<br />
C<br />
⎛<br />
+ ⎜<br />
⎝<br />
R<br />
C<br />
−<br />
L<br />
L iLrL<br />
rC<br />
iL<br />
vC<br />
id<br />
vC<br />
dt ⎜<br />
+<br />
( R+<br />
rC<br />
) ( R+<br />
rC<br />
) ( R+<br />
rC<br />
)<br />
1<br />
C<br />
−<br />
R<br />
⎞<br />
⎟ ⎠<br />
diL<br />
RrC<br />
rC<br />
RrC<br />
L =−i<br />
LrL<br />
− iL<br />
+ vC<br />
− id<br />
−v<br />
dt ( R+<br />
r ) ( R+<br />
r ) ( R+<br />
r )<br />
C<br />
⎛ Rr ⎞ ⎛<br />
C<br />
R ⎞ Rr<br />
=−<br />
⎜ + rL<br />
iL<br />
vC<br />
−<br />
R r<br />
⎟ −<br />
⎜<br />
C<br />
R r<br />
⎟<br />
⎝ + ⎠ ⎝ +<br />
C ⎠ R+<br />
C<br />
C<br />
i<br />
C<br />
d<br />
rC<br />
C<br />
diL<br />
1 ⎛ Rr ⎞<br />
C<br />
1 ⎛ R ⎞ 1 ⎛ Rr ⎞<br />
C<br />
=− rL<br />
iL<br />
v<br />
i<br />
Ci<br />
d<br />
dt L<br />
⎜ +<br />
R r<br />
⎟ −<br />
−<br />
C<br />
L<br />
⎜<br />
R r<br />
⎟<br />
C<br />
L<br />
⎜<br />
R r<br />
⎟<br />
⎝ + ⎠ ⎝ + ⎠ ⎝ +<br />
C ⎠<br />
55/107<br />
State-Space Average <strong>Modeling</strong>: State Equations<br />
<br />
<br />
i i = 0<br />
v = ( i − i − i ) R<br />
o<br />
L<br />
L<br />
C<br />
= i R − i R − i R<br />
C<br />
C<br />
d<br />
d<br />
⎛ R 1<br />
= iLR<br />
− RC<br />
⎜ iL<br />
− v<br />
⎝ ( R + rC<br />
) C ( R + rC<br />
) C<br />
RrC<br />
R RrC<br />
= iL<br />
+ vC<br />
− id<br />
( R + r ) ( R + r ) ( R + r )<br />
C<br />
C<br />
C<br />
R ⎞<br />
− id<br />
− id<br />
R<br />
( R rC<br />
) C<br />
⎟<br />
+ ⎠<br />
RrC<br />
R RrC<br />
vo<br />
= iL<br />
+ vC<br />
− id<br />
( R+<br />
r ) ( R+<br />
r ) ( R+<br />
r )<br />
C<br />
C<br />
C<br />
⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />
⎡<br />
C<br />
1 R<br />
⎢−<br />
⎜ + rL<br />
⎟ −<br />
⎜<br />
⎟⎥<br />
⎢0<br />
⎡i&<br />
L<br />
⎤<br />
⎢ ⎝ + ⎠ ⎝ + ⎠⎥⎡<br />
⎤ ⎢<br />
⎥ = L R rC<br />
L R r i<br />
C L<br />
⎢<br />
⎢<br />
⎥⎢<br />
⎥ +<br />
⎣v&<br />
⎛ ⎞ ⎛ ⎞ ⎣ ⎦ ⎢<br />
C⎦<br />
1 R 1 1 vC<br />
⎢<br />
⎜<br />
⎟ −<br />
⎜<br />
⎟⎥<br />
⎢0<br />
⎣ C ⎝ R+<br />
rC<br />
⎠ C ⎝ R+<br />
rC<br />
⎠⎦<br />
⎣<br />
⎡ RrC<br />
R ⎤ ⎡ RrC<br />
⎤<br />
⎡vo<br />
⎤<br />
⎢<br />
⎥<br />
⎡ ⎤<br />
⎢<br />
−<br />
⎥<br />
⎡ ⎤<br />
⎢ ⎥ =<br />
iL<br />
+ + ⎢ ⎥ + 0 vi<br />
R rC<br />
R rC<br />
R + rC<br />
⎢<br />
⎥ ⎢ ⎥<br />
⎢ ⎥<br />
⎣ii<br />
⎦<br />
⎣vC<br />
⎦<br />
⎣id<br />
⎦<br />
⎣ 0 0 ⎦ ⎣0<br />
0 ⎦<br />
1 ⎛ Rr ⎞⎤<br />
C<br />
−<br />
⎜<br />
⎟⎥<br />
L ⎝ R+<br />
r ⎠⎥⎡v<br />
C i⎤<br />
⎛ ⎞⎥⎢<br />
⎥<br />
1 R<br />
−<br />
⎣id<br />
⎦<br />
⎜<br />
⎟⎥<br />
C ⎝ R + rC<br />
⎠⎦<br />
Q-ON and D-OFF<br />
State Equation<br />
56/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
28
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong>: State Equations<br />
Q Conducted:<br />
⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />
⎡<br />
C<br />
1 R 1<br />
⎢−<br />
⎜ + r<br />
⎟<br />
⎜<br />
⎟<br />
L<br />
− ⎥ ⎢<br />
⎡i&<br />
L<br />
⎤<br />
⎢<br />
L⎝<br />
R+<br />
rC<br />
⎠ L⎝<br />
R+<br />
r ⎠⎥⎡i<br />
C L ⎤ ⎢<br />
⎢<br />
⎥⎢<br />
⎥<br />
⎣ ⎦<br />
+ L<br />
⎢ ⎥ =<br />
⎣v&<br />
⎛ ⎞ ⎛ ⎞ ⎢<br />
C⎦<br />
1 R 1 1 vC<br />
⎢<br />
⎜<br />
⎟ −<br />
⎜<br />
⎟⎥<br />
⎢0<br />
⎣ C ⎝ R+<br />
rC<br />
⎠ C ⎝ R+<br />
rC<br />
⎠⎦<br />
⎣<br />
⎡ RrC<br />
R ⎤ ⎡ RrC<br />
⎤<br />
⎡vo<br />
⎤<br />
⎢<br />
⎥<br />
⎡ ⎤<br />
⎢<br />
−<br />
⎥<br />
⎡ ⎤<br />
⎢ ⎥ =<br />
iL<br />
+ + ⎢ ⎥ + 0 vi<br />
R rC<br />
R rC<br />
R+<br />
rC<br />
⎢<br />
⎥ ⎢ ⎥<br />
⎢ ⎥<br />
⎣ii<br />
⎦<br />
⎣vC<br />
⎦<br />
⎣id<br />
⎦<br />
⎣ 1 0 ⎦ ⎣0<br />
0 ⎦<br />
1 ⎛ Rr ⎞⎤<br />
C<br />
−<br />
⎜<br />
⎟⎥<br />
L⎝<br />
R+<br />
r ⎠⎥⎡v<br />
C i⎤<br />
1 ⎛ R ⎞⎥⎢<br />
⎥<br />
−<br />
⎣id<br />
⎦<br />
⎜<br />
⎟⎥<br />
C ⎝ R+<br />
rC<br />
⎠⎦<br />
D Conducted:<br />
⎡ 1 ⎛ Rr ⎞ ⎛ ⎞⎤<br />
⎡<br />
C<br />
1 R<br />
⎢−<br />
⎜ + rL<br />
⎟ −<br />
⎜<br />
⎟⎥<br />
⎢0<br />
⎡i&<br />
L<br />
⎤<br />
⎢ ⎝ + ⎠ ⎝ + ⎠⎥⎡<br />
⎤ ⎢<br />
⎥ = L R rC<br />
L R r i<br />
C L<br />
⎢<br />
⎢<br />
⎥⎢<br />
⎥ +<br />
⎣v&<br />
⎞ ⎣ ⎦ ⎢<br />
C⎦<br />
1 ⎛ R ⎞ 1 ⎛ 1 vC<br />
⎢<br />
⎜<br />
⎟ −<br />
⎜<br />
⎟⎥<br />
⎢0<br />
⎣ C ⎝ R+<br />
rC<br />
⎠ C ⎝ R+<br />
rC<br />
⎠⎦<br />
⎣<br />
⎡ RrC<br />
R ⎤ ⎡ RrC<br />
⎤<br />
⎡vo<br />
⎤<br />
⎢<br />
⎥<br />
⎡ ⎤<br />
⎢<br />
−<br />
⎥<br />
⎡ ⎤<br />
⎢ ⎥ =<br />
iL<br />
+ + ⎢ ⎥ + 0 vi<br />
R rC<br />
R rC<br />
R+<br />
rC<br />
⎢<br />
⎥ ⎢ ⎥<br />
⎢ ⎥<br />
⎣i<br />
⎦<br />
⎣vC<br />
⎦<br />
⎣id<br />
⎦<br />
⎣ 0 0 ⎦ ⎣0<br />
0 ⎦<br />
1 ⎛ Rr ⎞⎤<br />
C<br />
−<br />
⎜<br />
⎟⎥<br />
L⎝<br />
R+<br />
r ⎠⎥⎡v<br />
C i⎤<br />
⎛ ⎞⎥⎢<br />
⎥<br />
1 R<br />
−<br />
⎣id<br />
⎦<br />
⎜<br />
⎟⎥<br />
C ⎝ R+<br />
rC<br />
⎠⎦<br />
57/107<br />
State-Space Average <strong>Modeling</strong>: State Equations<br />
Q Conducted:<br />
⎡ 1 ⎛ Rr ⎞<br />
C<br />
⎢−<br />
⎜ + rL<br />
⎟<br />
⎢ L ⎝ R + rC<br />
A<br />
⎠<br />
1<br />
=<br />
⎢ 1 ⎛ R ⎞<br />
⎢<br />
⎜<br />
⎟<br />
⎣ C ⎝ R + rC<br />
⎠<br />
⎡ RrC<br />
R ⎤<br />
C = ⎢ + + ⎥<br />
1 R r ,<br />
C<br />
R rC<br />
⎢<br />
⎥<br />
⎣ 1 0 ⎦<br />
1 ⎛ R ⎞⎤<br />
⎡1<br />
1 ⎛ Rr ⎞⎤<br />
C<br />
− ⎜ ⎟⎥<br />
⎢ − ⎜ ⎟⎥<br />
L ⎝ R + rC<br />
⎠⎥<br />
⎢ L L ⎝ R + rC<br />
, B =<br />
⎠⎥<br />
1<br />
1 ⎛ 1 ⎞⎥<br />
⎢ 1 ⎛ R ⎞⎥<br />
−<br />
⎜<br />
⎟⎥<br />
⎢ 0 −<br />
⎜<br />
⎟⎥<br />
C ⎝ R + rC<br />
⎠⎦<br />
⎣ C ⎝ R + rC<br />
⎠⎦<br />
⎡ RrC<br />
⎤<br />
⎢<br />
0 −<br />
E = + ⎥<br />
1 R rC<br />
⎢ ⎥<br />
⎣0<br />
0 ⎦<br />
D Conducted:<br />
⎡ 1 ⎛ Rr ⎞<br />
C<br />
⎢−<br />
⎜ + rL<br />
⎟<br />
⎢ L ⎝ R + rC<br />
A<br />
⎠<br />
2<br />
=<br />
⎢ 1 ⎛ R ⎞<br />
⎢<br />
⎜<br />
⎟<br />
⎣ C ⎝ R + rC<br />
⎠<br />
⎡ RrC<br />
R ⎤<br />
C = ⎢ + + ⎥<br />
2 R r ,<br />
C<br />
R rC<br />
⎢<br />
⎥<br />
⎣ 0 0 ⎦<br />
1 ⎛ R ⎞⎤<br />
⎡ 1 ⎛ Rr ⎞⎤<br />
C<br />
− ⎜ ⎟⎥<br />
⎢0<br />
− ⎜ ⎟⎥<br />
L ⎝ R + rC<br />
⎠⎥<br />
⎢ L ⎝ R + rC<br />
, B =<br />
⎠⎥<br />
2<br />
1 ⎛ 1 ⎞⎥<br />
⎢ 1 ⎛ R ⎞⎥<br />
−<br />
⎜<br />
⎟⎥<br />
⎢0<br />
−<br />
⎜<br />
⎟⎥<br />
C ⎝ R + rC<br />
⎠⎦<br />
⎣ C ⎝ R + rC<br />
⎠⎦<br />
⎡ RrC<br />
⎤<br />
⎢<br />
0 −<br />
E = + ⎥<br />
2 R rC<br />
⎢ ⎥<br />
⎣0<br />
0 ⎦<br />
58/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
29
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong>: Averaging<br />
Step 3. Average each state by using duty ratio as a weighting factor and then combine the<br />
two sets of equations into a single set.<br />
Q : &x = A<br />
1x + B<br />
1u<br />
D : &x = A<br />
2x + B<br />
2u<br />
x d<br />
y = C x + E u 1 + y = C x + E u<br />
1 1<br />
2 2<br />
x d 2<br />
averaging by using state duty ratio weighting<br />
x& = ( A d + A d ) x + ( B d + B d ) u<br />
1 1 2 2 1 1 2 2<br />
y = ( C d + C d ) x + ( E d + E d ) u<br />
1 1 2 2 1 1 2 2<br />
&x = Ax + Bu<br />
y = Cx + Eu<br />
where<br />
A = A d + A d<br />
1 1 2 2<br />
B = B d + B d<br />
1 1 2 2<br />
C = C d + C d<br />
1 1 2 2<br />
E = E d + E d<br />
1 1 2 2<br />
59/107<br />
State-Space Average <strong>Modeling</strong>: Perturbation<br />
Step 4. Perturb the averaged equation set to produce DC and small signal terms and eliminate<br />
nonlinear product terms.<br />
Substitute x= X+ x$ ; y = Y+ y$ ; u= U+<br />
u$ ;<br />
d = + $ ; = − $<br />
1<br />
D1 d d2 D2<br />
d<br />
into the averaged equations (in Steps 3) x& = ( A1d1+ A2d2) x + ( B1d1+<br />
B2d2)<br />
u<br />
y= ( Cd + C d ) x+ ( Ed + E d ) u<br />
d<br />
dt<br />
1 1 2 2 1 1 2 2<br />
( X + xˆ ) = ( A ( D + dˆ)<br />
+ A ( D<br />
− dˆ))(<br />
X + xˆ ) +<br />
( B1(<br />
D1<br />
+ dˆ)<br />
+ B 2(<br />
D2<br />
− dˆ))(<br />
U + uˆ )<br />
= A X A ˆ<br />
1D1<br />
+<br />
1dX<br />
+ A1D1xˆ<br />
+ A1dˆˆ<br />
x +<br />
A X A ˆ<br />
2D2<br />
−<br />
2dX<br />
+ A<br />
2D2xˆ<br />
− A<br />
2d<br />
ˆˆ x +<br />
B U B ˆ<br />
1D1<br />
+<br />
1dU<br />
+ B1D1uˆ<br />
+ B1dˆˆ<br />
u +<br />
B D U − B dˆ<br />
U + B D uˆ<br />
− B dˆˆ<br />
u<br />
2<br />
1<br />
2<br />
1<br />
2<br />
2<br />
2<br />
2<br />
2<br />
2<br />
60/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
30
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong>: Perturbation<br />
Perturbation of the State Equations<br />
Operating Point<br />
x 1<br />
New Coordinates<br />
d<br />
( X+ x$ ) = ( A1D1 + A2D2) X+ ( B1D1 + B2D2)<br />
U +<br />
dt<br />
( A D A D ) x$ 1 1<br />
+<br />
2 2<br />
+ ( B1D1 + B2D2)$<br />
u+<br />
( A − A ) X+ ( B − B ) U d$<br />
+<br />
1 2 1 2<br />
( A − A ) d $ x$ + ( B −B ) d $ u$<br />
1 2 1 2<br />
x 1<br />
Y + y$ = ( C ( D + d$ ) + C ( D − d$ ))( X+ x $ ) +<br />
1 1 2 2<br />
( E ( D + d$ ) + E ( D − d$ ))( U + u $ )<br />
1 1 2 2<br />
= ( C D + C D ) X+ ( E D + E D ) U +<br />
1 1 2 2 1 1 2 2<br />
( C D + C D )$ x+ ( C − C ) X + ( E − E ) U d$<br />
+<br />
1 1 2 2 1 2 1 2<br />
( E D + E D )$ u+ ( C − C )$ xd $ + ( E −E ) d $ u$<br />
1 1 2 2 1 2 1 2<br />
ˆx 2<br />
ˆx 1<br />
61/107<br />
State-Space Average <strong>Modeling</strong>: DC Analysis<br />
DC Analysis:<br />
Set all variational terms to zero, we can obtain<br />
0 =<br />
1D1+ 2D2 +<br />
1D1+<br />
2D2<br />
X<br />
( A A ) X ( B B ) U<br />
= AX+<br />
BU<br />
Y= ( CD + C D ) X+ ( ED + E D ) U<br />
= CX+<br />
EU<br />
Therefore<br />
=− −1<br />
1 1 2 2 1 1 2 2<br />
A BU<br />
−1<br />
Y =− ( CA B+<br />
E)U<br />
62/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
31
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong>: DC Model<br />
Eliminate the DC term d X = 0 AX + BU = 0 and Y CX EU<br />
dt = +<br />
We obtain the dc model equation:<br />
D.<br />
C.<br />
⎧<br />
⎛ R ⎞<br />
⎪ 0 = [ − r ]<br />
⎜<br />
⎟<br />
L<br />
+ ( R // rC<br />
) I<br />
L<br />
− V<br />
⎪<br />
⎝ R + rC<br />
⎠<br />
⎪ ⎛ R ⎞ ⎛ 1 ⎞<br />
⎪ 0 =<br />
⎜<br />
⎟I<br />
L<br />
−<br />
⎜<br />
⎟V<br />
C<br />
⎨ ⎝ R + rC<br />
⎠ ⎝ R + rC<br />
⎠<br />
⎪<br />
⎪<br />
⎛ R ⎞<br />
Vo<br />
= ( R // rC<br />
) I<br />
L<br />
− ⎜ ⎟VC<br />
⎪<br />
⎝ R + rC<br />
⎠<br />
⎪<br />
⎩I<br />
S<br />
= DI<br />
L<br />
C<br />
+ V D<br />
i<br />
Comments:<br />
1. DC model gives DC information (steady-state behavior).<br />
2. DC model can be used for loss estimation.<br />
63/107<br />
State-Space Average <strong>Modeling</strong>: AC Model<br />
Neglect the nonlinear product term d $ ⋅ x$ and d$ ⋅ u$<br />
We obtain the ac model (small-signal) equation:<br />
d<br />
x$ = A x$ + Bu$ + Fd$<br />
dt<br />
y$ = Cx$ + Eu$ + Gd$<br />
where<br />
A = A1D1 + A2D2<br />
B = B1D1 + B2D2<br />
C = C1D1 + C2D2<br />
E = E1D1 + E2D2<br />
F = ( A1 − A2) X + ( B1 − B2)<br />
U<br />
G = ( C − C ) X + ( E −E ) U<br />
1 2 1 2<br />
⎧ diˆ<br />
⎛ ⎞<br />
L ⎛ rL<br />
+ R//<br />
rC<br />
⎪<br />
⎟<br />
⎞ R<br />
= −⎜<br />
iˆ<br />
1<br />
+<br />
⎜<br />
⎟vˆ<br />
L<br />
⎪ dt ⎝ L ⎠ L⎝<br />
R+<br />
rC<br />
⎠<br />
⎪<br />
⎛ ⎞ ⎛ ⎞<br />
⎪<br />
dvˆ<br />
C<br />
1 R<br />
= −<br />
⎜<br />
⎟iˆ<br />
1 1<br />
L<br />
−<br />
⎜<br />
⎟vˆ<br />
C<br />
AC . . ⎨ dt C⎝<br />
R+<br />
rC<br />
⎠ L⎝<br />
R+<br />
rC<br />
⎠<br />
⎪<br />
⎪<br />
⎛ R ⎞<br />
vˆ<br />
= R r i +<br />
⎪<br />
⎜<br />
⎟<br />
o<br />
( //<br />
C)ˆ<br />
L<br />
vˆ<br />
C<br />
⎝ R+<br />
rC<br />
⎠<br />
⎪<br />
⎪⎩<br />
iˆ<br />
s<br />
= Diˆ<br />
L<br />
+ ILdˆ<br />
C<br />
⎛ D⎞<br />
⎛Vi<br />
⎞<br />
+ ⎜ ⎟vˆ<br />
+ ⎜ ⎟dˆ<br />
i<br />
⎝ L ⎠ ⎝ L ⎠<br />
Comments:<br />
1. AC model gives small signal information.<br />
2. AC model parameter value depends on dc operating point.<br />
64/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
32
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Time-to-Frequency Transform<br />
Step 5. Transform ac state-space model into frequency domain (Laplace transform, s-domain).<br />
d<br />
x$ = Ax$ + Bu$ + Fd$<br />
dt<br />
y$ = Cx$ + Eu$ + Gd$<br />
In the following, the hat above the variables will be neglected for simplicity. The small signal<br />
(or ac term) of a variable is denoted using lower case letter. Thus, the dynamic equation of a<br />
PWM dc-dc converter can be represented as:<br />
d<br />
x = Ax+ Bu+<br />
Fd<br />
dt<br />
y= Cx+ Eu+<br />
Gd<br />
65/107<br />
Time-to-Frequency Transform<br />
Take Laplace transform:<br />
sx( s) = Ax( s) + Bu( s) + Fd ( s)<br />
y() s = Cx() s + Eu() s + Gd()<br />
s<br />
−1 −1<br />
x() s = ( sI− A) Bu() s + ( sI−<br />
A) Fd()<br />
s<br />
= H ()() s u s + H ()() s d s<br />
u<br />
−1<br />
H () s = ( sI−A)<br />
B<br />
u<br />
−1<br />
H () s = ( sI−A) Fd()<br />
s<br />
d<br />
d<br />
−1 −1<br />
y() s = [ C( sI− A) B+ Eu ]() s + [ C( sI− A) F+<br />
G]()<br />
d s<br />
= G ()() s u s + G ()() s d s<br />
u<br />
−1<br />
G () = C( sI− A)<br />
B+<br />
E<br />
u<br />
s<br />
−1<br />
Gd() s = C( sI− A)<br />
F+<br />
G<br />
d<br />
G ( s)<br />
= C(<br />
sI<br />
− A)<br />
u<br />
−1<br />
⎡Gu<br />
B+<br />
E = ⎢<br />
⎣Gu<br />
11<br />
21<br />
( s)<br />
( s)<br />
G<br />
G<br />
u12<br />
u22<br />
( s)<br />
⎤<br />
( s)<br />
⎥<br />
⎦<br />
66/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
33
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong>: Transfer Functions<br />
Interpretation of the transfer function matrix<br />
Input-to-output voltage gain<br />
(audio susceptibility)<br />
⎡vo⎤<br />
⎡G<br />
⎢<br />
i<br />
⎥ = ⎢<br />
⎣ i ⎦ ⎣G<br />
u11<br />
u21<br />
( s)<br />
( s)<br />
G<br />
G<br />
u12<br />
u22<br />
Output impedance<br />
( s)<br />
⎤⎡vi⎤<br />
⎡G<br />
( s)<br />
⎥⎢<br />
i<br />
⎥ + ⎢<br />
⎦⎣<br />
d ⎦ ⎣G<br />
d1<br />
d 2<br />
( s)<br />
⎤<br />
d<br />
( s)<br />
⎥<br />
⎦<br />
Control-to-output<br />
voltage gain<br />
Input Admittance<br />
Load-to-line current gain<br />
Control-to-input<br />
current gain<br />
67/107<br />
State-Space Average <strong>Modeling</strong>: Transfer Functions<br />
Disturbances<br />
Results<br />
$v i<br />
K PWM<br />
A(s)<br />
$i o<br />
$ d<br />
iˆ<br />
i<br />
vˆ<br />
i<br />
v$<br />
$ ; $ o<br />
v<br />
v i$<br />
i<br />
i<br />
i<br />
;<br />
ˆ<br />
iˆ<br />
o<br />
o<br />
o<br />
i<br />
i<br />
;<br />
ˆ<br />
dˆ<br />
v<br />
; $ o<br />
d$<br />
î i<br />
$v o<br />
Control action<br />
$v c<br />
Loop compensator<br />
68/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
34
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Averaging: Time-to-Frequency Transform<br />
⎡<br />
⎤<br />
⎢<br />
⎥<br />
vˆ<br />
o(<br />
s)<br />
⎢<br />
1+<br />
srC<br />
C<br />
= V<br />
⎥<br />
i<br />
dˆ(<br />
s)<br />
⎢ ⎛<br />
L ⎞<br />
⎥<br />
2 ⎛ R+<br />
r ⎞<br />
C<br />
⎢1+<br />
s⎜rC<br />
C + [ R//<br />
rL<br />
] C + ⎟+ s LC⎜<br />
⎟⎥<br />
⎣ ⎝<br />
R+<br />
rL<br />
⎠ ⎝ R+<br />
rC<br />
+ rL<br />
⎠⎦<br />
⎡<br />
⎤<br />
⎢<br />
⎥<br />
vˆ<br />
o(<br />
s)<br />
⎢<br />
1+<br />
srC<br />
C<br />
= D<br />
⎥<br />
vˆ<br />
⎢ ⎛<br />
⎞ ⎛ + ⎞⎥<br />
i(<br />
s)<br />
L 2 R rC<br />
⎢1+<br />
s⎜rC<br />
C + [ R//<br />
rL<br />
] C + ⎟+ s LC⎜<br />
⎟⎥<br />
⎣ ⎝<br />
R+<br />
rL<br />
⎠ ⎝ R+<br />
rC<br />
+ rL<br />
⎠⎦<br />
vo()<br />
s<br />
Zo()<br />
s = = G<br />
i () s d<br />
d<br />
u12<br />
= 0<br />
vi<br />
= 0<br />
() s<br />
69/107<br />
State-Space Averaging: Time-to-Frequency Transform<br />
Note: In most conditions, because R >>(r L + r C ), the above equations can be approximated as<br />
⎡<br />
⎤<br />
vˆ<br />
⎢<br />
⎥<br />
o(<br />
s)<br />
1+<br />
srC<br />
C<br />
= Vi<br />
⎢<br />
⎥<br />
dˆ(<br />
s)<br />
⎢ ⎛ L ⎞ 2<br />
1+<br />
s⎜<br />
+ ( r<br />
⎥<br />
C<br />
+ rL<br />
) C⎟ + s LC<br />
⎢⎣<br />
⎝ R ⎠ ⎥⎦<br />
⎡<br />
⎤<br />
vˆ<br />
s ⎢ + sr C ⎥<br />
o(<br />
)<br />
1 C<br />
= Vi<br />
⎢<br />
⎥<br />
dˆ(<br />
s)<br />
⎢ ⎛ L ⎞ 2<br />
1+<br />
s⎜<br />
+ ( r + r C ⎟ + s LC⎥<br />
C L)<br />
⎢⎣<br />
⎝ R ⎠ ⎥⎦<br />
v$ o( s)<br />
1+ srC<br />
C<br />
= V<br />
ds $<br />
i 2<br />
() Δs<br />
ω<br />
o<br />
⎡<br />
⎤<br />
vˆ<br />
⎢<br />
⎥<br />
o(<br />
s)<br />
1+<br />
srC<br />
C<br />
= D⎢<br />
⎥<br />
vˆ<br />
⎢ ⎛ L<br />
i(<br />
s)<br />
⎞ 2<br />
1+<br />
s⎜<br />
+ ( r<br />
⎥<br />
C<br />
+ rL<br />
) C⎟ + s LC<br />
⎢⎣<br />
⎝ R ⎠ ⎥⎦<br />
2 ωo<br />
2<br />
Δs<br />
= s + s + ωo<br />
Q<br />
1<br />
ωo<br />
=<br />
LC<br />
1 1<br />
Q =<br />
ω L<br />
o + ( rL<br />
+ rC<br />
) C<br />
R<br />
70/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
35
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
State-Space Average <strong>Modeling</strong><br />
v$ ( s)<br />
v$ o<br />
o<br />
( s)<br />
The small signal control-to-output $ , and line-to-output are transfer<br />
d<br />
functions of two poles and one zero ( s )<br />
v$ i<br />
( s)<br />
( s + z1)<br />
K<br />
( s+ p )( s+<br />
p )<br />
1 2<br />
with its parameters depending upon component values and operating point. p 1 , p 2 can be<br />
complex poles or real poles. But p 1 , p 2 and z 1 all lie on LHP.<br />
Note: The equivalent series resistance of the capacitor will introduce a LHP zero.<br />
71/107<br />
State-Space Averaging: Output Impedance<br />
Output Impedance: Z s<br />
s s<br />
1 + + ( )<br />
v$ o<br />
( s)<br />
ω1Q1 ω1<br />
= R<br />
i$ 2<br />
( s)<br />
Δs<br />
ω<br />
d<br />
o<br />
2<br />
o<br />
vo( s)<br />
−1<br />
() = = c( sI− A)<br />
B+<br />
du<br />
i () s d = 0<br />
d<br />
u=<br />
0<br />
2 ω<br />
o<br />
Δs s<br />
Q s 2<br />
= + + ω<br />
o<br />
1 1 1<br />
ω<br />
o<br />
= ,<br />
Q =<br />
LC<br />
ω L<br />
o + ( rL<br />
+ rC)<br />
C<br />
R<br />
1 rL<br />
1 1<br />
ω1 = ; Q1<br />
=<br />
LC r<br />
L<br />
C<br />
ω1<br />
+ rC<br />
L<br />
r<br />
C<br />
72/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
36
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
<strong>Modeling</strong> of Load Impedance and Disturbances<br />
Z os<br />
PWM<br />
Modulator<br />
v g<br />
v o<br />
v R<br />
v~s<br />
V s<br />
Boost Converter Buck/Boost Converter Buck Converter<br />
R L<br />
~<br />
id<br />
load<br />
Gate<br />
Drive<br />
Loop<br />
Compensator<br />
L<br />
r L<br />
i L<br />
i o<br />
i d<br />
Q<br />
i c<br />
i R<br />
v i<br />
D<br />
r c<br />
C<br />
v c<br />
R<br />
v o<br />
<strong>Modeling</strong> of Source Impedance and Disturbances<br />
Z os<br />
PWM<br />
Modulator<br />
v g<br />
v o<br />
v R<br />
v~s<br />
V s<br />
Boost Converter Buck/Boost Converter Buck Converter<br />
R L<br />
~<br />
id<br />
load<br />
Gate<br />
Drive<br />
Loop<br />
Compensator<br />
L<br />
Protection<br />
F1<br />
Input EMI Filter<br />
Rectifier<br />
V o<br />
G<br />
N<br />
RV1<br />
F2<br />
C y<br />
C x<br />
T y<br />
T x<br />
C y<br />
C x<br />
PWM<br />
Isolation<br />
V SENSE<br />
R. D. Middlebrook, "Input Filter Considerations in Design and Application of Switching Regulators," IEEE Industry<br />
Applications Society Annual Meeting, 1976 Record, pp. 366-382.<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
37
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Dynamic Responses for Step Load Changes<br />
Adaptive voltage<br />
positioning offset<br />
V OFFSET (40mV)<br />
Nominal set<br />
point voltage<br />
V SET (2.0V)<br />
Dynamic voltage<br />
tolerance, V DYN-<br />
(100mV for 2μs)<br />
Initial voltage drop is<br />
mainly due to the product<br />
of the load current step<br />
and ESR of the capacitors.<br />
ΔV = ΔI × ESR.<br />
(ESL effects are ignored)<br />
Output voltage<br />
V OUT (50mV/Div)<br />
Steady state voltage at<br />
high current is<br />
approximately<br />
V SET + V OFFSET − I OUT × R SENSE<br />
Output current transient<br />
step, ΔI = 0 to 14A<br />
(5A/Div)<br />
L = .5μH;<br />
C OUT<br />
= 6×<br />
1500μF Sanyo MV - GX; R = 2.5mΩ<br />
2<br />
SENSE<br />
Intel: VRM (Voltage Regulator Module) and Enterprise Voltage Regulator-Down (EVRD) 11.0<br />
Design Guidelines, Nov. 2006.<br />
75/107<br />
Buck Converter with Load Current Disturbance<br />
Block Diagram Representation<br />
v i<br />
Q<br />
D<br />
L<br />
r L<br />
r c<br />
C<br />
i L<br />
i c<br />
v c<br />
i o<br />
R<br />
v o<br />
i d<br />
i R<br />
i d<br />
ΔI d<br />
i d<br />
i R<br />
1<br />
R<br />
ΔT<br />
Load Current Slew Rate<br />
t<br />
ΔI<br />
d<br />
ΔT<br />
Q<br />
1 i L i C<br />
rC + 1<br />
sL + r L<br />
sC<br />
v o<br />
v i D<br />
i o<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
38
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Control-to-Output Transfer Functions<br />
DC-DC Converters in CCM Operating Mode<br />
v i<br />
D<br />
L<br />
C<br />
v o<br />
• Buck<br />
v$ o()<br />
s 1+<br />
rC<br />
Cs<br />
= V<br />
ds $<br />
i<br />
( ) s 2 1<br />
( ) +<br />
Q s + 1<br />
ω ω<br />
o<br />
o<br />
1<br />
ωo<br />
=<br />
LC<br />
1 1<br />
Q =<br />
ω L<br />
o + ( rL<br />
+ rC<br />
) C<br />
R<br />
v i<br />
L<br />
D<br />
C<br />
v o<br />
• Boost<br />
' 2<br />
v$ o()<br />
s Vi ( 1+ rCs<br />
C<br />
)( 1−sL( D R))<br />
=<br />
$ ' 2<br />
ds () D s 2 1<br />
( ) +<br />
Q s + 1<br />
ω ω<br />
o<br />
o<br />
ω =<br />
o<br />
D<br />
LC<br />
D 1<br />
Q =<br />
ω L r C<br />
o<br />
L<br />
+ + rC<br />
C<br />
D R D<br />
D<br />
• Buck/Boost<br />
' 2<br />
v$ o()<br />
s Vi ( 1+ rCCs)( 1−sDL ( D R))<br />
v i L C v o<br />
=<br />
$ ()<br />
' 2<br />
ds D s 2 1<br />
( ) +<br />
Q s + 1<br />
ω ω<br />
o<br />
o<br />
D<br />
ωo<br />
=<br />
LC<br />
D 1<br />
Q=<br />
ω L r<br />
o<br />
C<br />
+ (<br />
( D ) R D<br />
2<br />
+<br />
rL<br />
2)<br />
C<br />
( D )<br />
77/107<br />
Transfer Functions of Buck Converters<br />
Transfer Function<br />
Transfer Function<br />
v$ o ( s)<br />
1 + rCs C<br />
= V i<br />
d$ 2<br />
( s ) Δs<br />
ω<br />
o<br />
FD<br />
=<br />
Δ<br />
1<br />
i$ L<br />
( s)<br />
V<br />
i<br />
1 + rCs<br />
L<br />
=<br />
d$ 2<br />
( s ) r Δs<br />
ω<br />
L<br />
o<br />
FD<br />
=<br />
Δ<br />
2<br />
v$ o<br />
( s ) 1 + rC<br />
Cs<br />
= D<br />
2<br />
v$ ( s)<br />
Δs<br />
ω<br />
i<br />
o<br />
FU<br />
=<br />
Δ<br />
11<br />
i$ L<br />
( s)<br />
=<br />
v$ ( s)<br />
i<br />
D<br />
R<br />
1 + RCs<br />
2<br />
Δs<br />
ω<br />
o<br />
FU<br />
=<br />
Δ<br />
21<br />
v$ o<br />
( s)<br />
= R<br />
i$ ( s)<br />
d<br />
eq<br />
s s<br />
1 + + ( )<br />
ω<br />
1Q1 ω<br />
1<br />
2<br />
Δs<br />
ω<br />
o<br />
2<br />
FU<br />
=<br />
Δ<br />
12<br />
i$ L<br />
( s)<br />
1 rC<br />
Cs FU<br />
=− + =<br />
i$ 2<br />
( s)<br />
Δs<br />
ω Δ<br />
d<br />
o<br />
22<br />
2 ω<br />
o<br />
Δs = s +<br />
Q s 2<br />
+ ω , R = r<br />
o eq L<br />
1 1 1<br />
ω<br />
o<br />
= ,<br />
Q =<br />
LC<br />
ω L<br />
o + ( rL<br />
+ rC)<br />
C<br />
R<br />
1 rL<br />
1 1<br />
ω1 = ; Q1<br />
=<br />
LC r<br />
L<br />
C<br />
ω1<br />
+ rC<br />
L<br />
r<br />
C<br />
78/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
39
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Transfer Functions of Boost Converters<br />
Transfer Function<br />
s s<br />
( 1 + )( 1 − )<br />
v$ o( s)<br />
V<br />
i<br />
ω<br />
z<br />
ω<br />
a<br />
F<br />
D<br />
=<br />
=<br />
$ ( ) (<br />
'<br />
d s D )<br />
2 2<br />
Δs<br />
ω<br />
Δ<br />
o<br />
1<br />
Transfer Function<br />
RC<br />
$ 1 +<br />
iL<br />
( s)<br />
2V<br />
I<br />
=<br />
2<br />
$ ( ) (<br />
'<br />
d s D )<br />
3 2<br />
R Δs<br />
ω<br />
o<br />
FD<br />
=<br />
Δ<br />
2<br />
v$ o<br />
( s ) 1 1 FU<br />
= =<br />
'<br />
2<br />
v$ ( s)<br />
D Δs<br />
ω Δ<br />
i<br />
o<br />
11<br />
i$ L<br />
( s)<br />
2V<br />
i<br />
1+<br />
RC<br />
=<br />
v$ ( s) ( D<br />
' 3 2<br />
) R Δs<br />
ω<br />
i<br />
o<br />
FU<br />
=<br />
Δ<br />
21<br />
v$ o<br />
( s)<br />
= R<br />
v$ ( s)<br />
i<br />
eq<br />
s s<br />
1 + + ( )<br />
ω<br />
1Q<br />
1<br />
ω<br />
1<br />
2<br />
Δs<br />
ω<br />
o<br />
2<br />
FU<br />
=<br />
Δ<br />
12<br />
i$ L<br />
( s)<br />
1 1 + rC<br />
Cs<br />
=−<br />
$ '<br />
2<br />
i ( s)<br />
D Δs<br />
ω<br />
d<br />
o<br />
FU<br />
=<br />
Δ<br />
22<br />
Δs s<br />
Q s Q D '<br />
2 ω<br />
o 2<br />
1<br />
= + + ω<br />
o<br />
, =<br />
ω L rC<br />
o<br />
L '<br />
+ + DrC<br />
C<br />
'<br />
'<br />
DR D<br />
'<br />
D<br />
ω<br />
o<br />
=<br />
LC<br />
'<br />
D Req<br />
1 1<br />
ω1 = ; Q1<br />
=<br />
LC r<br />
L<br />
C<br />
ω 1 ( + rC<br />
' 2 C )<br />
D R<br />
' 2<br />
1 ( D ) R rL<br />
ω z = ; ω a = Req<br />
=<br />
'<br />
rC<br />
L<br />
D<br />
C<br />
2<br />
D<br />
D r '<br />
C<br />
eq<br />
79/107<br />
Transfer Functions of Buck/Boost Converters<br />
Transfer Function<br />
s s<br />
( 1+ )( 1−<br />
)<br />
v$ o( s)<br />
Vi ωz ωa<br />
FD<br />
=<br />
=<br />
$ ( ) (<br />
'<br />
d s D )<br />
2 2<br />
Δs<br />
ω Δ<br />
v$ o<br />
( s)<br />
D ( 1 + rCs<br />
C<br />
) FU<br />
=<br />
=<br />
'<br />
2<br />
v$ ( s)<br />
D Δs<br />
ω Δ<br />
i<br />
v$ o ( s)<br />
= R<br />
i$ ( s)<br />
d<br />
eq<br />
s s<br />
1 + + ( )<br />
ω1Q1 ω1<br />
2<br />
Δs<br />
ω<br />
o<br />
o<br />
o<br />
2<br />
11<br />
FU<br />
=<br />
Δ<br />
12<br />
1<br />
Transfer Function<br />
i$ L( s)<br />
Vi<br />
1 + RCs FD<br />
=<br />
=<br />
$ ( ) (<br />
'<br />
d s D )<br />
2 2<br />
R Δs<br />
ω Δ<br />
i$ L( s)<br />
D 11+<br />
RCs FU<br />
=<br />
=<br />
v$ ( s) ( D<br />
' 2 2<br />
) R Δs<br />
ω Δ<br />
i<br />
i$ L( s)<br />
11+<br />
rCs<br />
C<br />
FU<br />
=−<br />
=<br />
$ '<br />
2<br />
i ( s)<br />
D Δs<br />
ω Δ<br />
d<br />
o<br />
o<br />
o<br />
22<br />
2<br />
21<br />
2 ω<br />
o<br />
Δs = s +<br />
Q s<br />
2<br />
+ ω o<br />
'<br />
'<br />
D<br />
D<br />
ω<br />
o<br />
= ,<br />
Q =<br />
LC<br />
ω<br />
' 2<br />
1 ( D ) R<br />
rL<br />
D<br />
ω<br />
R<br />
rC<br />
DL<br />
D D r<br />
z<br />
= , ω<br />
a<br />
= ;<br />
eq<br />
= +<br />
' 2 '<br />
( )<br />
C<br />
1<br />
L r r<br />
+ ( + C<br />
' 2 ' ' 2<br />
( D ) R D ( D ) )<br />
o C L<br />
Req<br />
1 1<br />
ω1 = ω<br />
o<br />
;<br />
Q1<br />
=<br />
r<br />
L<br />
C<br />
ω<br />
1<br />
' 2<br />
+ rC<br />
C<br />
D R<br />
eq<br />
C<br />
80/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
40
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Q-factor of Buck Converter<br />
D<br />
L<br />
C<br />
• Buck<br />
v$ o()<br />
s 1+<br />
rC<br />
Cs<br />
= V<br />
ds $<br />
i<br />
( ) s 2 1<br />
( ) +<br />
Q s + 1<br />
ω ω<br />
o<br />
o<br />
1<br />
ωo<br />
=<br />
LC<br />
1 1<br />
Q =<br />
ω L<br />
o + ( rL<br />
+ rC<br />
) C<br />
R<br />
1 1<br />
Q =<br />
=<br />
ω L<br />
o + ( rL<br />
+ rC<br />
) C<br />
R<br />
1<br />
1<br />
LC<br />
1<br />
=<br />
L<br />
+ ( rL<br />
+ rC<br />
) C<br />
1<br />
R<br />
R<br />
1<br />
L<br />
+ ( rL<br />
+ rC<br />
)<br />
C<br />
C<br />
L<br />
=<br />
1<br />
Zo<br />
rL<br />
+ r<br />
+<br />
R Z<br />
o<br />
C<br />
v i v o<br />
C<br />
1 1<br />
1<br />
Q =<br />
=<br />
ω L<br />
Z<br />
o<br />
o<br />
rL<br />
+ r<br />
+ ( rL<br />
+ rC<br />
) C +<br />
R<br />
R Z<br />
o<br />
C<br />
1 1<br />
Q =<br />
≈<br />
ω L<br />
o + ( rL<br />
+ rC<br />
) C<br />
R<br />
LC<br />
=<br />
L<br />
R<br />
R<br />
L<br />
81/107<br />
Summary: Buck Converters at CCM<br />
Transfer Function<br />
v$ o ( s)<br />
1 + rCs C FD<br />
= V i =<br />
d$ 2<br />
( s ) Δs<br />
ω Δ<br />
o<br />
1<br />
Transfer Function<br />
i$ L<br />
( s)<br />
V<br />
i<br />
1 + rCs<br />
L<br />
FD<br />
=<br />
=<br />
d$ 2<br />
( s ) r Δs<br />
ω Δ<br />
L<br />
o<br />
2<br />
v i<br />
r L<br />
Q i L i o<br />
L<br />
D<br />
r c<br />
C<br />
i c<br />
v c<br />
i R<br />
i d<br />
v o<br />
v$ o<br />
( s ) 1 + rC<br />
Cs FU<br />
= D =<br />
2<br />
v$ ( s)<br />
Δs<br />
ω Δ<br />
i<br />
v$ o( s)<br />
= R<br />
i$ ( s)<br />
d<br />
eq<br />
s s<br />
1 + + ( )<br />
ω1Q1 ω1<br />
2<br />
Δs<br />
ω<br />
o<br />
o<br />
2<br />
11<br />
FU<br />
=<br />
Δ<br />
12<br />
i$ L<br />
( s)<br />
D 1 + RCs<br />
=<br />
2<br />
v$ ( s)<br />
R Δs<br />
ω<br />
i<br />
o<br />
FU<br />
=<br />
Δ<br />
i$ L<br />
( s)<br />
1 rC<br />
Cs FU<br />
=− + =<br />
i$ 2<br />
( s)<br />
Δs<br />
ω Δ<br />
d<br />
o<br />
22<br />
21<br />
i i<br />
L<br />
Q ON<br />
r<br />
i L L io i d<br />
i c i R<br />
r c<br />
v i<br />
R v o<br />
C v c<br />
i i<br />
L<br />
D ON<br />
r L i L i o<br />
i d<br />
i c i R<br />
r c<br />
R v o<br />
C<br />
v c<br />
Switch-ON Period<br />
Switch-OFF Period<br />
&x = A x + B u<br />
1 1<br />
y = C x+<br />
E u<br />
1 1<br />
x d 1<br />
&x = A x+<br />
B u<br />
2 2<br />
y= C x+<br />
E u<br />
2 2<br />
x d 2<br />
averaging by using state duty ratio weighting<br />
x = Ax + Bu<br />
y = Cx + Du<br />
where<br />
A = A d + A d<br />
1 1 2 2<br />
B = B d + B d<br />
1 1 2 2<br />
C = C d + C d<br />
1 1 2 2<br />
E = E d + E d<br />
1 1 2 2<br />
82/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
41
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
PWM Switch Model<br />
電 力 電 子 系 統 與 晶 片 實 驗 室<br />
Power Electronic Systems & Chips Lab.<br />
交 通 大 學 • 電 機 與 控 制 工 程 研 究 所<br />
83/107<br />
PWM Switch Model<br />
• Introduction<br />
• PWM Switch and its Invariant Properties<br />
• CCM Analysis<br />
DC and Small-Signal Model of PWM Switch<br />
PWM Switch Model of Buck Converters<br />
PWM Switch Model of Boost Converters<br />
PWM Switch Model of Buck/Boost Converters<br />
PWM Switch Model of Cuk Converters<br />
Analysis of PWM Converters<br />
Right-half Plane Zero of the Converters<br />
PWM Switch Model Including Storage-Time Modulation<br />
• DCM Analysis<br />
DC and Small Model of PWM Switch<br />
Analysis of PWM Converters<br />
Zero of Control-to-Output Transfer Function in DCM<br />
84/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
42
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
PWM Switch Model (1990)<br />
PWM Switch Method<br />
[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I:<br />
Continuous Conduction Mode,” IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496,<br />
May 1990.<br />
[2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II:<br />
Discontinuous Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp.<br />
497-505, May 1990.<br />
Fast Analytical <strong>Techniques</strong> for Electrical and Electronic Circuits,<br />
V. Vorperian, Cambridge Press, 2004.<br />
1. Introduction<br />
2. Transfer functions<br />
3. The extra element theorem<br />
4. The N-extra element theorem<br />
5. Electronic negative feedback<br />
6. High-frequency and microwave circuits<br />
7. Passive filters<br />
8. PWM switching dc-to-dc converters<br />
85/107<br />
Pulse-Width Modulator<br />
v c<br />
K<br />
m<br />
1<br />
= = constant<br />
v<br />
p<br />
For natural sampling,<br />
ds( t)<br />
v p<br />
v<br />
D T ON<br />
vc<br />
= =<br />
p<br />
T v<br />
S<br />
p<br />
ds $ () = Kv()<br />
s<br />
m c<br />
86/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
43
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
PWM Switch Model<br />
(active)<br />
i% () t<br />
a<br />
d<br />
1-d<br />
~<br />
ic ( t )<br />
c<br />
Instantaneous value<br />
(common)<br />
v% () t<br />
ap<br />
v% () t<br />
cp<br />
p<br />
(passive)<br />
PWM Switch <strong>Modeling</strong><br />
[1] V. Vorperian, R. Tymerski, and F.C.Y. Lee, “Equivalent circuit models for resonant and PWM switches,” IEEE<br />
Transactions on Power Electronics, vol. 4, no. 2, pp. 205-214, Apr 1989.<br />
[1] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous<br />
Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 490-496, May 1990.<br />
[2] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous<br />
Conduction Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.<br />
[3] E. Van Dijk, J. N. Spruijt, D. M. O'Sullivan, and J. B. Klaassens, “PWM-switch modeling of DC-DC converters,”<br />
IEEE Transactions on Power Electronics,, vol. 10, no. 6, pp. 659 -665, Nov 1995.<br />
87/107<br />
<strong>Modeling</strong> of the Switch<br />
i<br />
a<br />
= Di<br />
c<br />
i% () t<br />
~ t<br />
ic ( )<br />
a<br />
v<br />
cp<br />
= Dv<br />
ap<br />
v ap<br />
v cp<br />
v% ap<br />
() t<br />
v% () t<br />
cp<br />
Note:<br />
i<br />
a<br />
denotesthe averagevalueof<br />
~<br />
i ( t)<br />
a<br />
During a PWM switching interval:<br />
~ ⎧<br />
~ ie<br />
( t),<br />
ia<br />
( t)<br />
= ⎨<br />
⎩ 0,<br />
0 ≤ t ≤ DT<br />
DT ≤ t ≤ T<br />
s<br />
s<br />
s<br />
⎧v<br />
~<br />
ap<br />
t<br />
v~<br />
( ),<br />
cp<br />
( t)<br />
= ⎨<br />
⎩ 0,<br />
0 ≤ t ≤ DT<br />
DT ≤ t ≤ T<br />
s<br />
s<br />
s<br />
88/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
44
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Small-Signal Perturbation<br />
Make a small-signal perturbation at a DC operating point<br />
We can obtain<br />
d= D+ d $<br />
ia= Ia+<br />
i$<br />
a<br />
i = I + i$<br />
c c c<br />
v = V + v$<br />
cp cp cp<br />
v = V + v$<br />
ap ap ap<br />
i<br />
a<br />
= Di<br />
c<br />
ia<br />
= dic<br />
I<br />
a<br />
+ iˆ<br />
a<br />
= ( D + dˆ)(<br />
I<br />
c<br />
+ iˆ<br />
c<br />
)<br />
I + iˆ<br />
= DI + I dˆ<br />
+ Diˆ<br />
+ di ˆˆ<br />
a<br />
a<br />
c<br />
c<br />
c<br />
c<br />
v<br />
cp<br />
= Dv<br />
ap<br />
v<br />
cp<br />
= dv<br />
ap<br />
V + v$ = ( D+ d$ )( V + v $ )<br />
cp cp ap ap<br />
V + v$ = DV + V d$ + Dv$ + dv $ $<br />
cp cp ap ap ap ap<br />
89/107<br />
DC and AC Analysis<br />
For dc analysis, eliminate all small signal perturbation terms, we can get its<br />
equivalent dc model.<br />
I<br />
V<br />
a<br />
cp<br />
= DI<br />
c<br />
= DV<br />
ap<br />
For ac analysis, set all dc terms to zero and neglect second order nonlinear<br />
terms, we can get its equivalent small-signal ac model.<br />
iˆ = I dˆ<br />
+ Diˆ<br />
a<br />
c<br />
v$ = V d$ + Dv$<br />
cp ap ap<br />
c<br />
90/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
45
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
PWM Switch Model<br />
DC Model:<br />
AC Model:<br />
⎧ I<br />
a<br />
= DI<br />
c<br />
⎪⎧<br />
iˆ<br />
= Diˆ<br />
+ I dˆ<br />
a c c<br />
⎨<br />
⎨<br />
⎩V<br />
cp<br />
= DV<br />
ap<br />
⎪⎩ vˆ<br />
= Dvˆ<br />
cp ap<br />
+ V<br />
Vap I a I c<br />
a<br />
c<br />
D d $<br />
îa<br />
a<br />
1 D<br />
V V<br />
ap<br />
cp<br />
I<br />
c<br />
d$<br />
ap<br />
dˆ<br />
Dˆ i c<br />
1 D<br />
îc<br />
c<br />
p<br />
p<br />
91/107<br />
DC Analysis of a Buck Converter<br />
a<br />
c<br />
L<br />
a<br />
c<br />
r L<br />
p<br />
r L<br />
r C<br />
C<br />
R<br />
V i<br />
1<br />
p<br />
D<br />
R<br />
V o<br />
DC Analysis<br />
V ⎛ ⎞<br />
o<br />
R<br />
= D⋅<br />
⎜<br />
⎟<br />
Vi<br />
⎝R+<br />
rL<br />
⎠<br />
92/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
46
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
AC Analysis of a Buck Converter<br />
Small-signal equivalent circuit<br />
model of the buck converter.<br />
L<br />
r L<br />
i L<br />
i o<br />
i c<br />
Note:<br />
In the following, the hat above<br />
the small signal variables are<br />
neglected for simplicity.<br />
r C<br />
C<br />
i i<br />
V i<br />
i S<br />
i D<br />
v o<br />
R<br />
v c<br />
i d<br />
a<br />
V i<br />
d ˆ<br />
D<br />
c<br />
L<br />
r L<br />
i L<br />
i o<br />
vˆi<br />
i i<br />
i a<br />
1<br />
Id<br />
c<br />
$<br />
p<br />
i c<br />
D<br />
r C<br />
C<br />
i c<br />
R<br />
v c<br />
i R<br />
94/107<br />
i R<br />
v o<br />
i d<br />
93/107<br />
AC Analysis: Control-to-Output Transfer Function<br />
i i<br />
a<br />
V<br />
ap<br />
D d<br />
c<br />
L<br />
r L<br />
i L<br />
i o<br />
'<br />
i c<br />
i R<br />
1 D<br />
p<br />
r C<br />
C<br />
R<br />
v c<br />
v o<br />
Short the unrelated voltage source and open the unrelated current source<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
47
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
AC Analysis: Control-to-Output Transfer Function<br />
v<br />
cp<br />
v<br />
o<br />
Vi<br />
=<br />
D d ⋅ D<br />
= v<br />
cp<br />
R//( rC<br />
+ 1/ sC)<br />
( r + sL) + R//( r + 1/ sC)<br />
L<br />
C<br />
R( 1+<br />
srC<br />
C)<br />
= Vd<br />
i 2<br />
s( R+ r) LC+ srrC ( + rRC+ L+ rRC) + ( R+<br />
r)<br />
C L C L C L<br />
vo()<br />
s<br />
R( 1+<br />
srC<br />
C)<br />
Gd<br />
() s = = Vi<br />
2<br />
ds () s RLC+ s( r r C + L + r RC + r RC) + ( R+<br />
r )<br />
L C L C L<br />
if r L
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
AC Analysis: Line-to-Output Transfer Function<br />
v<br />
cp<br />
= v D<br />
i<br />
R(<br />
rC<br />
+ 1/ sC)<br />
R//(<br />
rC<br />
+ 1/ sC)<br />
R + rC<br />
+ 1/ sC<br />
vo<br />
= vcp<br />
= vi<br />
D<br />
( r ) //( 1/ )<br />
R(<br />
rC<br />
1/ sC)<br />
L<br />
+ sL + R rC<br />
+ sC<br />
+<br />
( rL<br />
+ sL)<br />
+<br />
R + r + 1/ sC<br />
R(<br />
rC<br />
+ 1/ sC)<br />
R(1<br />
+ srC<br />
C)<br />
= vi<br />
D<br />
= viD<br />
( r + sL)(<br />
R + r + 1/ sC)<br />
+ R(<br />
r + 1/ sC)<br />
( r + sL)(<br />
sRC+<br />
sr C + 1) + R(<br />
sr C + 1)<br />
L<br />
R(1+<br />
srC<br />
C)<br />
= vi<br />
D<br />
2<br />
s ( R + r ) LC + s(<br />
r r C + r RC + L + r RC)<br />
+ ( R + r )<br />
C<br />
C<br />
L C<br />
L<br />
vo()<br />
s<br />
R( 1+<br />
srC<br />
C)<br />
Gv<br />
() s = = D<br />
2<br />
v () s s RLC+ s( r r C+ L+ r RC + r RC) + ( R+<br />
r )<br />
i<br />
C<br />
C<br />
L C L C L<br />
if r L
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
AC Analysis: Disturbance-to-Output Transfer Function<br />
v<br />
i<br />
o<br />
d<br />
R(<br />
rC<br />
+ 1/ sC)<br />
= R //( rC<br />
+ 1/ sC) //( rL<br />
+ sL)<br />
=<br />
//( rL<br />
+ sL)<br />
R + r + 1/ sC<br />
R(<br />
rC<br />
+ 1/ sC)<br />
( rL<br />
+ sL)<br />
R + rC<br />
+ 1/ sC<br />
R(<br />
rC<br />
+ 1/ sC)(<br />
rL<br />
+ sL)<br />
=<br />
=<br />
R(<br />
rC<br />
+ 1/ sC)<br />
+ r<br />
R rC<br />
sC R rC<br />
sC rL<br />
sL<br />
L<br />
+ sL<br />
( + 1/ ) + ( + + 1/ )( + )<br />
R + r + 1/ sC<br />
C<br />
C<br />
C<br />
C<br />
2<br />
[ r LC + sr r C + sL + r ]<br />
R s<br />
C L C<br />
L<br />
=<br />
2<br />
sr RC + R + s RLC + s r LC + sr r C + sr RC + sL + r<br />
2<br />
C<br />
L<br />
C<br />
C L<br />
L<br />
C<br />
2<br />
[ r LC + sr r C + sL + r ]<br />
R(<br />
srC<br />
C + 1)( rL<br />
+ sL)<br />
R s<br />
C<br />
L C<br />
L<br />
=<br />
=<br />
R(<br />
sr C + 1) + ( sRC + sr C + 1)( r + sL)<br />
sr RC + R + ( sRC + sr C + 1)( r + sL)<br />
L<br />
C<br />
L<br />
v<br />
i<br />
d<br />
o<br />
2<br />
RsrLC<br />
C<br />
+ sL ( + rrC<br />
L C<br />
) + rL<br />
=<br />
2<br />
s ( R+ r ) LC + s L+ ( r + r ) RC + r r C + ( R+<br />
r )<br />
C C L C L L<br />
99/107<br />
AC Analysis: Disturbance-to-Output Transfer Function<br />
if r L
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
AC Analysis: Disturbance-to-Output Transfer Function<br />
2 1 rL<br />
v s<br />
s rC<br />
s<br />
o(<br />
)<br />
+ +<br />
Z s<br />
C LC<br />
o(<br />
) = =<br />
i s 1 rC<br />
r<br />
d(<br />
) 2 ⎡ +<br />
L⎤<br />
1<br />
s + s<br />
⎢<br />
+ +<br />
⎣RC<br />
L ⎥<br />
⎦ LC<br />
2 1<br />
ω o =<br />
LC<br />
ω= 1 LC<br />
ω 1 o<br />
r C<br />
r L<br />
= + +<br />
Q RC L<br />
2<br />
1 ωo<br />
1 1 1 1<br />
Q=<br />
=<br />
=<br />
ω 1 rC<br />
+ rL<br />
r r L<br />
o o<br />
⎛ 1<br />
C<br />
+<br />
+<br />
ω<br />
L ⎞ ωo<br />
LC⎜<br />
+ ⎟ + ( rC<br />
+ rL<br />
) L<br />
RC L ⎝RC<br />
L ⎠ R<br />
101/107<br />
AC Analysis: Disturbance-to-Output Transfer Function<br />
1 1<br />
Q =<br />
ω L<br />
o + ( rC<br />
+ rL)<br />
L<br />
R<br />
Z ( s)<br />
op<br />
2 ⎡ 1 rC<br />
+ rL<br />
⎤ 1<br />
= s + s<br />
⎢<br />
+ +<br />
⎣RC<br />
L ⎥<br />
⎦<br />
2 ω =<br />
o 2<br />
s + s +ω<br />
o<br />
Q<br />
2 1 rL<br />
Zoq(<br />
s)<br />
= s rC<br />
+ s +<br />
C LC<br />
r ⎛<br />
2 L ⎞<br />
L<br />
rC<br />
=<br />
⎜ LCs + s + 1<br />
⎟<br />
LC⎝<br />
rL<br />
rL<br />
⎠<br />
2⎛<br />
1<br />
= Reqω<br />
o<br />
⎜ s<br />
2<br />
⎝ω1<br />
2<br />
LC<br />
1 ⎞<br />
+ s + 1⎟<br />
ω1Q<br />
1 ⎠<br />
ωo<br />
Δs= s 2 + s + ω<br />
2<br />
Q<br />
R<br />
eq<br />
= r<br />
L<br />
1<br />
ω 1<br />
= r L<br />
r LC<br />
C<br />
1 rL<br />
Q1<br />
= ω L<br />
1<br />
o<br />
102/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
51
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
AC Analysis: Disturbance-to-Output Transfer Function<br />
The exact output impedance is derived as:<br />
v<br />
i<br />
o<br />
d<br />
=<br />
=<br />
=<br />
R<br />
C<br />
2<br />
s ( R + r ) LC + s<br />
C<br />
2<br />
[ s r LC + s(<br />
L + r r C ) + r ]<br />
[ L + ( r + r ) RC + r r C ]<br />
C<br />
C L<br />
+ ( R + r )<br />
2<br />
s rC<br />
LC + s(<br />
L + rL<br />
rC<br />
C ) + rL<br />
2 rC<br />
⎡ L<br />
C ⎤ rL<br />
s (1 + ) LC + s r r C r r<br />
R ⎢<br />
+ (<br />
C<br />
+<br />
L<br />
) +<br />
C L<br />
+ (1 + )<br />
⎣ R<br />
R ⎥<br />
⎦ R<br />
2 1 rL<br />
rC<br />
rL<br />
s rC<br />
+ s(<br />
+ ) +<br />
C L LC<br />
2 rC<br />
⎡ 1 1 rL<br />
rC<br />
⎤ rL<br />
1<br />
s (1 + ) + s ( rC<br />
rL<br />
) + (1 + )<br />
R ⎢<br />
+ + +<br />
⎣ RC L R ⎥<br />
⎦ R LC<br />
L<br />
L C<br />
L<br />
L<br />
103/107<br />
AC Analysis: Disturbance-to-Output Transfer Function<br />
2<br />
Z ( s)<br />
= s r<br />
R<br />
oq<br />
eq<br />
= r<br />
= R<br />
L<br />
⎛ 1 rL<br />
r<br />
+ s⎜<br />
+<br />
⎝C<br />
L<br />
2⎛<br />
1<br />
ω<br />
⎜<br />
o<br />
s<br />
2<br />
⎝ω1<br />
eq<br />
C<br />
1<br />
ω 1 = r L<br />
r LC<br />
C<br />
1 1<br />
Q1<br />
=<br />
ω L<br />
1 + rC<br />
C<br />
r<br />
L<br />
2<br />
C<br />
⎞ r ⎛<br />
L<br />
rL<br />
r<br />
⎟+ =<br />
⎜<br />
⎠ LC LC⎝<br />
r<br />
1 ⎞<br />
+ s + 1<br />
⎟<br />
ω1Q<br />
1 ⎠<br />
C<br />
L<br />
2 L ⎞<br />
LCs + ( + r C)<br />
s + 1<br />
⎟<br />
C<br />
rL<br />
⎠<br />
104/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
52
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
Output Impedance of the Buck Converter<br />
Output Impedance of the Buck Converter:<br />
2 1 rL<br />
rC<br />
rL<br />
v s<br />
s rC<br />
s<br />
o(<br />
)<br />
+ ( + ) +<br />
Z s<br />
C L LC<br />
o(<br />
) = =<br />
i s rC<br />
1 1 rL<br />
rC<br />
r<br />
d<br />
( ) 2 ⎡<br />
⎤ L<br />
1<br />
s (1+<br />
) + s ( rC<br />
rL<br />
) + (1+<br />
)<br />
R ⎢<br />
+ + +<br />
⎣RC<br />
L R ⎥<br />
⎦ R LC<br />
vo( s)<br />
Zo( s)<br />
= = R<br />
i ( s)<br />
d<br />
eq<br />
s s<br />
1+ + ( )<br />
ω1Q1 ω1<br />
2<br />
Δs<br />
ω<br />
o<br />
2<br />
2 ωo<br />
Δs= s +<br />
Q s 2<br />
+ ω , R = r<br />
o eq L<br />
1 1 1<br />
ωo<br />
= ,<br />
Q =<br />
LC<br />
ω L<br />
o + ( rL<br />
+ rC)<br />
C<br />
R<br />
1 rL<br />
1 1<br />
ω1 = ; Q1<br />
=<br />
LC r<br />
L<br />
C<br />
ω1<br />
+ rC<br />
L<br />
r<br />
C<br />
105/107<br />
Recommended Books: <strong>Modeling</strong> and Simulation<br />
Dynamic Analysis of Switching-Mode DC/DC Converters,<br />
Andre'S. Kislovski, Richard Redl, and Nathan O. Sokal,<br />
Van Nostrand Reinhold, New York, 1991.<br />
Switch-Mode Power Supply Simulation: Designing with SPICE 3<br />
Steven M. Sandler,<br />
McGraw-Hill Professional; 1 edition, Nov. 11, 2005.<br />
Switch-Mode Power Supplies - SPICE Simulations and Practical Designs,<br />
Christophe Basso,<br />
McGraw-Hill, Feb. 1, 2008.<br />
Complex Behavior of Switching Power Converters,<br />
Chi Kong Tse, CRC Press, 2004.<br />
106/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
53
課 程 講 義 :【 電 力 電 子 】 DC-DC Converter - <strong>Modeling</strong> <strong>Techniques</strong><br />
交 通 大 學 808- 電 力 電 子 實 驗 室 March 12, 2012<br />
References: <strong>Modeling</strong> of DC-DC Converters<br />
Recommended Readings<br />
[1] D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, G. C. Verghese, "<strong>Modeling</strong> and simulation of power electronic converters,"<br />
Proceedings of the IEEE, vol. 89, no. 6, pp. 898-912, June 2001.<br />
[2] A. J. Forsyth and S. V. Mollov, "Modelling and control of DC-DC converters," IEEE Power Engineering Journal, vol. 12, no. 5,<br />
pp. 229-236, 1998.<br />
[3] R. D. Middlebrook, "Small-signal modeling of PWM switched-mode power converters," IEEE Proc. vol. 76, no. 4, pp. 343-<br />
354, April 1988.<br />
[4] R. D. Middlebrook and S. C'uk, "A general unified approach to modeling switching converter power stages," IEEE PESC Conf.<br />
Rec., pp. 18-34, 1976. [Pioneer paper]<br />
SPS <strong>Modeling</strong> and Control Loop Design<br />
[5] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode,”<br />
IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 490-496, May 1990.<br />
[6] V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction<br />
Mode,” IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.<br />
[7] V. Voperian, R. Tymerski, and F. C. Lee, “Equivalent circuit models for resonant and PWM switches,” IEEE Trans. on Power<br />
Electronics, vol. 4, no. 2, pp. 205-214, April 1989.<br />
[8] E. Van Dijk, J. N. Spruijt, D. M. O'Sullivan, and J. B. Klaassens, “PWM-switch modeling of DC-DC converters," IEEE<br />
Transactions on Power Electronics, vol. 10, no. 6, pp. 659 -665, Nov 1995.<br />
<strong>Modeling</strong> of Switching Converters in DCM Operation<br />
[11] D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous modes,” IEEE Trans. Power Electron.,<br />
vol. 6, pp. 476–490, May 1991.<br />
[12] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of PWM converters operating in<br />
discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 16, pp. 482-492, July 2001.<br />
107/107<br />
台 灣 新 竹 ‧ 交 通 大 學 ‧ 電 機 與 控 制 工 程 研 究 所 ‧808 實 驗 室<br />
電 源 系 統 與 晶 片 、 數 位 電 源 、 馬 達 控 制 驅 動 晶 片 、DSP/FPGA 控 制<br />
Lab-808: Power Electronic Systems & Chips Lab., NCTU, Taiwan<br />
http://pemclab.cn.nctu.edu.tw/<br />
54
Advances in Averaged Switch<br />
<strong>Modeling</strong> and Simulation<br />
Dragan Maksimovic * and Robert Erickson<br />
Colorado Power Electronics Center<br />
CoPEC<br />
http://ece-www.colorado.edu/~pwrelect<br />
* Acknowledgment: the work by Dragan Maksimovic was supported in part by the National Science Foundation<br />
CAREER Award, Grant No. ECS-9703449.<br />
1. Introduction: converter modeling approaches and objectives<br />
2. Averaged switch modeling of PWM converters operating in the<br />
continuous conduction mode (CCM)<br />
• Basics of averaged switch modeling<br />
• Switch network steady-state and small-signal models<br />
• Using averaged-switch model to predict converter steady-state<br />
characteristics and small-signal dynamics in CCM<br />
• PSpice implementation of the averaged switch model<br />
• Application examples: small-signal dynamics,<br />
conduction losses and efficiency of a Sepic converter<br />
• Averaged switch modeling exercise: include switching losses
3. Averaged switch modeling of PWM converters operating in<br />
discontinuous conduction mode (DCM)<br />
• Averaged switch model in DCM<br />
• Switch network steady-state and small-signal models in DCM<br />
• Using averaged-switch model to predict converter steady-state<br />
characteristics and small-signal dynamics in DCM<br />
• Combined CCM/DCM averaged switch model<br />
• PSpice implementation of combined CCM/DCM models<br />
• Application examples:<br />
Large-signal transient response of a SEPIC<br />
Flyback converter small-signal frequency responses in CCM<br />
and DCM<br />
4. Averaged modeling of PWM converters with current-programmed<br />
mode (CPM) control<br />
• Averaged switch model in CCM and DCM<br />
• Steady-state and AC models in CCM and DCM<br />
• Large-signal averaged CCM/DCM model for CPM controller<br />
• PSpice implementation of the CPM controller model<br />
• Application example: buck converter with CPM controller<br />
5. Single-phase low-harmonic rectifiers<br />
• The ideal rectifier<br />
• Averaged models of rectifiers<br />
• Application examples:<br />
DCM boost rectifier<br />
SEPIC rectifier with nonlinear-carrier control<br />
6. Summary<br />
7. Bibliography
• http://ece-www.colorado.edu/~pwrelect/publications<br />
seminar slides, collection of simulation examples, library of PSpice<br />
models used in the examples, and many other CoPEC publications<br />
and presentation materials<br />
• http://ece-www.colorado.edu/~pwrelect/ is the CoPEC home page<br />
• http://ece-www.colorado.edu/~pwrelect/book/bookdir.html<br />
is the home page for the Textbook: R.W.Erickson, Fundamentals of<br />
Power Electronics<br />
• Power Electronics courses at the University of Colorado:<br />
• Power Electronics 1: http://ece-www.colorado.edu/~ecen5797<br />
• Power Electronics 2: http:// ece-www.colorado.edu/~ecen5807<br />
• Power Electronics Lab: http:// ece-www.colorado.edu/~ecen4517<br />
• All simulation examples completed using free PSpice evaluation<br />
version available from: http://www.orcad.com<br />
Engineering design based on converter modeling:<br />
• Predict converter system behavior, validate models by experiments<br />
• Use the model to predict performance under worst-case conditions<br />
• Improve design until worst-case behavior meets specifications<br />
(or until reliability and production yield are acceptably high)<br />
Models:<br />
• Circuit models that yield design-oriented, analytical results<br />
• Models for computer simulation<br />
Results of interest:<br />
• Steady-state characteristics<br />
• Component stresses, losses, efficiency<br />
• Large and small-signal dynamic responses
• Describe basic averaged switch modeling approach<br />
• Develop averaged models for<br />
Converters in continuous conduction mode (CCM)<br />
Converters in discontinuous conduction mode (DCM)<br />
Converters with Current-Programmed Mode (CPM) controller<br />
Single-phase power-factor correctors<br />
• Summarize analytical results for steady-state and dynamic responses<br />
• Demonstrate PSpice implementations of averaged-switch models and<br />
controllers<br />
• Present application examples<br />
Large-signal transient responses and small-signal dynamics of DC-DC<br />
converters and single-phase power-factor correctors<br />
• Switch network is replaced by averaged circuit model. Switching<br />
harmonics are removed, and low-frequency components of waveforms<br />
are modeled in a simple way.<br />
• A very general approach to modeling converter losses, efficiency, and<br />
dynamics.<br />
• Yields an intuitive understanding of converter behavior in CCM, DCM,<br />
current-programmed mode, etc.<br />
• Applicable to all types of converters: dc-dc converters, as well as dc-ac<br />
inverters, ac-dc low-harmonic rectifiers, ac-ac matrix converters.<br />
• Well-suited to simulation<br />
• Well developed and understood technique, easily taught to students.<br />
• Main reference for the material in this seminar:<br />
R.W.Erickson, Fundamentals of Power Electronics, Chapman and<br />
Hall, 1997.<br />
Bibliography has a large collection of other selected references
averaging<br />
Switching<br />
network + d +<br />
– –<br />
Averaged<br />
switch<br />
model<br />
+<br />
–<br />
Switching converter circuit<br />
Large-signal averaged circuit model<br />
+<br />
-<br />
D<br />
1<br />
2<br />
S<br />
4 A<br />
ccm-dcm1<br />
5<br />
duty<br />
3 K<br />
simulation<br />
model<br />
+<br />
–<br />
linearization<br />
+<br />
–<br />
D+d^<br />
DC and small-signal averaged circuit model<br />
Model implementation for simulation<br />
DC, AC and Transient simulation<br />
G ( s)<br />
c<br />
1 s / ws<br />
Gco<br />
1 (1/ Q)<br />
s / w ( s / w )<br />
o<br />
2<br />
o<br />
Analytical results:<br />
steady-state characteristics<br />
and small-signal dynamics<br />
• Basics of averaged switch modeling<br />
• Switch network steady-state and small-signal models<br />
• Using averaged-switch model to predict converter steady-state<br />
characteristics and small-signal dynamics in CCM<br />
• PSpice implementation of averaged switch models<br />
- ideal switches (ccm1)<br />
- switches with conduction losses (ccm2)<br />
- switches in converters with isolation transformer (ccm3)<br />
- switch with conduction losses in converters with (possibly)<br />
isolation transformer (ccm4)<br />
• Application example:<br />
- SEPIC small-signal frequency response, conduction losses and<br />
efficiency<br />
• Averaged switch modeling exercise: include switching losses
Given a PWM converter operating in continuous conduction mode:<br />
V g<br />
L 1<br />
C 1<br />
D 1<br />
+<br />
+ C – L 2<br />
R v<br />
2<br />
Q 1<br />
–<br />
SEPIC<br />
example<br />
Separate the switching elements from the remainder of the converter...<br />
• Define a switch<br />
network,<br />
containing all of<br />
the converter<br />
switching<br />
elements.<br />
• The remainder of<br />
the converter is<br />
linear and timeinvariant.<br />
• The terminal<br />
voltages and<br />
currents of the<br />
switch network<br />
can be arbitrarily<br />
defined.<br />
v g<br />
(t)<br />
L 1<br />
+ L – 2<br />
i L1<br />
(t)<br />
+ v C1<br />
(t) –<br />
+<br />
C 1<br />
C 2<br />
v C2<br />
(t) R<br />
i L2<br />
(t)<br />
–<br />
i 1<br />
(t) Switch network i 2<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
– Q 1 D 1<br />
–<br />
v 2<br />
(t)<br />
+<br />
Duty<br />
cycle<br />
d(t)
Power input<br />
v g<br />
(t)<br />
Time-invariant network<br />
containing converter reactive elements<br />
+ C<br />
L<br />
–<br />
R<br />
Load<br />
+<br />
v(t)<br />
+ v C<br />
(t) –<br />
i L<br />
(t)<br />
–<br />
i 1<br />
(t)<br />
i 2<br />
(t)<br />
+<br />
Switch network<br />
+<br />
v 1<br />
(t)<br />
port 1<br />
port 2<br />
v 2<br />
(t)<br />
–<br />
–<br />
Control<br />
input<br />
d(t)<br />
The number of ports in the switch network is less than or equal<br />
to the number of SPST switches in the converter<br />
Simple dc-dc case, in which converter contains two SPST<br />
switches: switch network contains two ports<br />
The switch network terminal waveforms are then the port voltages and<br />
currents: v 1<br />
(t), i 1<br />
(t), v 2<br />
(t), and i 2<br />
(t).<br />
Two of these waveforms can be taken as independent inputs to the<br />
switch network; the remaining two waveforms are then viewed as<br />
dependent outputs of the switch network.<br />
Switch network also includes control input d(t)<br />
Definition of the switch network terminal quantities is not unique.<br />
Different definitions lead equivalent results having different<br />
forms
i 1<br />
(t)<br />
+<br />
i 2<br />
(t)<br />
+<br />
i 1<br />
(t) Ts<br />
+<br />
1 : D<br />
i 2<br />
(t) Ts<br />
+<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
v 1<br />
(t) Ts<br />
v 2<br />
(t) Ts<br />
–<br />
–<br />
–<br />
–<br />
i 1<br />
(t)<br />
+<br />
i 2<br />
(t)<br />
+<br />
i 1<br />
(t) Ts<br />
+<br />
D' : 1<br />
i 2<br />
(t) Ts<br />
+<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
v 1<br />
(t) Ts<br />
v 2<br />
(t) Ts<br />
–<br />
–<br />
–<br />
–<br />
i 1<br />
(t)<br />
+<br />
i 2<br />
(t)<br />
+<br />
i 1<br />
(t) Ts<br />
+<br />
D' : D<br />
i 2<br />
(t) Ts<br />
+<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
v 1<br />
(t) Ts<br />
v 2<br />
(t) Ts<br />
–<br />
–<br />
–<br />
–<br />
• The switch network can be defined arbitrarily, as long as<br />
its terminal voltages and currents are independent, and<br />
the switch network contains no reactive elements.<br />
• It is not necessary that some of the switch network terminal quantities<br />
coincide with inductor currents or capacitor voltages of the converter, or<br />
be nonpulsating.<br />
• The object is simply to write the averaged equations of the switch network;<br />
i.e., to express the average values of half of the switch network terminal<br />
waveforms as functions of<br />
the average values of the remaining switch network terminal waveforms,<br />
and<br />
the control input.
v 1 (t)<br />
v C1 + v C2<br />
v 1 (t) Ts<br />
0<br />
0<br />
0<br />
dT s<br />
T s<br />
t<br />
v g (t)<br />
i L1 (t)<br />
+<br />
+ v (t) –<br />
L 1 C 1<br />
C1<br />
L 2 C 2<br />
v C2 (t) R<br />
i 1 (t)<br />
i L1 + i L2<br />
i L2 (t)<br />
–<br />
i 1 (t) T2<br />
0<br />
0<br />
0 dT s<br />
v 2 (t)<br />
v C1 + v C2<br />
T s<br />
t<br />
i 1 (t)<br />
+<br />
v 1 (t)<br />
–<br />
+<br />
–<br />
D 1<br />
Switch network<br />
Q 1<br />
–<br />
v 2 (t)<br />
+<br />
i 2 (t)<br />
v 2 (t) T2<br />
0<br />
0 0 dT s<br />
T s<br />
t<br />
Duty<br />
cycle<br />
d(t)<br />
i 2 (t)<br />
i L1 + i L2<br />
i 2 (t) Ts<br />
0<br />
0<br />
0<br />
dT s<br />
T s<br />
t<br />
x(t) Ts<br />
= 1 T s<br />
t<br />
t + T s<br />
x(t)dt<br />
Now average all waveforms over one switching period:<br />
v g<br />
(t) Ts<br />
Power input<br />
Averaged time-invariant network<br />
containing converter reactive elements<br />
+ C<br />
L<br />
–<br />
R<br />
Load<br />
+<br />
v(t) Ts<br />
+ v C<br />
(t) Ts<br />
–<br />
i L<br />
(t) Ts<br />
–<br />
i 1<br />
(t) Ts<br />
i 2<br />
(t) Ts<br />
+<br />
v 1<br />
(t) Ts<br />
–<br />
port 1<br />
Averaged<br />
switch network<br />
port 2<br />
+<br />
v 2<br />
(t) Ts<br />
–<br />
Control<br />
input<br />
d(t)
The basic assumption is made that the natural time constants of the<br />
converter are much longer than the switching period, so that the<br />
converter contains low-pass filtering of the switching harmonics:<br />
One may average the waveforms over an interval that is short<br />
compared to the system natural time constants, without<br />
significantly altering the system response.<br />
In particular, averaging over the switching period T s<br />
removes the<br />
switching harmonics, while preserving the low-frequency<br />
components of the waveforms.<br />
This step removes the small but mathematically-complicated<br />
switching harmonics, leading to a relatively simple and tractable<br />
converter model.<br />
In practice, the only work needed for this step is to average the switch<br />
dependent waveforms.<br />
(small switching ripple is neglected)<br />
v 1<br />
(t)<br />
v C1<br />
+ v C2<br />
v 2<br />
(t)<br />
v C1<br />
+ v C2<br />
v 1 (t) Ts<br />
0<br />
0<br />
0<br />
dT s<br />
T s<br />
t<br />
v 2 (t) T2<br />
0<br />
0<br />
0 dT s<br />
T s<br />
t<br />
v 1 (t) Ts<br />
= d'(t)<br />
v C1 (t) Ts<br />
+ v C2 (t) Ts<br />
v 2 (t) Ts<br />
= d(t)<br />
0<br />
0<br />
i 1 (t) Ts<br />
= d(t) i L1 (t) Ts<br />
+ i L2 (t) Ts<br />
i 2 (t) Ts<br />
= d'(t) i L1 (t) Ts<br />
+ i L2 (t) Ts<br />
v C1 (t) Ts<br />
+ v C2 (t) Ts<br />
i 1<br />
(t)<br />
i L1<br />
+ i L2<br />
i 2<br />
(t)<br />
i L1<br />
+ i L2<br />
0<br />
0<br />
0<br />
dT s<br />
T s t<br />
0 dT s<br />
T s t<br />
i 1 (t) T2<br />
i 2 (t) Ts
We can write<br />
i L1 (t) Ts<br />
+ i L2 (t) Ts<br />
= i 1(t) Ts<br />
d(t)<br />
Result<br />
+<br />
–<br />
Hence<br />
v C1 (t) Ts<br />
+ v C2 (t) Ts<br />
= v 2(t) Ts<br />
d(t)<br />
v 1 (t) Ts<br />
= d'(t)<br />
d(t)<br />
i 2 (t) Ts<br />
= d'(t)<br />
d(t)<br />
i 1<br />
(t) Ts<br />
d'(t) + d'(t)<br />
v 1<br />
(t) Ts<br />
v<br />
d(t) 2 (t) Ts<br />
i<br />
– d(t) 1 (t) Ts<br />
– i 2<br />
(t) Ts<br />
Averaged switch network<br />
v 2 (t) Ts<br />
<strong>Modeling</strong> the switch network via<br />
averaged dependent sources<br />
i 1 (t) Ts<br />
+<br />
v 2<br />
(t) Ts<br />
Original switch network<br />
i 1<br />
(t)<br />
Switch network<br />
i 2<br />
(t)<br />
+<br />
–<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
– Q 1 D 1<br />
+<br />
Duty<br />
cycle<br />
d(t)<br />
Averaged steady-state model:<br />
“DC transformer”<br />
• Correctly represents the<br />
relationships between the dc<br />
and low-frequency<br />
components of the terminal<br />
waveforms of the switch<br />
network<br />
+<br />
V 1<br />
–<br />
I 1 D' : D<br />
I 2<br />
–<br />
V 2<br />
+
Replace switch network with dc transformer model<br />
C 1<br />
L 2 R<br />
I L1<br />
+ V C1<br />
–<br />
+<br />
V g<br />
+<br />
–<br />
L 1<br />
C 2<br />
V C2<br />
I L2<br />
–<br />
I 1<br />
D' : D<br />
+<br />
V 1<br />
–<br />
–<br />
V 2<br />
+ I 2<br />
• Can now let inductors<br />
become short circuits,<br />
capacitors become open<br />
circuits, and solve for dc<br />
conditions.<br />
• Can simulate this model<br />
using PSPICE, to find<br />
transient waveforms<br />
Perturb and linearize the switch<br />
network averaged waveforms<br />
about a quiescent operating<br />
point. Let:<br />
d(t)=D + d(t)<br />
v 1 (t) Ts<br />
= V 1 + v 1 (t)<br />
i 1 (t) Ts<br />
= I 1 + i 1 (t)<br />
v 2 (t) Ts<br />
= V 2 + v 2 (t)<br />
i 2 (t) Ts<br />
= I 2 + i 2 (t)<br />
Voltage equation becomes<br />
D + d V 1 + v 1 = D'–d V 2 + v 2<br />
Eliminate nonlinear terms<br />
and solve for v 1<br />
terms:<br />
V 1 + v 1<br />
= D'<br />
D V 2 + v 2 – d V 1 + V 2<br />
D<br />
= D'<br />
D V 2 + v 2<br />
– d<br />
V 1<br />
DD'
Current equation becomes<br />
D + d I 2 + i 2 = D'–d I 1 + i 1<br />
Eliminate nonlinear terms<br />
and solve for i 2<br />
terms:<br />
I 2 + i 2<br />
= D'<br />
D I 1 + i 1 – d I 1 + I 2<br />
D<br />
= D'<br />
D I 1 + i 1 – d<br />
I 2<br />
DD'<br />
Reconstruct an equivalent circuit that corresponds to these smallsignal<br />
equations:<br />
I 1 + i 1<br />
I 2 + i 2<br />
+<br />
+<br />
–<br />
V 1 + v 1<br />
V 1<br />
D' : D<br />
–<br />
DD' d I 2<br />
V 2 + v 2<br />
DD' d<br />
–<br />
+<br />
Transistor port<br />
Diode port<br />
A general small-signal ac model for the PWM switch network<br />
operating in CCM.
Replace switch network with small-signal ac model:<br />
C 1<br />
L 2 R<br />
V C1 + v C1<br />
+<br />
V g + v g<br />
I L1 + i L1<br />
I L2 + i L2<br />
+<br />
–<br />
L 1<br />
C 2<br />
V C2 + v C2<br />
–<br />
D' : D<br />
+<br />
–<br />
V 1<br />
DD' d<br />
I 2<br />
DD' d<br />
Can now solve this<br />
model to determine ac<br />
transfer functions<br />
i 1<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
i 2<br />
(t)<br />
+<br />
v 2<br />
(t)<br />
I 1 + i 1 1 : D<br />
I 2 + i 2<br />
+<br />
+<br />
V 1 d<br />
V 1 + v 1<br />
I 2 d<br />
V 2 + v 2<br />
+<br />
–<br />
–<br />
–<br />
–<br />
–<br />
i 1<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
i 2<br />
(t)<br />
+<br />
v 2<br />
(t)<br />
I 1 + i 1 D' : 1<br />
I 2 + i 2<br />
+<br />
V 1 + v 1<br />
+<br />
–<br />
V 2 d<br />
I 1 d<br />
+<br />
V 2 + v 2<br />
–<br />
–<br />
–<br />
–<br />
i 1<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
i 2<br />
(t)<br />
+<br />
v 2<br />
(t)<br />
I 1 + i 1 D' : D<br />
I 2 + i 2<br />
+<br />
+<br />
–<br />
V 1 + v 1<br />
V 1<br />
DD' d I 2<br />
V 2 + v 2<br />
DD' d<br />
+<br />
–<br />
–<br />
–<br />
–
Control-to-output and line-to-output transfer functions G vd<br />
(s) and G vg<br />
(s)<br />
Converter G g0 G d0 0 Q z<br />
buck<br />
D<br />
V<br />
1<br />
D<br />
LC<br />
R<br />
C<br />
L<br />
boost<br />
1<br />
V<br />
D'<br />
D'<br />
D'<br />
D'R<br />
C D' 2 R<br />
LC<br />
L L<br />
buck-boost<br />
–<br />
D'<br />
D V<br />
D'<br />
DD' 2<br />
D'R<br />
C D' 2 R<br />
LC<br />
L DL<br />
where the transfer functions are written in the standard forms<br />
G vd (s)=G d0<br />
1– s z<br />
1+ s<br />
Q 0<br />
+ s 0<br />
2<br />
G vg (s)=G g0<br />
1<br />
1+ s<br />
Q 0<br />
+ s 0<br />
2<br />
ccm1<br />
i 1 (t)<br />
+<br />
v 1 (t)<br />
_<br />
1<br />
D<br />
S<br />
2<br />
switch<br />
network<br />
3<br />
K<br />
A<br />
4<br />
i 2 (t)<br />
+<br />
v 2 (t)<br />
_<br />
averaging<br />
i 1<br />
i 2<br />
averaged-switch<br />
+<br />
1 model 3<br />
D(sub-circuit)<br />
K<br />
1-d + E<br />
– t G d<br />
d v 1-d<br />
v 2<br />
d i 1<br />
1<br />
S<br />
A<br />
_<br />
2<br />
5<br />
4<br />
duty<br />
d<br />
+<br />
v 2<br />
_<br />
• Controlled voltage source E t<br />
replaces the transistor, controlled<br />
current source G d<br />
replaces the diode<br />
• Duty ratio d is input to the subcircuit<br />
• Large-signal, nonlinear model suitable for DC, AC or Transient<br />
simulation<br />
• The same model can be applied in any two-switch PWM converter<br />
(the transistor and the diode need not have a common node)<br />
• Limitations: ideal switches, CCM only, valid for two-switch<br />
converters without isolation transformer
ccm1<br />
D<br />
S<br />
averaged-switch<br />
1 network<br />
(sub-circuit)<br />
+ E<br />
– t G d<br />
2<br />
5<br />
duty<br />
U1<br />
D<br />
1 4 A<br />
ccm1<br />
2 3<br />
S 5 K<br />
duty<br />
3<br />
4<br />
K<br />
A<br />
**********************************************************<br />
* MODEL: ccm1<br />
* Application: two-switch PWM converters<br />
* Limitations: ideal switches, CCM only, no transformer<br />
**********************************************************<br />
* Parameters: none<br />
**********************************************************<br />
* Nodes:<br />
* 1: transistor+ (D)<br />
* 2: transistor- (S)<br />
* 3: diode cathode (K)<br />
* 4: diode anode (A)<br />
* 5: duty ratio (duty)<br />
**********************************************************<br />
.subckt ccm1 1 2 3 4 5<br />
Et 1 2 value={(1-v(5))*v(3,4)/v(5)}<br />
Gd 4 3 value={(1-v(5))*i(Et)/v(5)}<br />
.ends<br />
**********************************************************<br />
ccm1<br />
+<br />
-<br />
L1<br />
1 800u<br />
Vg<br />
50V<br />
2x<br />
R1<br />
0.5<br />
C1<br />
2 3 4<br />
100u<br />
R2<br />
0.1<br />
L2<br />
100u<br />
C2<br />
100u<br />
V<br />
R3<br />
50<br />
U1<br />
D<br />
1 4 A<br />
ccm1<br />
2 3<br />
S 5 K<br />
duty<br />
sepic-ccm1.sch<br />
ACMAG=1V<br />
DC=0.5V<br />
+<br />
-<br />
Vd<br />
Objective: generate small-signal control-to-output frequency responses
ccm1<br />
(A) sepic-ccm1.dat<br />
80<br />
magnitude || vout/d ||<br />
40<br />
0<br />
-20<br />
0d<br />
DB(V(4))<br />
phase of vout/d<br />
-100d<br />
-200d<br />
small-signal control-to-output response<br />
Vout=50V, R=50, D=0.5<br />
-270d<br />
10Hz 100Hz 1.0KHz 10KHz 100KHz<br />
P(V(4))<br />
Frequency<br />
• Subcircuit ccm1 is implementation of a large-signal, nonlinear<br />
averaged model of the switch network<br />
• Averaged circuit model of the converter is obtained simply by replacing<br />
switching devices with the averaged-switch subcircuit model<br />
• Linearization and AC small-signal analysis are performed by the<br />
simulator<br />
• Small-signal dynamic responses can be easily generated for different<br />
operating points or different sets of parameter values
• MOS transistor model: on-resistance R ON<br />
• Diode model: constant forward voltage drop V D<br />
in series with R d<br />
resistance<br />
• Switch network<br />
+<br />
i 1 (t)<br />
v 1 (t)<br />
_<br />
1<br />
D<br />
S<br />
2<br />
switch<br />
network<br />
3<br />
K<br />
A<br />
4<br />
i 2 (t)<br />
+<br />
v 2 (t)<br />
_<br />
• Waveforms<br />
v 1<br />
(t)<br />
v+V D<br />
+R d<br />
i<br />
i 1<br />
(t)<br />
i<br />
R on<br />
i<br />
0 dT s<br />
T t<br />
s<br />
v 2<br />
(t)<br />
v-R on<br />
i<br />
0 dT s<br />
T t<br />
s<br />
i 2<br />
(t)<br />
i<br />
0 dT -V t<br />
s<br />
D<br />
-R d<br />
i T s<br />
0 dT s<br />
T s<br />
t<br />
ccm2<br />
v 1<br />
(t)<br />
i 1<br />
(t)<br />
v+V D<br />
+R d<br />
i<br />
i<br />
R on<br />
i<br />
0 dT s<br />
T t<br />
s<br />
0 dT s<br />
T t<br />
s<br />
v 2<br />
(t)<br />
i 2<br />
(t)<br />
v-R on<br />
i<br />
i<br />
t<br />
0 dT -V<br />
s<br />
T 0 dT<br />
s<br />
s<br />
T t<br />
D<br />
-R d<br />
i<br />
s<br />
v<br />
1<br />
T<br />
v<br />
dR<br />
1 Ts<br />
v1<br />
v<br />
T 2<br />
s<br />
s<br />
R<br />
on<br />
i<br />
d<br />
1<br />
on<br />
T<br />
s<br />
T<br />
s<br />
i<br />
T<br />
s<br />
v<br />
T<br />
s<br />
1 d<br />
1 d v<br />
d<br />
R<br />
2<br />
d<br />
i<br />
1<br />
T<br />
s<br />
T<br />
s<br />
i 1<br />
T<br />
d<br />
i<br />
s T s<br />
i (1 d)<br />
2<br />
V<br />
T<br />
s<br />
1 d<br />
d<br />
i<br />
T<br />
i2<br />
i<br />
T<br />
1<br />
D<br />
1<br />
s T s<br />
R<br />
d<br />
d<br />
d<br />
i<br />
v<br />
1<br />
T<br />
s<br />
s<br />
V<br />
D
ccm2<br />
D<br />
S<br />
averaged-switch<br />
sub-circuit<br />
1<br />
+<br />
– E ron<br />
+ E<br />
– t<br />
2<br />
G d<br />
5<br />
duty<br />
Subcircuit implementation<br />
U2<br />
D<br />
1<br />
ccm2<br />
2<br />
S 5<br />
duty<br />
3<br />
4<br />
4 A<br />
3 K<br />
K<br />
A<br />
**********************************************************<br />
* MODEL: ccm2<br />
* Application: two-switch PWM converters, includes<br />
* conduction losses due to Ron, VD, Rd<br />
* Limitations: CCM only, no transformer<br />
**********************************************************<br />
* Parameters:<br />
* Ron=transistor on resistance<br />
* VD=diode forward voltage drop (constant)<br />
* Rd=diode on resistance<br />
**********************************************************<br />
* Nodes: (same as in ccm1)<br />
**********************************************************<br />
.subckt ccm2 1 2 3 4 5<br />
+params: Ron=0 VD=0 Rd=0<br />
Eron 1 1x value={i(Et)*(Ron+(1-v(5))*Rd/v(5))/v(5)}<br />
Et 1x 2 value={(1-v(5))*(v(3,4)+VD)/v(5)}<br />
Gd 4 3 value={(1-v(5))*i(Et)/v(5)}<br />
.ends<br />
**********************************************************<br />
ccm2<br />
+<br />
-<br />
L1<br />
1 800u<br />
Vg<br />
50V<br />
2x<br />
R1<br />
0.5<br />
C1<br />
2 3<br />
4<br />
100u<br />
R2<br />
0.1<br />
L2<br />
100u<br />
C2<br />
100u<br />
V<br />
Iload<br />
1A<br />
10K<br />
R4<br />
+<br />
-<br />
PARAMETERS:<br />
Ron 0.0<br />
U1<br />
D<br />
1 4 A<br />
ccm2<br />
2 3<br />
Ron={Ron} S 5 K<br />
duty<br />
+<br />
DC=0.5V Vd<br />
-<br />
Rd=0.05<br />
VD=0.8V<br />
Objective: find converter efficiency as a function of the transistor<br />
on-resistance, for a range of loads
ccm2<br />
100<br />
(D) sepic-ccm2.dat<br />
Efficiency [%] (only conduction losses are included)<br />
95<br />
R on =0<br />
90<br />
0.1<br />
0.2<br />
85<br />
0.3<br />
-100*V(4)* I(Iload)/ V(1)/ I(Vg)<br />
80<br />
1.0A 1.5A 2.0A 2.5A 3.0A 3.5A 4.0A 4.5A 5.0A<br />
I_Iload<br />
0.4<br />
R on =0.5<br />
ccm3<br />
Switch network Waveforms<br />
1:n<br />
v 1<br />
(t)<br />
v<br />
i 1<br />
(t)<br />
i<br />
i 1<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
_<br />
1<br />
D<br />
S<br />
2<br />
switch<br />
network<br />
3<br />
K<br />
A<br />
4<br />
i 2<br />
(t)<br />
+<br />
v 2<br />
(t)<br />
_<br />
0 dT s<br />
T t<br />
s<br />
v 2<br />
(t)<br />
n v<br />
0 dT s<br />
T t<br />
s<br />
i 2<br />
(t)<br />
i/n<br />
PRIMARY SECONDARY<br />
t<br />
0 dT s<br />
T 0 dT<br />
s<br />
s<br />
T t<br />
s<br />
1 d<br />
nd<br />
v1<br />
v<br />
T s<br />
2 T s<br />
1 d<br />
nd<br />
i2<br />
i<br />
T s<br />
1 T s<br />
• Converters: Flyback, Cuk, Sepic, Inverse Sepic (Zeta), with isolation transformer
ccm3<br />
D<br />
S<br />
averaged-switch<br />
1 network<br />
(sub-circuit)<br />
+ E<br />
– t G d<br />
2<br />
5<br />
duty<br />
U3<br />
D<br />
1<br />
ccm3<br />
2<br />
S 5<br />
duty<br />
3<br />
4<br />
4 A<br />
3 K<br />
K<br />
A<br />
**********************************************************<br />
* MODEL: ccm3<br />
* Application: two-switch PWM converters,<br />
* with (possibly) transformer<br />
* Limitations: ideal switches, CCM only<br />
**********************************************************<br />
* Parameters:<br />
* n=transformer turns ratio 1:n (primary:secondary)<br />
**********************************************************<br />
* Nodes: (same as in ccm1)<br />
**********************************************************<br />
.subckt ccm3 1 2 3 4 5<br />
+params: n=1<br />
Et 1 2 value={(1-v(5))*v(3,4)/v(5)/n}<br />
Gd 4 3 value={(1-v(5))*i(Et)/v(5)/n}<br />
.ends<br />
**********************************************************<br />
ccm4<br />
• Combined ccm2 and ccm3 averaged-switch models<br />
• Parameters:<br />
• Transistor on resistance R on<br />
• Diode forward voltage drop V D<br />
• Diode on resistance R d<br />
• Transformer turns ratio n<br />
• A general model implementation valid for all two-switch converters<br />
operating in CCM
ccm4<br />
D<br />
S<br />
averaged-switch<br />
sub-circuit<br />
1<br />
+<br />
– E ron<br />
+ E<br />
– t<br />
2<br />
G d<br />
5<br />
duty<br />
Subcircuit implementation<br />
U4<br />
D<br />
1<br />
ccm4<br />
2<br />
S 5<br />
duty<br />
3<br />
4<br />
K<br />
A<br />
4 A<br />
3 K<br />
* MODEL: ccm4<br />
* Application: two-switch PWM converters, includes<br />
* conduction losses due to Ron, VD, Rd<br />
* and (possibly) transformer<br />
* Limitations: CCM only<br />
**********************************************************<br />
* Parameters:<br />
* Ron=transistor on resistance<br />
* VD=diode forward voltage drop (constant)<br />
* Rd=diode on resistance<br />
* n=transformer turns ratio 1:n (primary:secondary)<br />
**********************************************************<br />
* Nodes: (same as in ccm1)<br />
**********************************************************<br />
.subckt ccm4 1 2 3 4 5<br />
+params: Ron=0 VD=0 Rd=0 n=1<br />
Eron 1 1x value={i(Et)*(Ron+(1-v(5))*Rd/n/n/v(5))/v(5)}<br />
Et 1x 2 value={(1-v(5))*(v(3,4)+VD)/v(5)/n}<br />
Gd 4 3 value={(1-v(5))*i(Et)/v(5)/n}<br />
.ends<br />
• Use averaged-switch modeling approach to construct an<br />
averaged model that includes switching losses<br />
• Loss mechanism example: diode reverse recovery
Example: diode stored<br />
charge in boost converter<br />
v g<br />
(t)<br />
i L<br />
L<br />
(t)<br />
+<br />
–<br />
i 1<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
i 2<br />
(t)<br />
+<br />
v 2<br />
(t) C<br />
R<br />
+<br />
v(t)<br />
v 1<br />
(t)<br />
Waveforms:<br />
–<br />
–<br />
–<br />
v 2<br />
v 2<br />
i 2<br />
(t)<br />
• Other switching loss mechanisms<br />
0<br />
0<br />
are ignored in this example; one<br />
dT t<br />
s<br />
can include other losses if<br />
t r<br />
desired, using a similar procedure<br />
T s<br />
i 1<br />
i 1<br />
• Determine averaged terminal<br />
waveforms of switch network<br />
0<br />
0<br />
t<br />
Area –Q r<br />
• Construct averaged equivalent<br />
circuit model<br />
1<br />
v1 t 1 d T<br />
T<br />
s tr<br />
v2<br />
t<br />
s T<br />
T<br />
s<br />
s<br />
v 1<br />
(t)<br />
v 2<br />
v 2<br />
i2 t 1<br />
Ts<br />
d<br />
i<br />
1<br />
t<br />
Ts<br />
Q<br />
T<br />
r<br />
s<br />
0<br />
0<br />
t<br />
t r<br />
dT s<br />
t<br />
i 2<br />
(t)<br />
T s<br />
i 1<br />
i 1<br />
t r<br />
= diode reverse recovery time<br />
Q r<br />
= diode recovered charge<br />
0<br />
0<br />
Area –Q r
v 1<br />
+<br />
t<br />
_<br />
i 1<br />
t<br />
r<br />
v1 t 1 d v t<br />
T<br />
2<br />
s T<br />
T<br />
s<br />
s<br />
i<br />
t<br />
2<br />
1<br />
T<br />
s<br />
d<br />
t<br />
tr<br />
T<br />
s<br />
i<br />
1<br />
t<br />
i 2<br />
v 2<br />
T<br />
t<br />
s<br />
+<br />
t<br />
_<br />
Q<br />
r<br />
t<br />
r<br />
T<br />
v 1<br />
s<br />
i<br />
1<br />
t<br />
+<br />
_<br />
t<br />
i 1<br />
Ts<br />
t<br />
T<br />
s<br />
Ts<br />
1<br />
d<br />
tr<br />
T<br />
s<br />
:1<br />
Q<br />
r<br />
i 2<br />
t<br />
r<br />
T<br />
s<br />
t<br />
i<br />
Ts<br />
+<br />
1 Ts<br />
_<br />
v 2<br />
t<br />
Ts<br />
switch network<br />
averaged switch model<br />
• Diode reverse recovery time affects conversion ratio<br />
• Stored charge leads to power loss, modeled by current sink<br />
Original<br />
converter<br />
v g<br />
(t)<br />
i L<br />
L<br />
(t)<br />
+<br />
–<br />
i 1<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
i 2<br />
(t)<br />
+<br />
v 2<br />
(t)<br />
C<br />
R<br />
+<br />
v(t)<br />
–<br />
–<br />
–<br />
Averaged<br />
model<br />
v g<br />
(t) Ts<br />
i L<br />
(t) Ts<br />
L<br />
+<br />
–<br />
t r<br />
i 1<br />
(t) Ts<br />
+(1–d) :1<br />
T s<br />
+<br />
v 1<br />
(t) Ts<br />
i 2<br />
(t) Ts<br />
+<br />
+<br />
Q r<br />
v 2<br />
(t) Ts C R v(t)<br />
T Ts<br />
s<br />
–<br />
–<br />
–
P<br />
P<br />
out<br />
in<br />
VI<br />
2<br />
V I<br />
g 1<br />
I<br />
I<br />
2<br />
1<br />
Qr<br />
Ts<br />
D<br />
t<br />
T<br />
r<br />
1 1 D<br />
V<br />
s<br />
V<br />
g<br />
VI2<br />
V I<br />
g<br />
1<br />
1<br />
1 D<br />
tr<br />
D<br />
T<br />
s<br />
I<br />
2<br />
I<br />
2<br />
Qr<br />
T<br />
s<br />
1<br />
1<br />
tr<br />
1 D T<br />
s<br />
1<br />
1<br />
Qr<br />
I T<br />
load<br />
s<br />
Efficiency due to diode reverse recovery. Other switching loss mechanisms<br />
can be included using a similar procedure.<br />
• Basic idea of average-switch modeling:<br />
Define a switch network, containing all of the converter switching<br />
elements<br />
Average terminal waveforms over a switching period<br />
Use controlled sources with values equal to average of the switch<br />
network terminal waveforms<br />
The result is a large-signal, nonlinear, time-invariant model that can be<br />
inserted back into the converter network<br />
• The choices of the switch network and the independent terminal<br />
waveforms are not unique - there are many ways to construct averaged<br />
switch models<br />
• Averaged-switch model (suitable for circuit analysis or simulation)<br />
yields predictions of converter steady-state and low-frequency dynamic<br />
properties<br />
• Next: apply the averaged-switch modeling approach to other cases of<br />
interest.
• Averaged switch model in DCM<br />
• Using averaged-switch model to predict converter steady-state<br />
characteristics and small-signal dynamics in DCM<br />
• Combined CCM/DCM averaged switch model<br />
• PSpice implementation of combined CCM/DCM models<br />
- ideal switches (ccm-dcm1)<br />
- ideal switches in converters with isolation transformer (ccm-dcm2)<br />
• Application examples:<br />
- comparison of transient simulation results in a SEPIC example<br />
using (1) switching circuit model and (2) averaged model<br />
- small-signal dynamic responses of a flyback converter operating in<br />
CCM or DCM<br />
- more converter examples using averaged-switch subcircuits<br />
Steady-state output voltage becomes strongly load-dependent<br />
Simpler dynamics: one pole and the RHP zero are moved to very high<br />
frequency, and can normally be ignored<br />
Traditionally, boost and buck-boost converters are designed to operate<br />
in DCM at full load<br />
All converters may operate in DCM at light load<br />
So we need equivalent circuits that model the steady-state and smallsignal<br />
ac models of converters operating in DCM<br />
The averaged switch approach yields an intuitive result that is relatively<br />
easy to solve
• Define switch terminal<br />
quantities v 1<br />
, i 1<br />
, v 2<br />
, i 2<br />
, as<br />
shown<br />
• Let us find the averaged<br />
quantities v 1<br />
, i 1<br />
, v 2<br />
,<br />
i 2<br />
, for operation in DCM,<br />
and determine the<br />
relations between them<br />
v g<br />
Switch network<br />
i 1<br />
i 2<br />
+<br />
–<br />
v 1<br />
+<br />
–<br />
–<br />
+<br />
v L<br />
L<br />
–<br />
i L<br />
v 2<br />
+<br />
C<br />
R<br />
+<br />
v<br />
–<br />
i L<br />
(t)<br />
v L<br />
(t)<br />
v g<br />
v g<br />
L<br />
i pk<br />
v<br />
L<br />
0<br />
t<br />
i 1<br />
(t)<br />
v 1<br />
(t)<br />
Area q1<br />
i pk<br />
i 1 (t) Ts<br />
v g<br />
– v<br />
0<br />
v 1 (t) Ts<br />
0<br />
v g<br />
v<br />
i 2<br />
(t)<br />
i pk Area q 2<br />
v g<br />
Switch network<br />
i 1<br />
i 2<br />
+<br />
–<br />
v 1<br />
+<br />
–<br />
–<br />
+<br />
v L<br />
L<br />
–<br />
i L<br />
v 2<br />
+<br />
C<br />
R<br />
+<br />
v<br />
–<br />
v 2<br />
(t)<br />
T s<br />
i 2 (t) Ts<br />
v g<br />
– v<br />
v 2 (t) Ts – v<br />
0<br />
d 1<br />
T s<br />
d 2<br />
T s<br />
d 3<br />
T s<br />
t
Peak inductor current:<br />
i pk = v g<br />
L d 1T s<br />
Average inductor voltage:<br />
v L (t) Ts<br />
= d 1 v g (t)<br />
Ts<br />
+ d 2 v(t) Ts<br />
+ d 3 0<br />
i 1<br />
(t)<br />
v 1<br />
(t)<br />
Area q1<br />
v 1 (t) Ts<br />
i pk<br />
i 1 (t) Ts<br />
v g<br />
– v<br />
v g<br />
In DCM, the diode switches off when the<br />
inductor current reaches zero. Hence, i(0)<br />
= i(T s<br />
) = 0, and the average inductor<br />
voltage is zero. This is true even during<br />
transients.<br />
v L (t) Ts<br />
= d 1 (t) v g (t)<br />
Ts<br />
+ d 2 (t) v(t) Ts<br />
= 0<br />
Solve for d 2<br />
:<br />
d 2 (t)=–d 1 (t)<br />
v g (t)<br />
Ts<br />
i 2<br />
(t)<br />
v 2<br />
(t)<br />
T s<br />
0<br />
i pk Area q 2<br />
i 2 (t) Ts<br />
v g<br />
– v<br />
v 2 (t) Ts – v<br />
0<br />
d 1<br />
T s<br />
d 2<br />
T s<br />
d 3<br />
T s<br />
t<br />
Average the v 1<br />
(t) waveform:<br />
i 1<br />
(t)<br />
Area q1<br />
i pk<br />
v 1 (t) Ts<br />
= d 1 (t) 0+d 2 (t) v g (t)<br />
Ts<br />
– v(t) Ts<br />
+ d 3 (t) v g (t)<br />
Ts<br />
i 1 (t) Ts<br />
Eliminate d 2<br />
and d 3<br />
:<br />
v 1 (t) Ts<br />
= v g (t)<br />
Ts<br />
v 1<br />
(t)<br />
v g<br />
– v<br />
v 1 (t) Ts<br />
v g<br />
Similar analysis for v 2<br />
(t) waveform leads to<br />
0<br />
i 2<br />
(t)<br />
v(t) Ts<br />
d 1<br />
T s<br />
T s<br />
t<br />
v 2 (t) Ts<br />
= d 1 (t) v g (t)<br />
Ts<br />
– v(t) Ts<br />
+ d 2 (t) 0+d 3 (t) – v(t) Ts<br />
i pk Area q 2<br />
=– v(t) Ts<br />
i 2 (t) Ts<br />
v 2<br />
(t)<br />
v g<br />
– v<br />
v 2 (t) Ts<br />
– v<br />
0<br />
d 2<br />
T s<br />
d 3<br />
T s
Average the i 1<br />
(t) waveform:<br />
i 1 (t) Ts<br />
= 1 T s<br />
t + T s<br />
i 1 (t)dt = q 1<br />
Note i 1<br />
(t) Ts<br />
is not equal to d i L<br />
(t) Ts<br />
!<br />
t<br />
The integral q 1<br />
is the area under the i 1<br />
(t)<br />
waveform during first subinterval. Use triangle<br />
area formula:<br />
q 1 =<br />
Eliminate i pk<br />
:<br />
i 1 (t) Ts<br />
= d 2 1(t) T s<br />
2L<br />
t<br />
Similar analysis for i 2<br />
(t) waveform leads to<br />
i 2 (t) Ts<br />
= d 2 2<br />
1(t) T v 1 (t)<br />
s<br />
Ts<br />
2L v 2 (t) Ts<br />
T s<br />
t + T s<br />
i 1 (t)dt = 1 2 d 1T s i pk<br />
v 1 (t) Ts<br />
i 1<br />
(t)<br />
v 1<br />
(t)<br />
i 2<br />
(t)<br />
v 2<br />
(t)<br />
Area q1<br />
v 1 (t) Ts<br />
0<br />
i pk<br />
i 1 (t) Ts<br />
v g<br />
– v<br />
v g<br />
T s<br />
i pk Area q 2<br />
i 2 (t) Ts<br />
v g<br />
– v<br />
v 2 (t) Ts – v<br />
0<br />
d 1<br />
T s<br />
d 2<br />
T s<br />
d 3<br />
T s<br />
t<br />
i 1 (t) Ts<br />
= d 2 1(t) T s<br />
2L<br />
v 1 (t) Ts<br />
i 1 (t) Ts<br />
R e<br />
(d 1<br />
)<br />
+<br />
i 1 (t) Ts<br />
= v 1(t) Ts<br />
R e (d 1 )<br />
R e (d 1 )=<br />
2L<br />
d 1 2 T s<br />
v 1 (t) Ts<br />
–<br />
Low-frequency components of input port waveforms<br />
obey Ohm’s law
i 2 (t) Ts<br />
= d 2 1(t) T s<br />
2L<br />
2<br />
v 1 (t) Ts<br />
v 2 (t) Ts<br />
i(t)<br />
+<br />
i 2 (t) Ts<br />
v 2 (t) Ts<br />
= v 1(t) Ts<br />
R e (d 1 )<br />
2<br />
= p(t) Ts<br />
p(t)<br />
v(t)<br />
–<br />
• Output port is a source of power p(t)<br />
• Power p(t) is independent of load characteristics<br />
• Power p(t) is dependent on (equal to) the power apparently<br />
consumed by the switch network input port<br />
i(t)<br />
+<br />
i(t)<br />
v(t)i(t) = p(t)<br />
p(t)<br />
v(t)<br />
–<br />
v(t)<br />
• Must avoid open- and short-circuit<br />
connections of power sources<br />
• Power sink: negative p(t)
In a lossless two-port network without internal energy storage:<br />
instantaneous input power is equal to instantaneous output power<br />
In all but a small number of special cases, the instantaneous power<br />
throughput is dependent on the applied external source and load<br />
If the instantaneous power depends only on the external elements<br />
connected to one port, then the power is not dependent on the<br />
characteristics of the elements connected to the other port. The other<br />
port becomes a source of power, equal to the power flowing through<br />
the first port<br />
A power source (or power sink) element is obtained<br />
Series and parallel<br />
connection of power<br />
sources<br />
P 1<br />
P 2<br />
P 3<br />
P 1<br />
+ P 2<br />
+ P 3<br />
P 1<br />
Reflection of power<br />
source through a<br />
transformer<br />
P 1<br />
n 1<br />
: n 2
i 1 (t) Ts<br />
R e<br />
(d 1<br />
)<br />
+<br />
p(t) Ts<br />
i 2 (t) Ts<br />
+<br />
v 1 (t) Ts<br />
v 2 (t) Ts<br />
–<br />
–<br />
A two-port lossless network<br />
Input port obeys Ohm’s Law<br />
Power entering input port is transferred to output port<br />
Original circuit<br />
Switch network<br />
i 1<br />
i 2<br />
+<br />
–<br />
v 1<br />
v 2<br />
+<br />
v g<br />
+<br />
–<br />
–<br />
+<br />
v L<br />
L<br />
–<br />
i L<br />
+<br />
C<br />
R<br />
v<br />
–<br />
Averaged model<br />
i 1 (t) Ts<br />
+<br />
v 1 (t) Ts<br />
R e<br />
(d)<br />
p(t) Ts<br />
i 2 (t) Ts<br />
–<br />
v 2 (t) Ts<br />
+<br />
v g (t)<br />
Ts<br />
+<br />
–<br />
–<br />
L<br />
+ C R v(t) Ts<br />
–
Let<br />
L<br />
C<br />
short circuit<br />
open circuit<br />
I 1<br />
P<br />
V +<br />
g<br />
R e<br />
(D)<br />
R<br />
–<br />
+<br />
V<br />
Converter input power:<br />
P = V 2<br />
g<br />
R e<br />
Converter output power:<br />
P = V 2<br />
R<br />
Equate and solve:<br />
P = V 2<br />
g<br />
= V 2<br />
R e R<br />
V<br />
V g<br />
=<br />
R<br />
Re<br />
–<br />
V<br />
= R is a general result, for any system that can<br />
V g Re be modeled as an LFR.<br />
For the buck-boost converter, we have<br />
R e (D)= 2L<br />
D 2 T s<br />
Eliminate R e<br />
:<br />
V<br />
V g<br />
=–<br />
D 2 T s R<br />
2L<br />
=– D K<br />
which agrees with the results of previous steady-state analyses.
• Determine averaged terminal waveforms of switch network<br />
• In each case, averaged transistor waveforms obey Ohm’s law, while<br />
averaged diode waveforms behave as dependent power source<br />
• Can simply replace transistor and diode with the averaged<br />
model as follows:<br />
i 1<br />
(t)<br />
+<br />
i 2<br />
(t)<br />
+<br />
+<br />
p(t) Ts<br />
i 2 (t) Ts<br />
+<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
v 1 (t) Ts<br />
i 1 (t) Ts<br />
R e<br />
(d 1<br />
)<br />
v 2 (t) Ts<br />
–<br />
–<br />
–<br />
–<br />
Buck<br />
v g (t)<br />
Ts<br />
R e<br />
(d)<br />
L<br />
R e = 2L<br />
+<br />
+ p(t) C R v(t) – Ts Ts<br />
p(t) Ts<br />
d 2 T s<br />
–<br />
Boost<br />
v g (t)<br />
Ts<br />
+<br />
–<br />
L<br />
R e<br />
(d)<br />
C<br />
R<br />
+<br />
v(t) Ts<br />
–
Cuk<br />
C 1<br />
L2 R e = 2 L 1||L 2<br />
d 2 T s<br />
p(t) Ts<br />
p(t) Ts<br />
L 1<br />
+<br />
v g (t) +<br />
Ts<br />
R C – 2<br />
R v(t) e<br />
(d)<br />
Ts<br />
–<br />
SEPIC<br />
L C 1 1<br />
+<br />
v g (t) +<br />
Ts<br />
R L C – 2<br />
2<br />
R v(t) e<br />
(d)<br />
Ts<br />
–<br />
Let L short circuit<br />
C open circuit<br />
Buck<br />
V g<br />
R e<br />
(D)<br />
+ P<br />
R<br />
–<br />
+<br />
V<br />
–<br />
Boost<br />
+<br />
V g<br />
+ R e<br />
(D) –<br />
P R<br />
V<br />
–
Converter M, CCM M, DCM<br />
Buck D 2<br />
1+ 1+4R e /R<br />
Boost<br />
Buck-boost, Cuk<br />
SEPIC<br />
1<br />
1–D<br />
– D<br />
1–D<br />
D<br />
1–D<br />
1+ 1+4R/R e<br />
2<br />
– R<br />
Re<br />
R<br />
R e<br />
I > I crit<br />
I < I crit<br />
for CCM<br />
for DCM<br />
I crit = 1–D<br />
D<br />
V g<br />
R e (D)<br />
Large-signal averaged model<br />
Perturb and linearize: let<br />
i 1 (t) Ts<br />
+<br />
p(t) Ts<br />
i 2 (t) Ts<br />
+<br />
d(t)=D + d(t)<br />
v 1 (t) Ts<br />
= V 1 + v 1 (t)<br />
v 1 (t) Ts<br />
R e<br />
(d)<br />
v 2 (t) Ts<br />
i 1 (t) Ts<br />
= I 1 + i 1 (t)<br />
v 2 (t) Ts<br />
= V 2 + v 2 (t)<br />
–<br />
–<br />
i 2 (t) Ts<br />
= I 2 + i 2 (t)<br />
d(t)<br />
i 1 (t) Ts<br />
= d 2 1(t) T s<br />
2L<br />
i 2 (t) Ts<br />
= d 2 1(t) T s<br />
2L<br />
v 1 (t) Ts<br />
i 1 = v 1<br />
r + j 1 d + g 1 v 2<br />
1<br />
2<br />
v 1 (t) Ts<br />
v 2 (t) Ts<br />
i 2 =– v 2<br />
r + j 2 d + g 2 v 1<br />
2
i 1<br />
(t)<br />
+<br />
i 2<br />
(t)<br />
+<br />
i 1<br />
(t)<br />
+<br />
i 2<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
–<br />
–<br />
–<br />
–<br />
In any event, a small-signal two-port model is used, of the form<br />
i 1<br />
g 2 v 1 j 2 d r 2<br />
i 2<br />
v 2<br />
+<br />
+<br />
v 1 r 1 j 1 d g 1 v 2<br />
–<br />
–<br />
i 1 i 2<br />
–<br />
g 2 v 1 j 2 d r 2 v 2<br />
v +<br />
1 r –<br />
1 j 1 d g 1 v 2<br />
+<br />
Switch type g 1 j 1 r 1 g 2 j 2 r 2<br />
Buck,<br />
Fig. 10.16(a)<br />
1<br />
R e<br />
2(1 – M)V 1<br />
DR e<br />
R e<br />
2–M<br />
MR e<br />
2(1 – M)V 1<br />
DMR e<br />
M 2 R e<br />
Boost,<br />
Fig. 10.16(b)<br />
1<br />
(M –1) 2 2MV (M –1) 2 2M –1<br />
R 1<br />
R<br />
e M e (M –1) 2 2V<br />
R 1<br />
e<br />
D(M –1)R e D(M –1)R e<br />
(M –1) 2 R e<br />
Buck-boost,<br />
Fig. 10.7(b)<br />
0<br />
2V 1<br />
DR e<br />
R e<br />
2M<br />
Re<br />
2V 1<br />
DMR e<br />
M 2 R e
When expressed in terms of R, L, C, and M (not D), the smallsignal<br />
transfer functions are the same in DCM as in CCM<br />
Hence, DCM boost and buck-boost converters exhibit two poles<br />
and one RHP zero in control-to-output transfer functions<br />
But, value of L is small in DCM. Hence<br />
RHP zero appears at high frequency, usually greater than<br />
switching frequency<br />
Pole due to inductor dynamics appears at high frequency, near<br />
to or greater than switching frequency<br />
So DCM buck, boost, and buck-boost converters exhibit<br />
essentially a single-pole response<br />
A simple approximation: let L 0<br />
Buck, boost, and buck-boost converter models all reduce to<br />
DCM switch network small-signal ac model<br />
+<br />
v g<br />
+<br />
–<br />
r 1 j 1 d g 1 v 2 g 2 v 1 j 2 d r 2 C R<br />
v<br />
–<br />
Transfer functions<br />
control-to-output<br />
line-to-output<br />
G vd (s)= v d<br />
vg =0= G d0<br />
1+ s p<br />
G vg (s)= v v g d =0<br />
= G g0<br />
1+ s p<br />
with<br />
G d0 = j 2 R || r 2<br />
p = 1<br />
R || r 2 C<br />
G g0 = g 2 R || r 2 = M
Converter G d0 G g0 p<br />
Buck<br />
2V<br />
D<br />
1–M<br />
2–M M<br />
2–M<br />
(1 – M)RC<br />
Boost<br />
2V<br />
D<br />
M –1<br />
2M –1<br />
M<br />
2M –1<br />
(M–1)RC<br />
Buck-boost<br />
V<br />
D<br />
M<br />
2<br />
RC<br />
R = 12<br />
i(t) L<br />
+ v L<br />
(t) –<br />
D 1<br />
i D<br />
(t)<br />
i C<br />
(t)<br />
+<br />
L = 5 µH<br />
V g<br />
+<br />
–<br />
Q 1<br />
C<br />
R<br />
v(t)<br />
C = 470 µF<br />
–<br />
f s = 100 kHz<br />
The output voltage is regulated to be V = 36 V. It is desired to determine G vd (s) at the<br />
operating point where the load current is I = 3 A and the dc input voltage is V g = 24 V.
P = IV– V g = 3A 36 V – 24 V =36W<br />
R e = V 2<br />
g (24 V)2<br />
=<br />
P 36 W =16<br />
D =<br />
2L<br />
R e T s<br />
=<br />
G d0 = 2V D 2M M –1 2(36 V)<br />
=<br />
–1 (0.25)<br />
f p =<br />
p<br />
2 = 2M –1<br />
2(5 H)<br />
(16 )(10 s)<br />
2<br />
(36 V)<br />
(24 V) –1<br />
2 (M–1)RC = 2<br />
2<br />
=0.25<br />
=72V 37 dBV<br />
(36 V)<br />
(24 V) –1<br />
(36 V)<br />
(24 V) –1<br />
=112Hz<br />
(36 V)<br />
(24 V) –1 (12 )(470 F)<br />
60 dBV<br />
|| G vd<br />
|| G vd<br />
40 dBV G d0<br />
37 dBV<br />
|| G vd<br />
||<br />
f<br />
20 dBV<br />
p<br />
112 Hz<br />
0 dBV<br />
–20 dBV<br />
–40 dBV<br />
0˚<br />
G vd<br />
–20 dB/decade<br />
0˚<br />
–90˚<br />
–180˚<br />
–270˚<br />
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz<br />
f
• Observed high-frequency response due to inductor dynamics<br />
• Averaged-switch model derivation used:<br />
v L<br />
T s<br />
0<br />
which is consistent with the fact that in DCM the inductor current starts<br />
from zero and ends at zero in each switching cycle, even in transients<br />
• However, high-frequency dynamics due to the inductor indicates that<br />
the AC voltage across the inductor in the small-signal model is not zero<br />
• Model predictions at high frequencies are not quite correct<br />
• Corrected averaged models that include the inductor in the averaged<br />
switch model have recently been described<br />
See References: [Sun et. al. PESC’99], [Ben-Yaakov et.al. PESC’94]<br />
Objective: a general large-signal averaged-switch model<br />
• Valid in CCM and DCM<br />
• 5 terminals:<br />
transistor port (2 terminals)<br />
diode port (2 terminals)<br />
duty ratio input (1 terminal)<br />
• DCM/CCM boundary resolved within the model, based only on the<br />
terminal voltages/currents of the model<br />
• Spice compatible
i 1 (t)<br />
+<br />
v 1 (t)<br />
1<br />
switch<br />
network<br />
3<br />
i 2 (t)<br />
+<br />
v 2 (t)<br />
_<br />
2<br />
4<br />
_<br />
averaged-switch<br />
model<br />
i 1<br />
CCM i 2<br />
+<br />
1<br />
3<br />
1-d + E<br />
– t G d<br />
d v 1-d<br />
v 2<br />
d i 1<br />
1<br />
+<br />
v 2<br />
i 1<br />
+<br />
1<br />
v 1<br />
averaged-switch<br />
model<br />
DCM<br />
R e (d)<br />
p(t)<br />
3<br />
i 2<br />
+<br />
v 2<br />
_<br />
2<br />
5<br />
duty<br />
d<br />
4<br />
i 1<br />
_<br />
averaged-switch<br />
model<br />
CCM/DCM<br />
_<br />
i 2<br />
2<br />
5<br />
duty<br />
d<br />
4<br />
_<br />
_<br />
1<br />
2<br />
?<br />
5<br />
duty<br />
d<br />
3<br />
4<br />
+<br />
v 2<br />
_<br />
+<br />
1-u<br />
1<br />
+<br />
averaged-switch<br />
model<br />
CCM/DCM<br />
3<br />
K<br />
1-u<br />
u i 1<br />
A<br />
4<br />
i 1<br />
v E t<br />
G d<br />
v<br />
–<br />
2<br />
u v 1 2<br />
, DCM<br />
_<br />
2<br />
D<br />
S<br />
5<br />
duty<br />
d<br />
i 2<br />
+<br />
_<br />
u<br />
d<br />
2<br />
d,<br />
d<br />
2<br />
2Lf<br />
s<br />
i<br />
v<br />
1<br />
2<br />
CCM<br />
CCM/DCM boundary:<br />
u<br />
MAX<br />
d,<br />
d<br />
2<br />
d<br />
2<br />
2Lf<br />
s<br />
i<br />
v<br />
1<br />
2<br />
u = equivalent switch duty ratio
ccm-dcm1<br />
**************************************************************************************<br />
* MODEL: ccm-dcm1<br />
* Application: two-switch PWM converters, CCM or DCM<br />
* Limitations: ideal switches, no transformer<br />
**************************************************************************************<br />
* Parameters:<br />
* L=equivalent inductance (relevant for DCM)<br />
* fs=switching frequency<br />
**************************************************************************************<br />
* Nodes: (same as in ccm1)<br />
**************************************************************************************<br />
.subckt ccm-dcm1 1 2 3 4 5 params: L=1 fs=1E6<br />
Et 1 2 value={(1-v(u))*v(3,4)/v(u)}<br />
Gd 4 3 value={(1-v(u))*i(Et)/v(u)}<br />
Ga 0 a value={MAX(i(Et),0)}<br />
Va a b<br />
Rdummy b 0 10<br />
Eu u 0 table {MAX(v(5), v(5)*v(5)/(v(5)*v(5)+2*L*fs*i(Va)/v(3,4)))} (0 0) (1 1)<br />
.ends<br />
**************************************************************************************<br />
i 1<br />
+<br />
v 1-u<br />
1<br />
v2<br />
n u<br />
_<br />
1<br />
averaged-switch<br />
model<br />
CCM/DCM<br />
D<br />
+<br />
–<br />
S<br />
2<br />
E t<br />
G d<br />
5<br />
duty<br />
d<br />
i 2<br />
3 +<br />
K<br />
1-u i1 v<br />
n u<br />
2<br />
A<br />
4<br />
_<br />
u<br />
d<br />
2<br />
d,<br />
d<br />
2<br />
2nLf<br />
s<br />
i<br />
v<br />
1<br />
2<br />
,<br />
CCM<br />
DCM<br />
CCM/DCM boundary:<br />
u<br />
MAX<br />
d,<br />
d<br />
2<br />
d<br />
2<br />
2nLf<br />
s<br />
i<br />
v<br />
1<br />
2<br />
u = equivalent switch duty ratio
ccm-dcm2<br />
* MODEL: ccm-dcm2<br />
* Application: two-switch PWM converters, CCM or DCM with (possibly) transformer<br />
* Limitations: ideal switches, no transformer<br />
****************************************************************************************<br />
* Parameters:<br />
* L=equivalent inductance (relevant for DCM), referred to primary<br />
* fs=switching frequency<br />
* n=transformer turns ratio 1:n (primary:secondary)<br />
****************************************************************************************<br />
* Nodes: (same as in ccm1)<br />
****************************************************************************************<br />
.subckt ccm-dcm2 1 2 3 4 5 params: L=1 fs=1E6 n=1<br />
Et 1 2 value={(1-v(u))*v(3,4)/v(u)/n}<br />
Gd 4 3 value={(1-v(u))*i(Et)/v(u)/n}<br />
Ga 0 a value={MAX(i(Et),0)}<br />
Va a b<br />
Rdummy b 0 10<br />
Eu u 0 table {MAX(v(5), v(5)*v(5)/(v(5)*v(5)+2*L*n*fs*i(Va)/v(3,4)))} (0 0) (1 1)<br />
.ends<br />
****************************************************************************************<br />
• ccm-dcm1 (for non-isolated converters) and ccm-dcm2 (for converters<br />
that may include isolation transformer) are general, large-signal<br />
averaged-switch models (PSpice subcircuits) valid for both CCM and<br />
DCM<br />
• Can be applied to DC, AC, or Transient simulation of any two-switch<br />
PWM converter<br />
• Limitations: ideal switches, no losses are modeled, but the model can<br />
be refined further to include conduction losses<br />
• Application examples:<br />
• Comparison of Transient simulation results in a Sepic converter<br />
example using:<br />
– (1) switching circuit model<br />
– (2) ccm-dcm2 averaged switch model<br />
• AC simulation results for a flyback converter operating in CCM or<br />
DCM
L3<br />
22x<br />
R6<br />
22<br />
C3<br />
23<br />
24<br />
V<br />
21<br />
800u<br />
+ Vg2<br />
- 50V<br />
0.5<br />
100u<br />
Resr3<br />
0.2<br />
R4<br />
0.1<br />
L4<br />
100u<br />
C4<br />
100u<br />
R5<br />
100<br />
R11<br />
20<br />
S2<br />
+ +<br />
- -<br />
V4<br />
+<br />
M1<br />
switch<br />
-<br />
IRF640<br />
R7<br />
10<br />
D1<br />
MUR820<br />
V3<br />
+<br />
-<br />
Switching frequency 100kHz, duty ratio D=0.5<br />
ccm-dcm2<br />
+<br />
-<br />
L1<br />
1 800u<br />
Vg<br />
50V<br />
2x<br />
R1<br />
0.5<br />
C1<br />
2 3 4<br />
100u<br />
ACMAG=1V<br />
DC=0.5V<br />
Resr1<br />
0.2<br />
+<br />
-<br />
L2<br />
100u<br />
Vd<br />
R2<br />
0.1<br />
U6<br />
D<br />
1 4 A<br />
ccm-dcm2<br />
2<br />
S<br />
5<br />
duty<br />
3 K<br />
C2<br />
100u<br />
V<br />
R3<br />
100<br />
R10<br />
20<br />
S1<br />
+ +<br />
- -<br />
switch<br />
V4<br />
+<br />
-<br />
Exactly the same PSpice circuit, except the MOSFET M1 and the<br />
diode D1 replaced by the ccm-dcm2 subcircuit, and pulsating<br />
gate drive V3 replaced by a duty-ratio voltage source Vd
80V<br />
Averaged model<br />
(B) sepic-switch.dat<br />
V out<br />
start-up transient<br />
60V<br />
Switching model<br />
40V<br />
load transient<br />
20V<br />
0V<br />
0s 5ms 10ms 15ms 20ms<br />
V(24) V(4)<br />
Time<br />
Start-up and load transient response<br />
10A<br />
Diode current during load transient<br />
(B) sepic-switch.dat<br />
8A<br />
6A<br />
4A<br />
switching model<br />
2A<br />
0A<br />
averaged model<br />
-2A<br />
10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms<br />
I(D1) I(X_U6.Gd)<br />
Time<br />
Details of the diode current waveform around the load transient
ccm-dcm2<br />
Vg<br />
48V<br />
+<br />
T1<br />
1 1<br />
Lm=50u<br />
n=0.25 Lm<br />
AC=1<br />
0.25<br />
+<br />
-<br />
1:n<br />
**<br />
- 2<br />
4<br />
R2 transformer<br />
3<br />
0.2<br />
U1<br />
D<br />
2 1 4 A<br />
L=50u<br />
fs=100K<br />
ccm-dcm2<br />
n=0.25 2 3<br />
S 5 K<br />
duty<br />
Vd<br />
3<br />
4<br />
PARAMETERS:<br />
Rload 2<br />
V<br />
C1<br />
500uF<br />
R1<br />
{Rload}<br />
CCM for Rload=1 Ohm, DCM for Rload=2 Ohm<br />
ccm-dcm2<br />
(C) flyback-ccm-dcm2.dat<br />
50<br />
Magnitude response, control-to-output v/d<br />
R load = 1, CCM<br />
0<br />
R load = 2, DCM<br />
-50<br />
0d<br />
DB(V(4))<br />
R load = 1, CCM<br />
-100d<br />
R load = 2, DCM<br />
Phase response, control-to-output v/d<br />
-200d<br />
10Hz 100Hz 1.0KHz 10KHz 100KHz<br />
P(V(4))<br />
Frequency<br />
Frequency responses generated by PSpice AC analyses
transformer<br />
+<br />
-<br />
Vg<br />
2<br />
Lm<br />
1<br />
1:n<br />
**<br />
Watkins-Johnson converter<br />
3<br />
4<br />
transformer<br />
+<br />
-<br />
Vg<br />
2<br />
4<br />
Lm<br />
1<br />
1:n<br />
**<br />
3<br />
1 D<br />
2 S<br />
ccm-dcm2<br />
A<br />
4<br />
5<br />
3<br />
K<br />
duty<br />
+<br />
-<br />
Vd<br />
Pspice averaged circuit model<br />
using ccm-dcm2<br />
averaged-switch subcircuit<br />
1 1:n 3<br />
Vg **<br />
+<br />
-<br />
Lm<br />
2<br />
4<br />
transformer<br />
1 1:n 3<br />
Vg **<br />
+<br />
-<br />
Lm<br />
2<br />
4<br />
transformer<br />
U2<br />
D<br />
1 4 A<br />
ccm-dcm2<br />
2<br />
S<br />
5<br />
duty<br />
3 K<br />
Cuk converter with<br />
isolation transformer<br />
PSpice averaged circuit model<br />
using ccm-dcm2<br />
averaged-switch subcircuit
• Averaged switch model for current-programmed mode (CPM) in<br />
CCM<br />
• Steady-state and simple AC model in CCM<br />
• Averaged switch model for CPM in DCM<br />
• Steady-state and small-signal AC model in DCM<br />
• Large-signal averaged CCM/DCM model for current-mode<br />
controller<br />
• PSpice implementation of the averaged CPM controller model<br />
• Application examples<br />
- Buck converter with current-programmed mode controller<br />
v g (t)<br />
Buck converter<br />
i s (t)<br />
Q 1<br />
+<br />
– D 1<br />
L<br />
i L (t)<br />
C<br />
+<br />
v(t)<br />
R<br />
The peak transistor current<br />
replaces the duty cycle as the<br />
converter control input.<br />
–<br />
Measure<br />
switch<br />
current<br />
i s (t)R f<br />
i c (t)R f<br />
R f<br />
i s (t)<br />
Clock<br />
+<br />
–<br />
Analog<br />
comparator<br />
0<br />
T s<br />
S Q<br />
R<br />
Latch<br />
m 1<br />
Switch<br />
current<br />
i s (t)<br />
Control signal<br />
i c (t)<br />
Control<br />
input<br />
Current-programmed controller<br />
0 dT s T s<br />
Transistor<br />
status: on<br />
off<br />
t<br />
Compensator<br />
– +<br />
v(t)<br />
Clock turns<br />
transistor on<br />
Comparator turns<br />
transistor off<br />
v ref<br />
Conventional output voltage controller
i L (t) Ts<br />
= i c (t)<br />
• Neglects switching ripple and artificial ramp (slope compensation)<br />
• Yields physical insight and simple first-order model<br />
• Accurate when converter operates well into CCM (so that switching<br />
ripple is small) and when the magnitude of the artificial ramp is not<br />
too large<br />
• Well-accepted by practicing engineers<br />
• Resulting small-signal relation:<br />
i L (s)<br />
i c (s)<br />
Buck converter example<br />
v g<br />
(t)<br />
i 1<br />
(t)<br />
i 2<br />
(t)<br />
L<br />
+<br />
–<br />
v 1<br />
(t)<br />
v 2<br />
(t)<br />
+<br />
+<br />
i L<br />
(t)<br />
C<br />
R<br />
+<br />
v(t)<br />
–<br />
–<br />
–<br />
Switch network<br />
Averaged terminal waveforms,<br />
CCM:<br />
The simple approximation:<br />
v 2 (t) Ts<br />
= d(t) v 1 (t) Ts<br />
i 2 (t) Ts<br />
i c (t) Ts<br />
i 1 (t) Ts<br />
= d(t) i 2 (t) Ts
v 2 (t) Ts<br />
= d(t) v 1 (t) Ts i 2 (t) Ts<br />
i c (t) Ts<br />
i 1 (t) Ts<br />
= d(t) i 2 (t) Ts<br />
Eliminate duty cycle:<br />
i 1 (t) Ts<br />
= d(t) i c (t) Ts<br />
= v 2(t) Ts<br />
v 1 (t) Ts<br />
i c (t) Ts<br />
i 1 (t) Ts<br />
v 1 (t) Ts<br />
= i c (t) Ts<br />
v 2 (t) Ts<br />
= p(t) Ts<br />
So:<br />
• Output port is a current source<br />
• Input port is a dependent power sink<br />
v g<br />
(t) Ts<br />
i 1<br />
(t) Ts<br />
i 2<br />
(t) Ts<br />
L<br />
+<br />
–<br />
v 1<br />
(t) Ts<br />
i c<br />
(t) Ts<br />
v 2<br />
(t) Ts<br />
+<br />
+<br />
p(t) Ts<br />
C<br />
i L<br />
(t) Ts<br />
R<br />
+<br />
v(t) Ts<br />
–<br />
Averaged switch network<br />
–<br />
–
Boost<br />
+<br />
–<br />
L<br />
v g<br />
(t) Ts<br />
i L<br />
(t) Ts<br />
Averaged switch network<br />
i c<br />
(t) Ts<br />
p(t) Ts<br />
C<br />
R<br />
+<br />
v(t) Ts<br />
–<br />
Averaged switch network<br />
Buck-boost<br />
p(t) Ts<br />
i c<br />
(t) Ts<br />
+<br />
v g<br />
(t) Ts<br />
C<br />
R<br />
v(t) Ts<br />
+<br />
–<br />
L<br />
–<br />
i L<br />
(t) Ts<br />
Let<br />
v 1 (t) Ts<br />
= V 1 + v 1 (t)<br />
i 1 (t) Ts<br />
= I 1 + i 1 (t)<br />
v 2 (t) Ts<br />
= V 2 + v 2 (t)<br />
i 2 (t) Ts<br />
= I 2 + i 2 (t)<br />
i c (t) Ts<br />
= I c + i c (t)<br />
Resulting input port equation:<br />
V 1 + v 1 (t) I 1 + i 1 (t) = I c + i c (t) V 2 + v 2 (t)<br />
Small-signal result:<br />
i 1 (t)=i c (t) V 2<br />
V 1<br />
+ v 2 (t) I c<br />
V 1<br />
– v 1 (t) I 1<br />
V 1<br />
Output port equation:<br />
î 2<br />
= î c
i 1 i L<br />
2<br />
+<br />
+<br />
+<br />
v + v V<br />
g<br />
i 2<br />
C R<br />
– – V I<br />
1 1<br />
c<br />
v c<br />
2 i v<br />
V c<br />
2 v<br />
1<br />
V 1<br />
I 1<br />
–<br />
Switch network small-signal ac model<br />
–<br />
–<br />
i 1 (t)=i c (t) V 2<br />
V 1<br />
+ v 2 (t) I c<br />
V 1<br />
– v 1 (t) I 1<br />
V 1<br />
L<br />
i g<br />
i L<br />
v g<br />
+<br />
– i – D 2<br />
D<br />
c D 1+ sL v i<br />
R R R c<br />
C R<br />
+<br />
v<br />
G vc (s)= v(s) = R || 1<br />
i c (s) sC<br />
vg =0<br />
G vg (s)= v(s) =0<br />
v g (s)<br />
i c =0<br />
–
v g<br />
+<br />
–<br />
i g<br />
+<br />
r 1<br />
f 1 (s) i c g 1 v g 2 v g<br />
f 2 (s) i c r 2 C R v<br />
–<br />
Converter g 1 f 1 r 1 g 2 f 2 r 2<br />
Buck<br />
D<br />
R<br />
D 1+ sL R<br />
– R D 2 0 1<br />
Boost 0 1<br />
1<br />
D'R D' 1 – sL<br />
D' 2 R<br />
R<br />
Buck-boost – D R D 1+ sL<br />
D'R<br />
– D'R<br />
D 2<br />
– D2<br />
D'R<br />
– D' 1 – sDL<br />
D' 2 R<br />
R<br />
D<br />
• Again, use averaged switch modeling approach<br />
• Result: simply replace<br />
Transistor by power sink<br />
Diode by power source<br />
• Inductor dynamics appear at high frequency, near to or greater<br />
than the switching frequency<br />
• Small-signal transfer functions contain a single low frequency pole<br />
• DCM CPM boost and buck-boost are stable without artificial ramp<br />
• DCM CPM buck without artificial ramp is stable for D < 2/3. A<br />
small artificial ramp m a<br />
0.086m 2<br />
leads to stability for all D.
i L<br />
(t)<br />
i 1<br />
(t)<br />
+<br />
v 1<br />
(t)<br />
Switch network<br />
i 2<br />
(t)<br />
–<br />
v 2<br />
(t)<br />
+<br />
i pk<br />
v g<br />
(t)<br />
+<br />
–<br />
–<br />
L<br />
i L<br />
(t)<br />
+<br />
C<br />
R<br />
v(t)<br />
–<br />
v L<br />
(t)<br />
m 1<br />
= v 1 T s<br />
L<br />
v 1 (t) Ts<br />
m 2 = v 2 T s<br />
L<br />
0<br />
t<br />
i c<br />
– m a<br />
m 1<br />
0<br />
v 2 (t) Ts<br />
i pk = m 1 d 1 T s<br />
i L<br />
(t)<br />
m 1 = v 1(t) Ts<br />
L<br />
i c<br />
– m a<br />
i pk<br />
i c = i pk + m a d 1 T s<br />
= m 1 + m a d 1 T s<br />
v L<br />
(t)<br />
= v 1 T s<br />
L<br />
v 1 (t) Ts<br />
m 2 = v 2 T s<br />
L<br />
0<br />
t<br />
d 1 (t)=<br />
i c (t)<br />
0<br />
m 1 + m a<br />
T s<br />
v 2 (t) Ts
i 1 (t) Ts<br />
= 1 t + T s<br />
i 1 ( )d = q 1<br />
T s t<br />
T s<br />
i 1 (t) Ts<br />
= 1 2 i pk(t)d 1 (t)<br />
i 1<br />
(t)<br />
Area q1<br />
i pk<br />
i 1 (t) Ts<br />
i 1 (t) Ts<br />
= 1 2 m 1d 1 2 (t)T s<br />
i 1 (t) Ts<br />
=<br />
v 1 (t) Ts<br />
1<br />
2 Li 2 c f s<br />
1+ m a<br />
m 1<br />
2<br />
i 2<br />
(t)<br />
i 2 (t) Ts<br />
i pk Area q 2<br />
i 1 (t) Ts<br />
v 1 (t) Ts<br />
=<br />
1<br />
2 Li 2 c f s<br />
1+ m a<br />
m 1<br />
2 = p(t) T s<br />
t<br />
d 1<br />
T s<br />
d 2<br />
T s<br />
d 3<br />
T s<br />
T s<br />
• Averaged transistor waveforms obey a power sink characteristic<br />
• During first subinterval, energy is transferred from input voltage<br />
source, through transistor, to inductor, equal to<br />
W = 1 2 Li 2<br />
pk<br />
This energy transfer process accounts for power flow equal to<br />
p(t) Ts<br />
= Wf s = 1 2 Li 2 pk f s<br />
which is equal to the power sink expression of the previous slide.
i 2 (t) Ts<br />
= 1 t + T s<br />
i<br />
T<br />
2 ( )d = q 2<br />
s t<br />
T s<br />
i 1<br />
(t)<br />
Area q1<br />
i pk<br />
q 2 = 1 2 i pkd 2 T s<br />
d 2 (t)=d 1 (t)<br />
v 1 (t) Ts<br />
i 1 (t) Ts<br />
v 2 (t) Ts<br />
i 2<br />
(t)<br />
i 2 (t) Ts<br />
=<br />
p(t) T s<br />
v 2 (t) Ts<br />
i pk Area q 2<br />
i 2 (t) Ts<br />
v 2 (t) Ts<br />
=<br />
1<br />
2 Li 2 c(t) f s<br />
1+ m a<br />
m 1<br />
2 = p(t) T s<br />
T s<br />
i 2 (t) Ts<br />
d 1<br />
T s<br />
d 2<br />
T s<br />
d 3<br />
T s<br />
t<br />
• Averaged diode waveforms obey a power sink characteristic<br />
• During second subinterval, all stored energy in inductor is<br />
transferred, through diode, to load<br />
• Hence, in averaged model, diode becomes a power source,<br />
having value equal to the power consumed by the transistor<br />
power sink element
i 1 (t) Ts<br />
i 2 (t) Ts<br />
+<br />
v 1 (t) Ts<br />
p(t) Ts<br />
–<br />
v 2 (t) Ts<br />
+<br />
v g (t)<br />
Ts<br />
+<br />
–<br />
–<br />
L<br />
+ C R v(t) Ts<br />
–<br />
P<br />
+<br />
V g<br />
+<br />
– R<br />
V<br />
–<br />
Solution<br />
V 2<br />
R = P<br />
P =<br />
1<br />
2 LI 2 c(t) f s<br />
1+ M 2<br />
a<br />
M 1<br />
V= PR = I c<br />
RLf s<br />
2 1+ M a<br />
M 1<br />
2<br />
for a resistive load
Buck<br />
v g (t)<br />
Ts<br />
L<br />
+ p(t)<br />
–<br />
Ts<br />
C<br />
R<br />
+<br />
v(t) Ts<br />
–<br />
Boost<br />
v g (t)<br />
Ts<br />
+<br />
–<br />
L<br />
p(t) Ts<br />
C<br />
R<br />
+<br />
v(t) Ts<br />
–<br />
Converter M I crit<br />
Stability range<br />
when m a = 0<br />
Buck<br />
P load – P<br />
P load<br />
1<br />
2 I c – Mm a T s<br />
0 M < 2 3<br />
Boost P load<br />
P load – P<br />
I c – M M<br />
–1m<br />
a T s<br />
2 M<br />
0 D 1<br />
Buck-boost<br />
Depends on load characteristic:<br />
P load = P<br />
I c –<br />
M<br />
M –1<br />
m a T s<br />
2 M –1<br />
0 D 1<br />
I > I crit<br />
for CCM<br />
I < I crit<br />
for DCM
Buck<br />
+<br />
+<br />
L<br />
i L<br />
+<br />
v g<br />
i 1<br />
g 2 v 1 f 2 i c r 2<br />
i 2<br />
v 2<br />
+<br />
–<br />
v 1 r 1 f 1 i c<br />
g 1 v 2<br />
C<br />
R<br />
v<br />
–<br />
–<br />
–<br />
Boost<br />
i<br />
L<br />
L<br />
+<br />
+<br />
+<br />
v g<br />
i 1<br />
g 2 v 1 f 2 i c r 2<br />
i 2<br />
v 2<br />
+<br />
–<br />
v 1 r 1 f 1 i c g 1 v 2<br />
C<br />
R<br />
v<br />
–<br />
–<br />
–<br />
i 1<br />
g 2 v 1 f 2 i c r 2<br />
i 2<br />
v 2<br />
+<br />
–<br />
v g<br />
v 1 r 1 f 1 i c g 1 v 2<br />
+ –<br />
–<br />
+<br />
C<br />
R<br />
+<br />
v<br />
L<br />
–<br />
i L
Converter g 1 f 1 r 1<br />
Buck<br />
1<br />
R<br />
M 2<br />
1–M<br />
1– m a<br />
m 1<br />
2 I 1<br />
I c – R 1–M<br />
1+ m a<br />
m 1<br />
M 2<br />
1+ m a<br />
m 1<br />
1– m a<br />
m 1<br />
Boost<br />
– 1 R<br />
M<br />
M –1<br />
2 I I c<br />
R<br />
M 2 2–M<br />
M –1 +<br />
2 m a<br />
m 1<br />
1+ m a<br />
m 1<br />
Buck-boost 0 2 I 1<br />
I c<br />
– R<br />
M 2<br />
1+ m a<br />
m 1<br />
1– m a<br />
m 1<br />
Converter g 2 f 2 r 2<br />
Buck<br />
1<br />
R<br />
M<br />
1–M<br />
m a<br />
m 1<br />
2–M – M<br />
2 I I<br />
1–M 1+ m a<br />
c<br />
m 1<br />
R<br />
1+ m a<br />
1–2M + m a<br />
m 1<br />
m 1<br />
Boost<br />
1<br />
R<br />
M<br />
M –1<br />
2 I 2<br />
R M –1<br />
I c<br />
M<br />
Buck-boost<br />
2M<br />
R<br />
m a<br />
m 2 I 2<br />
1<br />
1+ m I c<br />
a<br />
m 1<br />
R
Buck, boost, buck-boost all become<br />
+<br />
v g<br />
+<br />
–<br />
r 1 f 1 i c<br />
g 1 v g 2 v g f 2 i c r 2 C R<br />
v<br />
–<br />
G vc (s)= v i c v g =0= G c0<br />
1+ s p<br />
G vg (s)= v v g ic =0<br />
= G g0<br />
1+ s p<br />
G c0 = f 2 R || r 2<br />
p =<br />
1<br />
R || r 2 C<br />
G g0 = g 2 R || r 2<br />
i<br />
pk<br />
i<br />
c<br />
m<br />
a<br />
dT<br />
s<br />
i c<br />
-m a<br />
i pk<br />
i<br />
m L<br />
(t)<br />
-m 2<br />
1<br />
t<br />
0 dT s<br />
T s<br />
d 2<br />
T s<br />
=(1-d)T s<br />
i c<br />
-m a<br />
i pk<br />
i L<br />
(t)<br />
m 1<br />
-m 2<br />
t<br />
0 dT s<br />
(d+d 2<br />
)T s<br />
T s<br />
d 2<br />
T s<br />
i<br />
L<br />
T<br />
s<br />
d<br />
i<br />
pk<br />
m dT<br />
2<br />
d<br />
i<br />
m2d2T<br />
2<br />
1 s<br />
s<br />
2 pk<br />
d<br />
2<br />
1 d<br />
i<br />
pk<br />
m T<br />
2<br />
s<br />
CCM<br />
DCM<br />
CCM/DCM:<br />
d<br />
MIN<br />
d<br />
2<br />
1 ,<br />
i<br />
pk<br />
m T<br />
2<br />
s
Inputs:<br />
ic<br />
m1<br />
m2<br />
i L<br />
T s<br />
d<br />
MIN<br />
d<br />
2<br />
1 ,<br />
i<br />
c<br />
madT<br />
m T<br />
2<br />
s<br />
s<br />
Model:<br />
d 2<br />
d<br />
2i<br />
c<br />
d<br />
d<br />
m dT<br />
1<br />
s<br />
2<br />
2 i<br />
2m<br />
a<br />
L<br />
d<br />
T<br />
s<br />
d<br />
m d<br />
2<br />
2<br />
T<br />
s<br />
2<br />
2<br />
T<br />
s<br />
Output: duty ratio<br />
d<br />
**********************************************************<br />
* MODEL: CPM<br />
* Current-Programmed-Mode CCM/DCM controller model.<br />
* All parameters and inputs are referred to<br />
* the primary side.<br />
**********************************************************<br />
* Parameters:<br />
* L=equivalent inductance, referred to primary<br />
* fs=switching frequency<br />
* va=amplitude of the artificial ramp, va=Rf*ma/fs<br />
* Rf=equivalent current-sense resistance<br />
**********************************************************<br />
* Nodes:<br />
* ctr: control input, v(ctr)=Rf*ic<br />
* current: sensed average inductor current v(current)=Rf*iL<br />
* 1: voltage across L in interval 1, slope m1=v(1)/L<br />
* 2: (-) voltage across L in interval 2, slope m2=v(2)/L<br />
* d: duty ratio (output of the controller)<br />
**********************************************************<br />
.subckt CPM ctr current 1 2 d<br />
+params: L=100e-6 fs=1e5 va=0.5 Rf=0.1<br />
*<br />
* generate d2 for CCM/DCM<br />
Ed2 d2 0 table<br />
+ {MIN(<br />
+ L*fs*(v(ctr)-va*v(d))/Rf/(v(2)),<br />
+ 1-v(d)<br />
+ )} (0,0) (1,1)<br />
*<br />
Em1 m1 0 value={Rf*v(1)/L/fs}<br />
Em2 m2 0 value={Rf*v(2)/L/fs}<br />
*<br />
* generate duty-ratio d (valid CCM and DCM operation)<br />
*<br />
Eduty d 0 table<br />
+ {<br />
+ 2*(v(ctr)*(v(d)+v(d2))<br />
+ -v(current)-v(m2)*v(d2)*v(d2)/2)<br />
+ /(v(m1)*v(d)+2*va*(v(d)+v(d2)))<br />
+ } (0.01,0.01) (0.99,0.99)<br />
*<br />
.ends ; end of subcircuit CPM<br />
**********************************************************
• Demonstrate how CCM/DCM averaged-switch model can be used<br />
together with CCM/DCM averaged model of the current-mode controller<br />
• Use DC sweep simulation to show steady-state characteristics<br />
including operation in DCM or CCM<br />
• Use AC simulation to show control-to-output responses compared for<br />
duty-ratio control and current-mode control, in DCM or CCM<br />
• Use parametric sweep simulation to find the amplitude of the artificial<br />
ramp to minimize input-to-output audio-susceptibility<br />
• Specifications:<br />
• Input V g<br />
= 28V, output V = 5-20V, 0.5-2A<br />
• Switching frequency f s<br />
=100kHz, inductance L = 35uH<br />
• Equivalent current-sense resistance R f<br />
= 1<br />
• Artificial-ramp amplitude V a<br />
= 0-3V<br />
U2<br />
L1 R1<br />
D<br />
1 4 A<br />
2x 3<br />
1<br />
35uH 0.05<br />
L=35uH<br />
ccm-dcm1<br />
VDB<br />
5.315V<br />
fs=100K 2<br />
S<br />
DC=28V Vg<br />
5<br />
3 K<br />
+<br />
-<br />
C1 R2<br />
100u 10<br />
duty<br />
d<br />
177.09mV<br />
DC=2V<br />
Vc<br />
+<br />
-<br />
ctr<br />
E2<br />
IN+ OUT+<br />
IN-<br />
OUT-<br />
Vc<br />
Rf iL<br />
CTR<br />
CURRENT<br />
1<br />
U1<br />
CPM<br />
2<br />
D duty L=35uH<br />
fs=100kHz<br />
va={Va}<br />
Rf=1<br />
PARAMETERS:<br />
Va 1<br />
531.52mV<br />
E3<br />
V1<br />
EVALUE<br />
i(L1)<br />
IN+ OUT+<br />
IN- OUT-<br />
V2<br />
IN+ OUT+<br />
IN- OUT-<br />
E4<br />
EVALUE<br />
V(1)-V(2x)<br />
EVALUE<br />
V(2x)<br />
Example: Cpm-buck
1.0V<br />
(E) cpm-buck.dat<br />
1-d<br />
0.8V<br />
d2<br />
DCM<br />
CCM<br />
0.6V<br />
0.4V<br />
0.2V<br />
u<br />
d<br />
0V<br />
0.5V 1.0V 1.5V 2.0V 2.5V 3.0V<br />
V(d) 1-V(d) V(Xs.u) V(Xcpm.d2) Vc<br />
Duty ratio d, equivalent duty ratio u, and diode conduction<br />
interval d 2<br />
as functions of the control input V c<br />
3.0<br />
(F) cpm-buck.dat<br />
2.5<br />
2.0<br />
Vc=Rf*Ic<br />
1.5<br />
1.0<br />
iL<br />
0.5<br />
0<br />
0.5V 1.0V 1.5V 2.0V 2.5V 3.0V<br />
I(L1) v(ctr)<br />
Vc<br />
Average inductor current iL as a function of the control input V c
100<br />
(H) cpm-buck.dat<br />
50<br />
0<br />
MAGNITUDE<br />
PHASE<br />
v/d<br />
v/vc<br />
-50<br />
-100<br />
Vc=2.0, CCM<br />
v/vc<br />
-150<br />
v/d<br />
-200<br />
10Hz 100Hz 1.0KHz 10KHz 100KHz<br />
DB(V(3)) DB(V(3)/v(d)) P(V(3)) P(V(3)/v(d)) Frequency<br />
Control-to-output frequency responses for duty-ratio control (v/d)<br />
and current-mode control (v/v c<br />
). The converter operates in CCM.<br />
50<br />
(H) cpm-buck.dat<br />
MAGNITUDE<br />
v/d<br />
0<br />
PHASE<br />
v/vc<br />
-50<br />
Vc=1.5, DCM<br />
v/vc<br />
-100<br />
v/d<br />
-150<br />
10Hz 100Hz 1.0KHz 10KHz 100KHz<br />
DB(V(3)) DB(V(3)/v(d)) P(V(3)) P(V(3)/v(d)) Frequency<br />
Control-to-output frequency responses for duty-ratio control (v/d)<br />
and current-mode control (v/v c<br />
). The converter operates in DCM.
-20<br />
(A) cpm-buck.dat<br />
Audio-susceptibility v/v g as a function of the artificial-ramp amplitude V a<br />
-30<br />
-40<br />
-50<br />
-60<br />
Va=0.8, v/vg(0) = -62.848dB<br />
-70<br />
0 0.5 1.0 1.5 2.0<br />
VDB(3)<br />
Va<br />
Parametric sweep used to determine amplitude of the artificial ramp<br />
V a<br />
to minimize input-to-output response (audio-susceptibility) v/v g<br />
.<br />
• Ideal rectifier<br />
• Averaged model obtained by averaging over switching period<br />
• Averaged model obtained by averaging over line period<br />
• Application examples:<br />
- Power factor corrector based on boost converter operating in DCM<br />
- Power factor corrector based on SEPIC with nonlinear-carrier control
It is desired that the rectifier present a resistive load to the ac power<br />
system. This leads to<br />
• unity power factor<br />
• ac line current has same waveshape as voltage<br />
i ac (t)= v ac(t)<br />
R e<br />
+<br />
i ac<br />
(t)<br />
R e<br />
is called the emulated resistance<br />
v ac<br />
(t)<br />
R e<br />
–<br />
P av =<br />
V 2<br />
ac,rms<br />
R e (v control )<br />
+<br />
i ac<br />
(t)<br />
Power apparently “consumed” by R e<br />
is actually transferred to rectifier dc<br />
output port. To control the amount<br />
of output power, it must be possible<br />
to adjust the value of R e<br />
.<br />
v ac<br />
(t)<br />
–<br />
R e<br />
(v control<br />
)<br />
v control
The ideal rectifier is<br />
lossless and contains no<br />
internal energy storage.<br />
Hence, the<br />
instantaneous input<br />
power equals the<br />
instantaneous output<br />
power. Since the<br />
instantaneous power is<br />
independent of the dc<br />
load characteristics, the<br />
output port obeys a<br />
power source<br />
characteristic.<br />
+<br />
v ac<br />
(t)<br />
–<br />
i ac<br />
(t)<br />
ac<br />
input<br />
p(t)=<br />
R e<br />
(v control<br />
)<br />
v control<br />
v 2<br />
ac (t)<br />
R e (v control (t))<br />
Ideal rectifier (LFR)<br />
p(t) = v ac 2 /R e<br />
i(t)<br />
+<br />
v(t)<br />
–<br />
dc<br />
output<br />
v(t)i(t)=p(t)= v 2<br />
ac(t)<br />
R e<br />
Defining equations of the<br />
ideal rectifier:<br />
i ac (t)=<br />
v(t)i(t)=p(t)<br />
p(t)=<br />
v ac (t)<br />
R e (v control )<br />
v 2<br />
ac (t)<br />
R e (v control (t))<br />
When connected to a<br />
resistive load of value R, the<br />
input and output rms voltages<br />
and currents are related as<br />
follows:<br />
V rms<br />
V ac,rms<br />
=<br />
R<br />
Re<br />
I ac,rms<br />
I rms<br />
= R<br />
Re<br />
A switch network that is capable of satisfying the above (averaged)<br />
equations can be employed in low-harmonic rectifier applications
i g<br />
(t)<br />
Ideal rectifier (LFR)<br />
i 2<br />
(t)<br />
p load<br />
(t) = VI = P load<br />
v ac<br />
(t)<br />
i ac<br />
(t)<br />
+<br />
v g<br />
(t)<br />
R e<br />
p ac<br />
(t) Ts<br />
C<br />
+<br />
v C<br />
(t)<br />
Dc–dc<br />
converter<br />
+<br />
v(t)<br />
i(t)<br />
load<br />
Energy storage capacitor<br />
voltage v C<br />
(t) must be<br />
independent of input and<br />
output voltage waveforms, so<br />
that it can vary according to<br />
= d 1 2 Cv 2<br />
C(t)<br />
dt<br />
–<br />
= p ac (t)–p load (t)<br />
–<br />
Energy storage<br />
capacitor<br />
This system is capable of<br />
• Wide-bandwidth control of<br />
output voltage<br />
• Wide-bandwidth control of<br />
input current waveform<br />
• Internal independent energy<br />
storage<br />
–<br />
i g<br />
(t) Ts<br />
i 2<br />
(t) Ts<br />
p(t) +<br />
Ts<br />
v g<br />
(t) +<br />
Ts –<br />
R e<br />
(v control<br />
)<br />
C v(t) Ts<br />
v control<br />
Load<br />
Ideal rectifier (LFR)<br />
ac<br />
input<br />
dc<br />
output<br />
–<br />
Ideal rectifier model, assuming that inner wide-bandwidth loop<br />
operates ideally<br />
High-frequency switching harmonics are removed via averaging<br />
Ac line-frequency harmonics are included in model<br />
Nonlinear and time-varying
If the input voltage is<br />
v g (t)= 2v g,rms sin t<br />
v control<br />
i g<br />
(t) Ts<br />
Ideal rectifier (LFR) i 2<br />
(t) Ts<br />
v g<br />
(t) +<br />
Ts –<br />
R e<br />
(v control<br />
)<br />
C v(t) Ts<br />
p(t) Ts<br />
+<br />
Load<br />
Then the<br />
instantaneous power<br />
is:<br />
p(t) Ts<br />
=<br />
2<br />
v g (t) 2<br />
Ts<br />
R e (v control (t)) = v g,rms<br />
R e (v control (t))<br />
ac<br />
input<br />
1–cos 2 t<br />
which contains a constant term plus a secondharmonic<br />
term<br />
dc<br />
output<br />
–<br />
i 2<br />
(t) Ts<br />
+<br />
– V 2<br />
g,rms<br />
cos<br />
R 2 2 t<br />
e<br />
2<br />
V g,rms<br />
R e<br />
C<br />
v(t) Ts<br />
Load<br />
–<br />
Rectifier output port<br />
The second-harmonic variation in power leads to second-harmonic<br />
variations in the output voltage and current
v(t)<br />
v(t) Ts<br />
v(t) T2L<br />
t<br />
T 2L = 1 2<br />
2 =<br />
+<br />
i 2<br />
(t) T2L<br />
2<br />
V g,rms<br />
R e<br />
C<br />
v(t) T2L<br />
Load<br />
–<br />
Rectifier output port<br />
Time invariant model<br />
Power source is nonlinear
The averaged model predicts that the rectifier output current is<br />
i 2 (t) T2L<br />
=<br />
p(t) T 2L<br />
v(t) T2L<br />
=<br />
2<br />
v g,rms (t)<br />
R e (v control (t)) v(t) T2L<br />
= f v g,rms (t), v(t) T2L<br />
, v control (t))<br />
Let<br />
v(t) T2L<br />
= V + v(t)<br />
i 2 (t) T2L<br />
= I 2 + i 2 (t)<br />
v g,rms = V g,rms + v g,rms (t)<br />
v control (t)=V control + v control (t)<br />
with<br />
V >> v(t)<br />
I 2 >> i 2 (t)<br />
V g,rms >> v g,rms (t)<br />
V control >> v control (t)<br />
where<br />
I 2 + i 2 (t)=g 2 v g,rms (t)+j 2 v(t)– v control(t)<br />
r 2<br />
g 2 =<br />
df v g,rms , V, V control )<br />
dv g,rms<br />
v g,rms = V g,rms<br />
= 2<br />
R e (V control )<br />
V g,rms<br />
V<br />
– 1 r 2<br />
=<br />
df V g,rms , v T2L<br />
, V control )<br />
dv T2L<br />
v T2L<br />
= V<br />
=– I 2<br />
V<br />
j 2 =<br />
df V g,rms , V, v control )<br />
2<br />
V g,rms<br />
=–<br />
dv control VR 2 e (V control )<br />
v control = V control<br />
dR e (v control )<br />
dv control<br />
v control = V control
i 2<br />
+<br />
g 2 v g,rms<br />
j 2 v control C v R<br />
r 2<br />
Rectifier output port<br />
Predicted transfer functions<br />
Control-to-output<br />
v(s)<br />
v control (s) = j 2 R||r 2<br />
1<br />
1+sC R||r 2<br />
–<br />
Line-to-output<br />
v(s)<br />
v g,rms (s) = g 2 R||r 2<br />
1<br />
1+sC R||r 2<br />
i g<br />
(t)<br />
i 2<br />
(t)<br />
p load<br />
(t) = VI = P load<br />
i ac<br />
(t)<br />
+<br />
p ac<br />
(t) Ts<br />
+<br />
+<br />
i(t)<br />
v ac<br />
(t)<br />
v g<br />
(t)<br />
R e<br />
C<br />
v C<br />
(t)<br />
P load<br />
V<br />
+<br />
–<br />
v(t)<br />
load<br />
–<br />
–<br />
–<br />
Ideal rectifier (LFR)<br />
Energy storage<br />
capacitor<br />
Dc-dc<br />
converter<br />
Rectifier and dc-dc converter operate with same average power<br />
Incremental resistance R of constant power load is negative, and is<br />
R =– V 2<br />
P av<br />
which is equal in magnitude and opposite in polarity to rectifier<br />
incremental output resistance r 2<br />
for all controllers except NLC
When r 2<br />
= –R, the parallel combination r 2<br />
|| R becomes equal to zero.<br />
The small-signal transfer functions then reduce to<br />
v(s)<br />
v control (s) = j 2<br />
sC<br />
v(s)<br />
v g,rms (s) = g 2<br />
sC<br />
Objectives:<br />
• Example of how large-signal averaged-switch model can be used for<br />
analysis and simulation of a power-factor corrector<br />
• Show examples of averaged pulse-width modulator model, and<br />
implementation of closed-loop control<br />
• Use transient simulation to study start-up transient response of the PFC<br />
and harmonic distortion of the AC line current in steady state<br />
Specifications:<br />
• Input: 120Vrms, 50Hz. Output: 300VDC, 100W<br />
• Switching frequency: 100kHz
-<br />
L<br />
L<br />
<br />
v line<br />
i line<br />
+<br />
i i line +<br />
i + +<br />
+ +<br />
g = <br />
d<br />
i i<br />
v g = <br />
s<br />
<br />
line<br />
v g v V v co<br />
o<br />
g R e p(t) v co V<br />
C o<br />
C o<br />
_<br />
_ _<br />
_<br />
_ _<br />
Switching circuit model<br />
Averaged circuit model (in DCM)<br />
Boost converter operates in DCM at constant duty ratio, constant frequency<br />
i<br />
g<br />
i<br />
s<br />
T<br />
s<br />
i<br />
d<br />
T<br />
s<br />
v<br />
R<br />
g<br />
e<br />
p<br />
V v<br />
g<br />
v<br />
R<br />
g<br />
e<br />
R ( V<br />
e<br />
v<br />
2<br />
g<br />
v<br />
g<br />
)<br />
i<br />
g<br />
v<br />
R<br />
g<br />
e<br />
1<br />
1<br />
v<br />
g<br />
V<br />
2L<br />
D T<br />
Re<br />
2<br />
s<br />
Line current distrortion due<br />
to this term<br />
R2<br />
L1<br />
output<br />
PARAMETERS:<br />
Rload 900<br />
Vac<br />
VAMPL=170<br />
FREQ=50<br />
D1<br />
+<br />
-<br />
diode<br />
D2<br />
0.2<br />
diode<br />
200uH U1<br />
D<br />
1 4 A<br />
fs=100KHz ccm-dcm1<br />
L=200uH<br />
2 3<br />
S 5 K<br />
duty<br />
C1<br />
150uF<br />
R1<br />
{Rload}<br />
V<br />
Averaged<br />
model of<br />
the boost<br />
rectifier<br />
D3<br />
diode<br />
D4<br />
diode<br />
d<br />
0.9<br />
0.1<br />
0.5<br />
Voffset<br />
+<br />
2V<br />
PWM<br />
m<br />
12V<br />
+<br />
VCC -<br />
1<br />
R6<br />
4<br />
U2A + 3<br />
V+<br />
LM324<br />
V-<br />
11<br />
- 2<br />
R5 3.3K C2 1u<br />
10K<br />
5V<br />
Vref<br />
+<br />
-<br />
R3<br />
600K<br />
R4<br />
10K<br />
Averaged PWM model: d=v m<br />
/V M<br />
=0.5v m<br />
,<br />
D min<br />
=0.1, D max<br />
=0.9 limits<br />
Closed-loop output<br />
voltage control
(A) dcm-boost-rectifier-closed-loop.dat<br />
0.8<br />
Duty ratio d<br />
0.4<br />
100W load<br />
50W load<br />
0<br />
400V<br />
V(d)<br />
50W load<br />
200V<br />
100W load<br />
0V<br />
0s 50ms 100ms 150ms 200ms<br />
V(output)<br />
Time<br />
Start-up transient response for full load and 50% load<br />
1.5A<br />
1.0A<br />
(A) dcm-boost-rectifier-closed-loop.dat<br />
100W load<br />
1st harmonic: 0.87A<br />
3rd harmonic: 0.14A (16.4%)<br />
THD: 16.4%<br />
0.5A<br />
0A<br />
-0.5A<br />
50W load<br />
1st harmonic: 0.48A<br />
3rd harmonic: 0.08A (16.2%)<br />
THD: 16.2%<br />
-1.0A<br />
-1.5A<br />
180ms 185ms 190ms 195ms 200ms<br />
I(Vac)<br />
Time<br />
AC line current waveforms at full load and 50% load
2.0A<br />
(A) dcm-boost-rectifier-closed-loop.dat<br />
0A<br />
-2.0A<br />
50W load<br />
100W load<br />
150W load<br />
-4.0A<br />
-6.0A<br />
Converter operates in CCM<br />
-8.0A<br />
500ms 505ms 510ms 515ms 520ms<br />
I(Vac)<br />
Time<br />
AC line current waveforms at full load (100W),<br />
50% load, and 150% load<br />
136 turns #18<br />
i s<br />
1uF<br />
2400uF<br />
IRF840<br />
53 turns 53 turns<br />
#18 #18<br />
AC line<br />
voltage<br />
120V, 60Hz<br />
R s i s<br />
Nonlinear-Carrier<br />
Controller<br />
Magnetics 1F19 UU<br />
v m<br />
voltage-loop<br />
–<br />
+<br />
V ref<br />
error amplifier<br />
• Active current shaping using Nonlinear Carrier Control method<br />
• Sepic converter has integrated magnetics designed for zero switching<br />
ripple in the AC line current<br />
• Specifications:<br />
• Input: 90-120Vrms, 60Hz. Output: 48VDC, 200W<br />
• Switching frequency: 90kHz
Objectives:<br />
• Show application of the CCM/DCM averaged-switch model in powerfactor<br />
correctors with active current shaping and closed-loop output<br />
voltage control<br />
• Show average model implementation of a nonlinear pulse-width<br />
modulator (NLC controller)<br />
• Compare average model predictions to experimental results:<br />
• AC line current waveshapes<br />
• Start-up and load transient responses<br />
switch<br />
drive<br />
d<br />
switch<br />
current sensor<br />
Q<br />
Q<br />
R<br />
S<br />
+<br />
–<br />
vc (t)<br />
v q (t) = R s < i s ><br />
NLC generator<br />
v c (t) = v m f(t/T s )<br />
v m<br />
i s [5A/div]<br />
clock<br />
T<br />
t<br />
s<br />
f ( t / Ts<br />
) vm<br />
1<br />
t<br />
T<br />
s<br />
R<br />
s<br />
i<br />
s<br />
T<br />
s<br />
v<br />
m<br />
1<br />
d<br />
d<br />
v c<br />
v q<br />
1<br />
d<br />
d<br />
i g<br />
i s<br />
v<br />
g<br />
V<br />
T s<br />
Ideal current shaping<br />
i<br />
g<br />
vm<br />
R V<br />
s<br />
v<br />
g<br />
c(t)<br />
d<br />
R<br />
s<br />
v<br />
i<br />
s<br />
m<br />
T<br />
s<br />
v<br />
m<br />
NLC Controller Model
-<br />
-<br />
Coupledinductor<br />
model<br />
D3<br />
diode<br />
+<br />
Vac<br />
-<br />
VAMPL=170<br />
D1<br />
diode<br />
n=0.94<br />
D4<br />
diode<br />
D2<br />
diode<br />
0<br />
0<br />
2 1:n 4<br />
EVALUE<br />
V(m)/(Rs*I(Vsense)+V(m))<br />
NLC controller<br />
950uH<br />
L-13-23 n=1<br />
TX1<br />
C1 T1 Lm=180uH<br />
1 1:n 3<br />
**<br />
1uF<br />
+<br />
Lm<br />
- Vsense<br />
2<br />
4<br />
0 transformer<br />
1<br />
* *<br />
3<br />
U1<br />
D<br />
1 4 A<br />
L=180uH ccm-dcm1<br />
fs=90kHz<br />
2 3<br />
S 5 K<br />
0<br />
OUT+<br />
E1<br />
IN+<br />
OUT-<br />
IN-<br />
duty<br />
0 0<br />
m<br />
1<br />
Vcc 0<br />
12V<br />
4<br />
+ 3<br />
Vref<br />
U2A<br />
V+<br />
LM324 10.4V<br />
V-<br />
11<br />
-<br />
2<br />
+<br />
+<br />
0<br />
R4 15k C4 1uF<br />
0<br />
2400uF<br />
C3<br />
0<br />
68K<br />
R2<br />
0<br />
18K<br />
R3<br />
Rload<br />
17<br />
0<br />
0<br />
NLC controller model<br />
Closed-loop output<br />
voltage control<br />
1A<br />
0.5A<br />
2A<br />
i line<br />
0 A<br />
0A<br />
-0.5A<br />
-1A<br />
i line<br />
AC line current waveform and spectrum at 50W load (left) and<br />
Simulation<br />
-2A<br />
Simulation<br />
i line [1A/div]<br />
i line [2A/div]<br />
0<br />
0<br />
Line current harmonics [2.4%/div]<br />
Line current harmonics [1.6%/div]<br />
3 5 7 9 11 13 15 17<br />
Experiment<br />
3 5 7 9 11 13 15 17<br />
Experiment<br />
170W load (right)
v o<br />
50V<br />
v o<br />
v m<br />
30V<br />
10V<br />
v m<br />
i line [2A/div]<br />
0V<br />
3A<br />
0A<br />
i line<br />
-3A<br />
Experiment<br />
Simulation<br />
50W to 125W load transient in the Sepic PFC<br />
v g<br />
200V<br />
v g<br />
0V<br />
i line [2A/div]<br />
3A<br />
i line<br />
0A<br />
-3A<br />
10V<br />
v m<br />
v m<br />
v o<br />
0V<br />
100V<br />
v o<br />
0V<br />
Experiment<br />
Simulation<br />
Start-up transient in the Sepic PFC at 50W load
• The averaged switch modeling approach: replace switch network with<br />
an equivalent circuit that correctly predicts the low-frequency<br />
components of the switch network terminal waveforms<br />
• Seminar addressed:<br />
- PWM converters in continuous and discontinuous conduction modes<br />
- PWM converters with current-programmed mode (CPM) control<br />
- Single-phase low-harmonic rectifiers (power-factor correctors)<br />
• In each case, the large-signal averaged switch model can be used:<br />
- to develop steady-state and (by linearization) small-signal circuit<br />
models suitable for analysis<br />
- to construct Spice-compatible model implementations suitable for<br />
DC, Transient and AC simulations<br />
• A number of PSpice model implementation examples and converter<br />
application examples were presented<br />
Selected books:<br />
R.W. Erickson, Fundamentals of Power Electronics, Chpman & Hal, 1997.<br />
Web page: http://ece-www.colorado.edu/~pwrelect/book/bookdir.html<br />
J.G.Kassakian, M.F.Schlecht, G.C.Verghese, Principles of Power Electronics, Addison-Wesley, 1991.<br />
A.Kislovski, R.Redl, N.Sokal, Dynamic Analysis of Switched-Mode DC/DC Converters, New York: Van<br />
Nostrand Reinhold, 1994.<br />
P.T. Krein, Elements of Power Electronics, Oxford University Press, 1998.<br />
Daniel M. Mitchel, DC-DC Switching Regulator Analysis, New York: McGraw-Hill, 1988.<br />
N.Mohan, T.Undeland, W.Robbins, Power Electronics: Converters, Applications and Design, Second Edition,<br />
John Wiley & Sons, 1995.<br />
S.M. Sandler, SMPS Simulation with Spice 3, McGraw Hill, 199.
Selected papers on averaged modeling of switching power converters<br />
R. M. Bass, J. Sun, “Averaging under large-signal conditions,” IEEE PESC 1998, pp. 630-632.<br />
R.Erickson, M.Madigan, S.Singer, “Design of a simple high power factor rectifier based on the flyback<br />
converter,” IEEE APEC, 1990, pp.792-801.<br />
P. Krein, et al, "On the Use of Averaging for the Analysis of Power Electronic Systems," IEEE Transactions on<br />
Power Electronics, Vol. 5, No. 2, pp 182-190, April<br />
1990.<br />
K.Mahabir, G.Verghese, J.Thottuvelil, A.Heyman, “Linear averaged and sampled data models for large signal<br />
control of high power factor AC-DC converters,” IEEE PESC, 1990, pp. 372-381.<br />
D.Maksimovic, S.Cuk, ``A unified analysis of PWM converters in discontinuous modes,'' IEEE Trans. on Power<br />
Electronics, Vol.6, No.3, July 1991.<br />
D.~Maksimovic, Y.Jang and R.Erickson, ``Nonlinear-carrier control for high power factor boost rectifiers,'' IEEE<br />
Transactions on Power Electronics, Vol.11, No.4, July 1996, pp.578-584.<br />
R.D.Middlebrook and Slobodan Cuk, “A general unified approach to modeling switching-converter power<br />
stages, International Journal of Electronics, Vol.42, No.6, pp.521-550, June 1977.<br />
R.D.Middlebrook, “Topics in multiple-loop regulators and current-mode programming,” IEEE PESC, 1985, pp.<br />
716-732.<br />
Selected papers on averaged modeling of switching power converter (continued)<br />
R.D.Middlebrook, “<strong>Modeling</strong> current programmed buck and boost regulators,” IEEE Trans. On Power<br />
Electronics, Vol.4, No.1, January 1989, pp.36-52.<br />
S.R.Sanders, G.C.Verghese, “Synthesis of averaged circuit models for switched power converters,” IEEE<br />
Transactions on Circuits and Systems, Vol.38, No.8, pp.905-915, August 1991.<br />
S.Singer, R.W. Erickson, “Power source element and its properties,” IEE Proceedings - Circuits Devices<br />
Systems, Vol.141, Np.3, pp.220-226, June 1994.<br />
J.Sun, D.M.Mitchel, M.Greuel, P.T.Krain, R.M.Bass, “Averaged modeling of PWM converters in discontinuous<br />
conduction mode: a reexamination,” IEEE PESC 1998, pp.615-622.<br />
J.Sun, D.M.Mitchel, M.Greuel, P.T.Krain, R.M.Bass, “Averaged models for PWM converters in discontinuous<br />
conduction mode,” HFPC 1998.<br />
J.Sun, R.M.Bass, “<strong>Modeling</strong> and practical design issues for average current control,” IEEE APEC 1999.<br />
R. Tymerski and V. Vorperian, “Generation, classification and analysis of switched-mode DC-to-Dcconverters<br />
by the use of converter cells,” INTELEC 1986, pp.181-195.<br />
E. Van Dijk, H.J.N.Spruijt, D.M.O’Sullivan, J.B.Klaassens, “PWM switch modeling of DC/DC converters,” IEEE<br />
Transactions on Power Electronics, Vol.10, No.6, November 1995, pp. 659-665.
Selected papers on averaged modeling of switching power converter (continued)<br />
G. Verghese, C. Bruzos, K. Mahabir, “Averaged and sampled-data models for current mode control: a<br />
reexamination,” IEEE PESC, 1989, pp.484-491.<br />
V.Vorperian, R.Tymerski, F.C.Lee, “Equivalent circuit models for resonant and PWM switches,” IEEE<br />
Transactions on Power Electronics, Vol.4, No.2, pp.205-214.<br />
V.Vorperian, “Simplified analysis of PWM converters using the model of the PWM switch: Parts I and II,” IEEE<br />
Transactions on Aerospace and Electronic Systems, Vol.AES-26, pp.490-505, May 1990.<br />
G.W.Wester and R.D.Middlebrook, “Low-frequency characterization of switched Dc-Dc converters,” IEEE<br />
Transactions on Aerospace and Electronic Systems, Vol.AES-9, pp.376-385, May 1973.<br />
R.~Zane, D.~Maksimovic, ``Nonlinear-carrier control for high-power-factor rectifiers based on flyback, Cuk or<br />
Sepic converters,'’ Proc. IEEE APEC, March 3-7, 1996, San Jose, CA, pp.814-820.<br />
Selected papers on averaged model implementation for computer simulation<br />
V. Bello, "Computer Aided Analysis of Switching Regulators Using SPICE2," IEEE PESC, 1980 Record, pp 3-<br />
11.<br />
V. Bello, "Using The SPICE2 CAD Package for Easy Simulation of Switching Regulators in Both Continuous<br />
and Discontinuous Conduction Modes," Powercon 8, April, 1981, pp H3-1-14.<br />
V. Bello, "Using the SPICE2 CAD Package to Simulate and Design the Current Mode Converter," Powercon<br />
11, April 1984.<br />
Y. Amran, F. Huliehel, S. Ben-Yaakov, “A unified SPICE compatible average model of PWM converters,” IEEE<br />
Transactions on Power Electronics, Vol. 6, No. 4, pp. 585-594, 1991.<br />
S. Ben-Yaakov, “Average simulation of PWM converters by direct implementation of behavioral relationships,”<br />
IEEE APEC, pp.510-516, 1993.<br />
S.Ben-Yaakov, D.Adar, “Average models as tools for studying dynamics of switch mode DC-DC converters,”<br />
IEEE PESC 1994, pp.1369-1376<br />
S. Ben-Yaakov, Z. Gaaton, “Generic SPICE compatible model of current feedback in switch mode converters,<br />
Electronics Letters, Vol. 28, No. 14, 2nd July 1992.<br />
V.M.Canalli, J.A.Cobos, J.A.Oliver, J.Uceda, “Bihavioral large signal averaged model for DC/DC switching<br />
power converters,” IEEE PESC 1996.
Selected papers on averaged model implementation for computer simulation<br />
D. Edry, M. Hadar, O. Mor, S. Ben-Yaakov, “A SPICE compatible model of tapped inductor PWM converter,”<br />
IEEE APEC 1994, pp.1035-1041.<br />
S. Hageman, "Behavioral <strong>Modeling</strong> and PSPICE Simulate SMPS Control Loops,” PCIM, April 1990, pp 13-24<br />
and May 1990, pp 47-50.<br />
N. Jayaram, D. Maksimovic, “Power factor correctors based on coupled-inductor Sepic and Cuk converters<br />
with nonlinear-carrier control,” IEEE APEC 1998.<br />
D. Kimhi, S. Ben-Yaakov, “A SPICE model for current mode PWM converters operating under continuous<br />
inductor current conditions,” IEEE Transactions on Power Electronics, Vol.6, No.2, pp.281-286, 1991.<br />
R. Michelet and W. Roehr, "Evaluating Power Supply Designs with CAE Models” APEC 89, pp 323-334.<br />
D. Monteith and D. Salcedo, "<strong>Modeling</strong> Feedforward PWM Circuits Using the Nonlinear Function Capabilities<br />
of SPICE II," Powercon 10,March 1983.
ON Semiconductor<br />
The “PWM Switch” in mode<br />
transitioning SPICE models<br />
PCIM Germany 2005<br />
Christophe Basso - Application Manager<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Agenda<br />
Why average simulations?<br />
What techniques already exist?<br />
The PWM Switch concept<br />
The voltage-mode case<br />
The current-mode case<br />
Checking averaged model’s validity<br />
Conclusion<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
2
The “PWM Switch” in mode transitioning SPICE models<br />
Why average simulations?<br />
Unveil open-loop ac response for stabilization purposes<br />
Helps to assess impact of stray elements variations on stability<br />
Can predict transient response with large-signal models<br />
Simulation time is quick as frequency component fades away<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
3<br />
The “PWM Switch” in mode transitioning SPICE models<br />
What techniques already exist?<br />
State-Space Space Averaging (SSA)<br />
Introduced by Slobodan uk in the 80’<br />
Long and painful process<br />
Fails to predict sub-harmonic oscillations<br />
u1<br />
x1<br />
L<br />
on<br />
x2<br />
C<br />
R<br />
Vout<br />
dx<br />
dt<br />
dx<br />
dt<br />
x<br />
L<br />
x<br />
Cout<br />
u<br />
L<br />
x<br />
Rload Cout<br />
x1<br />
L<br />
off<br />
x2<br />
C<br />
R<br />
Vout<br />
dx<br />
dt<br />
dx<br />
dt<br />
x<br />
L<br />
x<br />
Cout<br />
Rload Cout<br />
x<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
4
The “PWM Switch” in mode transitioning SPICE models<br />
What techniques already exist?<br />
The GSIM concept<br />
Introduced by Sam Ben-Yaakov in the 90’<br />
Easy to derive but not fully invariant (dual inductors converters?)<br />
Fully auto-toggling mode models<br />
Fails to predict sub-harmonic oscillations<br />
b<br />
Ib<br />
Ic<br />
c<br />
V(a,b)<br />
b<br />
on<br />
off<br />
Fsw<br />
a<br />
Lf<br />
V(a,c)<br />
Fsw<br />
on<br />
off<br />
c<br />
Vin<br />
V(a,b)<br />
Lf<br />
Ia<br />
a<br />
V(a,c)<br />
C<br />
R<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
5<br />
The “PWM Switch” in mode transitioning SPICE models<br />
What techniques already exist?<br />
The CoPEC model<br />
Introduced by the Colorado Power Electronic Center in the 90’<br />
Easy to derive and fully invariant<br />
Fully auto-toggling mode models<br />
Fails to predict sub-harmonic oscillations<br />
i1(t)<br />
i1(t)<br />
v1(t)<br />
Q1<br />
D1<br />
v2(t)<br />
v1(t)<br />
Q1<br />
D1<br />
v2(t)<br />
CCM<br />
d(t)<br />
i12(t)<br />
DCM<br />
d1(t)<br />
i12(t)<br />
i1(t)<br />
i1(t)<br />
v1(t)<br />
v2(t)<br />
v1(t)<br />
Re(d1)<br />
I2<br />
v2(t)<br />
i12(t)<br />
i12(t)<br />
D':D<br />
I2=(Re x i1^2) / v2<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
6
The “PWM Switch” in mode transitioning SPICE models<br />
What techniques already exist?<br />
The Ridley models<br />
Introduced by Raymond Ridley from VPEC in the 90’<br />
Use z-transform method<br />
No auto-toggling mode models<br />
Can only work in ac<br />
Can predict sub-harmonic oscillations in CCM<br />
AC model<br />
Vin<br />
Vout<br />
Vout<br />
0<br />
2<br />
Vg<br />
AC = 0<br />
D<br />
Duty<br />
0.458<br />
4<br />
Gnd<br />
Ctrl<br />
0<br />
3<br />
V2<br />
AC = 1<br />
RS = 20m<br />
FS = 50k<br />
VOUT = 5<br />
RL = 3<br />
VIN = 11<br />
X1<br />
RI = 0.33<br />
L = 37.5u<br />
0<br />
5<br />
Resr<br />
100m<br />
Cout<br />
220uF<br />
0<br />
1<br />
Rload<br />
3<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
7<br />
The “PWM Switch” in mode transitioning SPICE models<br />
What techniques already exist?<br />
The PWM Switch<br />
Introduced by Vatché Vorpérian in the mid-80’<br />
Easy to derive and fully invariant<br />
No auto-toggling mode models<br />
Can predict sub-harmonic oscillations in CCM<br />
DCM model was never published!<br />
a<br />
d<br />
c<br />
L<br />
a<br />
Ia(t)<br />
d<br />
d'<br />
Ic(t)<br />
c<br />
Vin<br />
PWM switch<br />
d'<br />
p<br />
C<br />
R<br />
Vout<br />
Vap(t)<br />
p<br />
Vcp(t)<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
8
The “PWM Switch” in mode transitioning SPICE models<br />
The PWM Switch concept<br />
Linear network<br />
L<br />
on<br />
Vin<br />
a c<br />
d<br />
d'<br />
PWM switch p<br />
C<br />
R<br />
Vout<br />
off<br />
Linear network<br />
What do<br />
you plead?<br />
diode + transistor = guilty for non-linearity!<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
9<br />
The “PWM Switch” in mode transitioning SPICE models<br />
The PWM Switch concept<br />
Rb_upper<br />
1Meg<br />
5<br />
1<br />
Rc<br />
10k<br />
Vout<br />
Vin<br />
ib b<br />
h11<br />
7<br />
e<br />
c ic<br />
8<br />
3<br />
Beta.Ib<br />
Vout<br />
Vg<br />
Vin<br />
4<br />
Q1<br />
Req<br />
Rb_upper//Rb_lower<br />
ie<br />
Rc<br />
10k<br />
2<br />
Rb_lower<br />
100k<br />
Re<br />
150<br />
Ce<br />
1nF<br />
Re<br />
150<br />
Ce<br />
1nF<br />
Ve<br />
Remember the bipolars<br />
Ebers-Moll model…<br />
Replace Q 1 by its small-signal model<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
10
The “PWM Switch” in mode transitioning SPICE models<br />
An invariant association<br />
L<br />
Vin<br />
c<br />
a<br />
d<br />
L<br />
d'<br />
PWM switch<br />
p<br />
C<br />
R<br />
Vout<br />
Vin<br />
a c<br />
d<br />
d'<br />
PWM switch p<br />
C<br />
R<br />
Vout<br />
a<br />
Ia(t)<br />
d<br />
d'<br />
Ic(t)<br />
c<br />
Vin<br />
a<br />
d<br />
d'<br />
PWM switch<br />
p<br />
c<br />
L<br />
C<br />
R<br />
Vout<br />
Vap(t)<br />
p<br />
Vcp(t)<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
11<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Observe waveforms and average them<br />
Vin<br />
a<br />
Vap(t)<br />
Ia(t)<br />
d<br />
p<br />
d'<br />
Ic(t)<br />
c<br />
Vcp(t)<br />
L<br />
C<br />
R<br />
Vout<br />
Tsw<br />
I t I I t dt d I t dI<br />
a T a a c c<br />
sw<br />
Tsw<br />
Tsw<br />
Tsw<br />
V t V V t dt d V t dV<br />
cp<br />
T<br />
cp cp ap ap<br />
sw T<br />
Tsw<br />
sw<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
12
The “PWM Switch” in mode transitioning SPICE models<br />
PWM Switch model in CCM: a 1:D transformer!<br />
a<br />
Ia(t)<br />
I=d.Ic<br />
c<br />
Ic(t)<br />
V=d.V(a,p)<br />
Vap<br />
a<br />
Ia(t)<br />
1 d<br />
Ic(t)<br />
c<br />
Vcp<br />
p<br />
p<br />
p<br />
Large-signal (non-linear) model<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
13<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Use it immediately, SPICE linearizes it for you!<br />
L<br />
10.0 10.0<br />
100uH<br />
c<br />
a<br />
p<br />
d<br />
0.400<br />
16.7<br />
Vout<br />
Vin<br />
10<br />
Vbias<br />
0.4<br />
AC = 1<br />
C1<br />
100u<br />
R1<br />
10<br />
Always verify the dc operating point!<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
14
The “PWM Switch” in mode transitioning SPICE models<br />
The original CCM/DCM PWM Switch models<br />
a<br />
d 1-d<br />
c<br />
CCM: common « passive »<br />
vap<br />
t vcp<br />
t<br />
a<br />
d1<br />
p<br />
d2<br />
p<br />
DCM: common « common »<br />
Looks like<br />
auto-toggling<br />
is impossible…<br />
d3<br />
vac<br />
t<br />
vcp<br />
t<br />
c<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
15<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Deriving the DCM PWM Switch in common « passive »<br />
I a<br />
V ap<br />
I peak<br />
t<br />
Vin<br />
a<br />
Vap(t)<br />
Ia(t)<br />
d1<br />
p<br />
d2<br />
Ic(t)<br />
d3<br />
c<br />
Vcp(t)<br />
L<br />
C<br />
R<br />
Vout<br />
I c<br />
I peak<br />
t<br />
t<br />
I<br />
I<br />
a<br />
c<br />
I<br />
peak<br />
d<br />
I d I d I d d<br />
peak peak peak<br />
V cp V ap V cp<br />
t<br />
d 1 T sw d 2 T sw d 3 T sw<br />
I<br />
c<br />
I<br />
d<br />
a<br />
d d d d<br />
I<br />
a<br />
d<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
16
The “PWM Switch” in mode transitioning SPICE models<br />
An auto-toggling version: clamp the equation!<br />
a<br />
Ia(t)<br />
Ic(t)<br />
c<br />
Clamp<br />
Vap<br />
1 N<br />
Vcp<br />
p<br />
N=d1/(d1+d2)<br />
d<br />
IL V d T LF I<br />
V dT d V<br />
c ac sw sw c<br />
ac sw ac<br />
d<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
17<br />
The “PWM Switch” in mode transitioning SPICE models<br />
In voltage mode, add the PWM modulator gain<br />
a<br />
X4<br />
PWMCCMVM<br />
c<br />
5.00<br />
4<br />
L1<br />
75u<br />
10.0<br />
3<br />
V4<br />
10<br />
0.500<br />
17<br />
GAIN<br />
d<br />
PWM switch VM<br />
XPWM<br />
GAIN<br />
K = 0.5<br />
p<br />
5.0<br />
K<br />
PWM<br />
V<br />
peak<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
18
,<br />
-<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Testing the auto-toggling model<br />
a<br />
4.99 c<br />
L1<br />
75u<br />
4 17<br />
R5<br />
20m<br />
vout<br />
4.99<br />
Vout<br />
X2<br />
PSW1<br />
L1<br />
75u<br />
IC =<br />
1 4<br />
R4<br />
20m<br />
vout<br />
Vout<br />
10.0<br />
3<br />
V4<br />
10<br />
0.499<br />
5<br />
GAIN<br />
d<br />
PWM switch VM p<br />
X10 4.99<br />
XPWM<br />
PWMVM2<br />
GAIN<br />
L = 75u<br />
K = 0.5<br />
Fs = 100k<br />
Resr<br />
70m<br />
2<br />
Cout<br />
100u<br />
IC = 0<br />
Xstep<br />
PSW1<br />
19<br />
Vstep<br />
10<br />
V4<br />
10<br />
7<br />
D2<br />
N = 0.01<br />
Resr<br />
70m<br />
Cout<br />
100u<br />
IC =<br />
16<br />
Xstep<br />
PSW1<br />
20<br />
Vstep<br />
vout<br />
vout<br />
C2<br />
{C2}<br />
R2 C1<br />
{R2} {C1}<br />
14<br />
0.329<br />
Rupper<br />
{Rupper}<br />
2.50<br />
7<br />
R3<br />
{R3}<br />
5.00<br />
13<br />
C3<br />
{C3}<br />
6<br />
+<br />
3<br />
X8<br />
COMPAR<br />
C2<br />
{C2}<br />
R2 C1<br />
{R2} {C1}<br />
19<br />
Rupper<br />
{Rupper}<br />
13<br />
R3<br />
{R3}<br />
18<br />
C3<br />
{C3}<br />
6<br />
Verr<br />
2.50<br />
8<br />
X2<br />
V2<br />
AMPSIMP 2.5<br />
VHIGH = 1.9<br />
Rlower<br />
10k<br />
Vsaw<br />
Tran Generators = PULSE<br />
Verr<br />
8<br />
X1<br />
AMPSIMP<br />
VHIGH = 1.9<br />
V2<br />
2.5<br />
Rlower<br />
10k<br />
Averaged model<br />
Cycle-by-cycle<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
19<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Comparing results with a stepload…<br />
5.40<br />
5.20<br />
5.00<br />
4.80<br />
4.60<br />
1.10<br />
900m<br />
Cycle-by-cycle<br />
I can’t believe<br />
this result…<br />
700m<br />
500m<br />
300m<br />
9.75m 11.2m 12.7m 14.2m 15.7m<br />
time in seconds<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
20
The “PWM Switch” in mode transitioning SPICE models<br />
Current-mode PWM switch<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
21<br />
The “PWM Switch” in mode transitioning SPICE models<br />
CCM operation, current expression<br />
I t R V t d t T S<br />
c i c sw e<br />
Sd tT<br />
f<br />
sw<br />
V T S T<br />
I c<br />
d V d<br />
R R L<br />
c sw e sw<br />
cp<br />
i<br />
i<br />
a<br />
c<br />
Ia(t)<br />
Ic(t)<br />
I=d.Ic<br />
I=Vc/Ri<br />
I=Iu<br />
Cs<br />
p<br />
p<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
22
-<br />
The “PWM Switch” in mode transitioning SPICE models<br />
DCM operation, current expression<br />
I<br />
I<br />
I<br />
peak<br />
Vc dTsw Se<br />
Ri<br />
Vc dTswSe<br />
d T S<br />
Ri<br />
I d I d I d d<br />
c sw f<br />
c<br />
peak peak peak<br />
d Tsw Se V c p d d<br />
I d Tsw<br />
Ri<br />
L<br />
a<br />
Ia(t)<br />
c<br />
Ic(t)<br />
I=(d1/(d1+d2)).Ic<br />
I=Vc/Ri<br />
I=Iu<br />
p<br />
p<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
23<br />
The “PWM Switch” in mode transitioning SPICE models<br />
The PWM Switch, the final encapsulation<br />
duty_cycle<br />
a<br />
2<br />
duty-cycle<br />
c<br />
L1<br />
75u<br />
1 4<br />
R4<br />
20m<br />
vout<br />
Vout<br />
X2<br />
PSW1<br />
L1<br />
75u<br />
IC = 250m<br />
1 4<br />
R4<br />
1<br />
vout<br />
Vout<br />
V4<br />
25<br />
d<br />
PWM switch CM p<br />
X1<br />
PWMDCMCM<br />
Resr<br />
70m<br />
16<br />
Cout<br />
220uF<br />
10<br />
V4<br />
25<br />
12<br />
D1<br />
1n5818<br />
Resr<br />
70m<br />
16<br />
Cout<br />
220uF<br />
IC = 4.6<br />
20<br />
V2<br />
V2<br />
X5<br />
PSW1<br />
C2<br />
470p<br />
vout<br />
X5<br />
PSW1<br />
2<br />
V1<br />
S<br />
Q<br />
R1<br />
20k<br />
C1<br />
10n<br />
12<br />
R7<br />
10k<br />
Q<br />
R<br />
10<br />
L4<br />
1p<br />
6<br />
13<br />
C1x<br />
100p<br />
9<br />
C3<br />
1p<br />
11<br />
8<br />
Y4<br />
X4<br />
AMPSIMP<br />
7<br />
V6<br />
2.5<br />
R8<br />
10k<br />
X3<br />
COMPAR<br />
+<br />
14 6<br />
C2<br />
470p<br />
R3<br />
470<br />
B1<br />
Voltage<br />
17<br />
V(4,vout)<br />
vout<br />
V7<br />
AC = 1<br />
R1<br />
20k<br />
C1<br />
10n<br />
24<br />
R7<br />
10k<br />
18<br />
Verr<br />
X4<br />
AMPSIMP<br />
19<br />
V6<br />
2.5<br />
R8<br />
10k<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
24
The “PWM Switch” in mode transitioning SPICE models<br />
Good matching between both models<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
25<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Testing the ac response<br />
0.649<br />
18<br />
0.408<br />
dc<br />
a<br />
duty-cycle<br />
vc<br />
PWM switch CM<br />
X1x<br />
XFMR<br />
-127RATIO = -0.1<br />
Vout<br />
D1<br />
L1<br />
Rs<br />
MBR140P out1 2.2uH<br />
12.2 12.2 10m12.2<br />
out2<br />
126<br />
2<br />
Vin<br />
126<br />
c<br />
p<br />
0<br />
3<br />
PWMCM<br />
X1<br />
L = 1.8m<br />
L3 Fs = 66k<br />
1.8m Ri = 1.5<br />
1 4<br />
12.7<br />
R4<br />
R5<br />
100m<br />
100m<br />
12.2 12.2<br />
15 7<br />
C1<br />
C5<br />
470uF<br />
470uF<br />
6<br />
R17<br />
300m<br />
12.2<br />
9<br />
C2<br />
10uF<br />
Rload<br />
14<br />
V3<br />
4.8<br />
4.80<br />
11<br />
out1<br />
out2<br />
0.649<br />
14<br />
R7<br />
8k<br />
R15<br />
LoL<br />
1.5k<br />
1kH0.649<br />
10.6<br />
VFB<br />
16<br />
5<br />
CoL<br />
1kF<br />
0<br />
12<br />
9.88<br />
10<br />
Cf<br />
100nF<br />
Rupp<br />
3.9k<br />
Vstim<br />
AC = 1<br />
X3<br />
TL431<br />
2.50<br />
13<br />
A dcm current-mode flyback<br />
Rlow<br />
1k<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
26
The “PWM Switch” in mode transitioning SPICE models<br />
Ac simulation results of the flyback converter<br />
0<br />
10 100 1K 10K 100K<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
27<br />
The “PWM Switch” in mode transitioning SPICE models<br />
If the load increases…<br />
plot1<br />
vdbfb in db(volts)<br />
60.0<br />
40.0<br />
20.0<br />
0<br />
-20.0<br />
gain<br />
CCM operation<br />
Sub-harmonic oscillations!<br />
1<br />
Plot2<br />
ph_vfb in degrees<br />
220<br />
180<br />
140<br />
100<br />
phase<br />
2<br />
60.0<br />
10 100 1k 10k 100k<br />
frequency in hertz<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
28
The “PWM Switch” in mode transitioning SPICE models<br />
Testing on a multi-output forward<br />
L2<br />
12.2 {L2} 12.2<br />
4 5<br />
R2x<br />
70m<br />
12.0<br />
9 Vout2<br />
X1<br />
XFMR<br />
RATIO = N2<br />
Resr2<br />
100m<br />
12.0<br />
2<br />
Cout2<br />
100u<br />
Rload2<br />
6<br />
X7<br />
XFMR<br />
RATIO = N1/N2<br />
dc<br />
0.356<br />
duty-cycle<br />
160 56.6<br />
a<br />
c<br />
10 8<br />
L1<br />
28.3 {L1} 28.3<br />
11 3<br />
R9<br />
70m<br />
vout<br />
28.0<br />
Vout1<br />
V6<br />
parameters<br />
160<br />
Rsense=0.35<br />
Vout=28<br />
L1=130u<br />
L2=130u<br />
N1=0.5<br />
N2=0.215<br />
Rupper=(Vout-2.5)/250u<br />
fc=5k<br />
pm=50<br />
Gfc=8.84<br />
pfc=-66<br />
G=10^(-Gfc/20)<br />
boost=pm-(pfc)-90<br />
pi=3.14159<br />
K=tan((boost/2+45)*pi/180)<br />
C2=1/(2*pi*fc*G*k*Rupper)<br />
C1=C2*(K^2-1)<br />
R2=k/(2*pi*fc*C1)<br />
0.861<br />
1<br />
vc<br />
PWM switch CM p<br />
X5<br />
PWMCM2<br />
L = L1/N1^2+L2/N2^2<br />
Fs = 200k<br />
Ri = Rsense<br />
Se = 0<br />
C2<br />
{C2}<br />
R2 C1<br />
{R2} {C1}<br />
20<br />
0.861<br />
LoL<br />
1kH<br />
19<br />
0.861<br />
2.50<br />
CoL Verrx<br />
X4<br />
1kF<br />
0<br />
AMPSIMP<br />
7<br />
V1<br />
AC = 1<br />
X6<br />
XFMR<br />
RATIO = N1<br />
vout<br />
Rupper<br />
{Rupper}<br />
2.50<br />
13<br />
18<br />
Rlower<br />
V3<br />
10k<br />
2.5<br />
Resr1<br />
245m<br />
28.0<br />
6<br />
Cout1<br />
48u<br />
Rload1<br />
7<br />
A multi-output forward<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
29<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Output voltage bang on the 28 V output…<br />
28.8<br />
Plot1<br />
vout, vout1 in volts<br />
28.4<br />
28.0<br />
27.6<br />
3<br />
1<br />
27.2<br />
Averaged<br />
Cycle-by-cycle<br />
12.4<br />
12.5<br />
Plot2<br />
vout2 in volts<br />
12.2<br />
12.0<br />
11.8<br />
vout2#a in volts<br />
12.3<br />
12.1<br />
11.9<br />
24<br />
11.6<br />
11.7<br />
3.93m 4.83m 5.74m 6.64m 7.55m<br />
time in seconds<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
30
The “PWM Switch” in mode transitioning SPICE models<br />
Output voltage bang on the 28 V output…<br />
28.8<br />
plot1<br />
vout, vout1 in volts<br />
28.4<br />
28.0<br />
27.6<br />
4<br />
1<br />
27.2<br />
Averaged<br />
Cycle-by-cycle<br />
12.8<br />
Plot2<br />
vout2, vout2#a in volts<br />
12.4<br />
12.0<br />
11.6<br />
3<br />
2<br />
11.2<br />
3.83m 4.75m 5.68m 6.61m 7.54m<br />
time in seconds<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
31<br />
The “PWM Switch” in mode transitioning SPICE models<br />
Instability in the buck DCM current-mode<br />
> 20 dB increase<br />
Plot1<br />
vphout, vphout#1, vphout#2 in degrees<br />
180<br />
90.0<br />
0<br />
-90.0<br />
vdbout, vdbout#1, vdbout#2 in db(volts)<br />
80.0<br />
40.0<br />
0<br />
-40.0<br />
Gain<br />
V in<br />
R load<br />
Phase<br />
V in<br />
R load<br />
Gain<br />
V in<br />
R load<br />
Phase<br />
V in<br />
R load<br />
V in M<br />
V in M<br />
V in M<br />
Gain<br />
V in<br />
3<br />
5<br />
1<br />
2<br />
46<br />
The DCM buck<br />
shows instability<br />
as M > 0.66<br />
without ramp<br />
Phase jumps<br />
to –180°<br />
-180<br />
-80.0<br />
Phase<br />
V in<br />
R load<br />
1 10 100 1k 10k 100k 1Meg<br />
frequency in hertz<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
32
The “PWM Switch” in mode transitioning SPICE models<br />
Instability in the buck DCM current-mode<br />
40.0<br />
180<br />
Gain<br />
V in<br />
R load<br />
Adding 0.086 x S off<br />
cures the problem<br />
Plot1<br />
vdbout, vdbout#2 in db(volts)<br />
20.0<br />
0<br />
vphout, vphout#2 in degrees<br />
90.0<br />
0<br />
Gain<br />
V in<br />
R load<br />
S a<br />
Phase<br />
V in<br />
R load<br />
S a<br />
2<br />
4<br />
-20.0<br />
-90.0<br />
-40.0<br />
-180<br />
Phase<br />
V in<br />
R load<br />
3<br />
1<br />
1 10 100 1k 10k 100k 1Meg<br />
frequency in hertz<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
33<br />
The “PWM Switch” in mode transitioning SPICE models<br />
The conclusion<br />
The CM PWM Switch DCM was derived<br />
Two auto-toggling models developed<br />
Good matching of average vs reality<br />
Models also exist in BCM (PFC simulations)<br />
Exist in both IsSpice and PSpice<br />
www.onsemi.com<br />
Christophe Basso – PCIM 2005<br />
November 2001<br />
34
8 PWM switching dc-to-dc converters<br />
Introducing the PWM switch<br />
8.1 Introduction<br />
An electronic circuit which transforms the dc level of a voltage or current source in<br />
a controllable manner without dissipating power is called an ideal dc-to-dc<br />
converter or simply a converter. This is shown in Fig. 8.1 in which α is a control<br />
parameter on which the output voltage or current depends. When feedback is used<br />
as shown in Fig. 8.2,either the output voltage or output current can be regulated<br />
against variations in the input voltage or load current. A vast majority of applications,such<br />
as logic and sensitive instrumentation circuits,require a converter<br />
whose output voltage,rather than the output current,is tightly regulated. A<br />
converter may also have more than one control parameter so that α can be taken<br />
as a control vector.<br />
Figure 8.1<br />
Figure 8.2<br />
365<br />
In the following sections we shall determine the basic characteristics of dc-to-dc<br />
converters,determine their equivalent circuits using a model of the PWM switch,<br />
and analyze their dynamics using the techniques developed in this book.
366 PWM switching dc-to-dc converters<br />
8.2 Basic characteristics of dc-to-dc converters<br />
The voltage conversion ratio of a converter is defined as the ratio of the dc output<br />
voltage to the dc input voltage:<br />
M <br />
V <br />
V <br />
(8.1)<br />
In a similar manner,the current conversion ratio is defined as the ratio of the dc<br />
output current to the dc input current:<br />
M <br />
I <br />
I <br />
(8.2)<br />
Since in an ideal converter there can be no power dissipation,the input and output<br />
powers must be equal:<br />
P <br />
P <br />
V <br />
I <br />
V <br />
I <br />
M <br />
M <br />
1 (8.3)<br />
No practical converter can satisfy the condition in Eq. (8.3) because of losses<br />
associated with nonideal components. In designing a converter,every effort is<br />
made to keep these losses to a minimum in order to maximize the efficiency,which<br />
is defined as the ratio of the output power to the input power:<br />
η P <br />
P <br />
M <br />
M <br />
(8.4)<br />
One may wonder what kind of ideal components go into an ideal converter.<br />
Resistors,which may be arranged as a voltage divider to achieve down conversion,<br />
are precluded because they dissipate power and lack controllability. A bipolar<br />
transistor connected between a voltage source and a load can achieve controllability<br />
by adjusting V <br />
,but such a circuit,known as a series regulator (see Problem<br />
8.1),dissipates power by an amount given by:<br />
P <br />
V <br />
I <br />
(V <br />
V <br />
)I <br />
(8.5)<br />
Hence,the series regulator and its dual,the shunt regulator (see Problem 8.2),are<br />
not classified as converters. In fact,these circuits are nothing more than linear dc<br />
amplifiers.<br />
The two mechanisms required for nondissipative power conversion are switching<br />
and filtering. Switching is achieved by a minimum of two switches while filtering<br />
is achieved by inductors and capacitors arranged in an effective low-pass filter<br />
configuration. The purpose of the filters is to attenuate the pulsating currents,
367 8.2 Basic characteristics of dc-to-dc converters<br />
generated by the switches,down to a specified level at the input and output ports<br />
of the converter. Since ideal switches,inductors and capacitors do not dissipate<br />
any power,the ideal conversion efficiency is 100%. In reality,all practical inductors<br />
and capacitors dissipate a very small percentage of the peak energy stored in<br />
them owing to dielectric,conductive and magnetic losses. Also,all practical<br />
semiconductor switches have finite conductive and switching losses. The switching<br />
frequency is one of the most critical parameters in the design of a switching<br />
converter. Increasing the switching frequency results in smaller inductors and<br />
capacitors but higher switching losses and lower efficiency. The tradeoff between<br />
size,cost,weight and efficiency has never been an exact science and is usually<br />
driven by market requirements. For example,a commercially available 48 V to<br />
5 V,100-W converter may have an efficiency of 80% at full load with linear<br />
dimensions 3.0 1.5 0.38,whereas a similar custom-designed converter may<br />
in comparison have an efficiency of 93% and twice the linear dimensions.<br />
We consider now the input and output port characteristics of an ideal converter<br />
with and without feedback. In what follows we shall assume that a converter is<br />
made of linear inductors and capacitors. For a converter without feedback,the<br />
output voltage is linearly related to the input voltage by the conversion ratio M <br />
:<br />
No feedback V <br />
M <br />
V <br />
; M <br />
M <br />
(V <br />
) (8.6)<br />
The reason for this is that the switching action in any dc-to-dc converter,as we<br />
shall see,produces a periodic sequence of linear networks. The conversion ratio is<br />
obtained by piecing together the solutions of the individual switched linear networks<br />
which are linear functions of the input voltage. Hence,the piecewise<br />
composite solution is also a linear function of the input voltage. Following the<br />
same argument we conclude that M <br />
is also independent of the input voltage.<br />
Hence,the ideal voltage converter in Fig. 8.1a can be modeled by an ideal<br />
transformer with turns ratio M <br />
as shown in Fig. 8.3. In general M <br />
is a function of<br />
the control parameter, α,the output voltage,V <br />
,and the output current,I <br />
:<br />
M <br />
M <br />
(α, V <br />
, I <br />
) (8.7)<br />
Also,a converter can in general have several modes of operation so that a unique<br />
M <br />
may not be sufficient for modeling purposes. In the very important class of<br />
converters discussed in this chapter, M <br />
is only a function of α.<br />
Figure 8.3
368 PWM switching dc-to-dc converters<br />
The input and output characteristics of an ideal converter can now be ascertained<br />
using the equivalent circuit in Fig. 8.3. For an unregulated converter feeding<br />
a resistive load R <br />
,the incremental input resistance seen by the source according<br />
to Fig. 8.3 is:<br />
R <br />
R <br />
M <br />
(8.8)<br />
For an ideal converter in which the output voltage is regulated by the feedback<br />
arrangement shown in Fig. 8.4,the output voltage is equal to the reference voltage:<br />
V <br />
V <br />
(8.9)<br />
Hence,when the load is fixed,the input power of a regulated converter is fixed and<br />
independent of the source voltage. It follows that any increase in the source voltage<br />
is accompanied by a decrease in the source current,which implies that the<br />
incremental input resistance of a regulated converter is negative. Proceeding as<br />
follows,we obtain:<br />
P <br />
V <br />
0 V <br />
I <br />
V <br />
I <br />
0 I <br />
V <br />
I <br />
V <br />
(8.10)<br />
Substituting Eqs. (8.1),(8.2) and (8.3) in Eq. (8.10) we obtain several useful expressions<br />
for the incremental input resistance:<br />
R V P <br />
(V /I )<br />
M <br />
⎫<br />
⎬⎭<br />
(8.11a—c)<br />
R <br />
M <br />
In Eq. (8.11c) we have made use of the fact that R V /I whenever the load<br />
<br />
actually consists of a resistor as shown in Fig. 8.4.<br />
Figure 8.4
369 8.2 Basic characteristics of dc-to-dc converters<br />
The incremental output resistance of regulated and unregulated ideal converters<br />
can be determined in a similar manner (see Problem 8.3).<br />
Example 8.1 An ideal battery charging circuit is shown in Fig. 8.5. This circuit is<br />
somewhat tricky because it has two voltage sources connected in parallel with zero<br />
resistance between them. If it were not for the control circuit,it would not have<br />
been clear which of the two voltage sources was charging or being charged and the<br />
charging current would have been undetermined. In this ideal case,the feedback<br />
circuit adjusts the control parameter α,and hence the conversion ratio M ,by <br />
monitoring the charging current I to ensure I I . The value of α determined by<br />
<br />
the control circuit is given by:<br />
α M<br />
V <br />
V <br />
<br />
(8.12)<br />
If α were to deviate by the slightest amount from the value in Eq. (8.12),the<br />
charging current would become infinite,causing an infinite error signal,which<br />
would be instantaneously corrected by the negative feedback circuit. The current<br />
drawn from the source,when α is set exactly to the value in Eq. (8.12),is determined<br />
from the current conversion ratio:<br />
I <br />
I <br />
M <br />
I <br />
M <br />
I <br />
V <br />
V <br />
(8.13)<br />
where we have made use of the fact that M <br />
M <br />
1 for an ideal converter.<br />
The incremental input impedance is determined next following the procedure in<br />
Eq. (8.10):<br />
I <br />
V <br />
I <br />
V <br />
I V <br />
V <br />
(8.14)<br />
Figure 8.5<br />
It follows that:<br />
R <br />
V <br />
I <br />
V <br />
(8.15)
370 PWM switching dc-to-dc converters<br />
The same result could have been obtained directly from Eq. (8.11a).<br />
<br />
8.3 The buck converter<br />
Consider the task of converting an unregulated dc voltage source, V <br />
,to a<br />
regulated dc voltage source V <br />
V <br />
which supplies power to a load R <br />
.One<br />
simple and efficient way of doing this is to chop the source and generate a unipolar<br />
voltage pulse train with an amplitude V <br />
,a fixed period T <br />
,and a variable width,or<br />
on-time T <br />
,as shown in Fig. 8.6. Such a waveform is known as a pulse-widthmodulated<br />
(PWM) waveform. It is relatively easy to see that the dc component of<br />
the PWM waveform in Fig. 8.6 can be controlled by varying the pulse width, T <br />
.<br />
To make use of this dc component,the high-frequency components must be<br />
filtered out by a nondissipative low-pass filter. A simple converter which can chop<br />
and filter as described above is the buck converter shown in Fig. 8.7.<br />
Figure 8.6<br />
Figure 8.7<br />
The chopper section of the buck converter consists of two switches S and S <br />
which are driven by the complementary switching functions D<br />
(t) and D (t) <br />
1 D (t),respectively. The switching function is a unit pulse train defined:<br />
<br />
D<br />
(t) <br />
1 nT t nT T <br />
(8.16)<br />
0 nT T t (n 1)T <br />
⎫<br />
⎬<br />
⎭
371 8.3 The buck converter<br />
Looking back into the chopper circuit from the terminals of S ,we see an effective<br />
<br />
voltage source V (t) given by:<br />
<br />
V<br />
(t) V D (t) (8.17)<br />
<br />
The dc component of V (t) is given by:<br />
<br />
1<br />
T <br />
<br />
V<br />
(t)dt 1 T<br />
<br />
<br />
<br />
V D (t)dt DV (8.18)<br />
<br />
<br />
in which D is defined as the duty-ratio function,or duty cycle,and is given by:<br />
D 1 T <br />
<br />
D<br />
(t)dt T <br />
(8.19)<br />
T<br />
<br />
<br />
The LC filter following the chopper is the simplest,lossless,low-pass filter that can<br />
extract the dc component of V<br />
(t) and generate a dc output voltage V given by:<br />
<br />
V DV (8.20)<br />
<br />
It is clear from Eq. (8.20) that the dc output voltage can be regulated by varying the<br />
duty cycle, D,so that the duty cycle serves as the control parameter,i.e. α D. It<br />
follows from Eq. (8.20) that the voltage conversion ratio, M <br />
,of the buck converter<br />
is given by:<br />
M <br />
V <br />
V <br />
D (8.21)<br />
In order to determine the steady-state voltages and currents of the buck converter,we<br />
need to study the response of the low-pass LC filter to V (t). The following<br />
<br />
transfer function can be easily verified (see Problem 8.4):<br />
H(s) v (s)<br />
v <br />
(s) 1<br />
1 s<br />
ω <br />
Q s<br />
ω <br />
(8.22)<br />
in which:<br />
ω <br />
1<br />
LC<br />
Q <br />
R<br />
L/C<br />
⎫<br />
⎬<br />
⎭<br />
(8.23a, b)<br />
The magnitude and phase response of H(s) is shown in Fig. 8.8. In order to study<br />
the interaction of V<br />
(t) with H(s),we write V (t) as:<br />
<br />
V<br />
(t) DV V (t) (8.24)
372 PWM switching dc-to-dc converters<br />
in which V (t) is a periodic waveform which contains only the fundamental and<br />
harmonics of V (t). From the magnitude response of H(s),it can be seen that the dc<br />
<br />
component, DV ,of V (t) will pass through and become the dc component of the<br />
<br />
output voltage. It can also be seen from the same figure that if the corner frequency<br />
of the filter, f ,is chosen well below the switching frequency of the converter,<br />
<br />
F 1/T ,then all the harmonics of V<br />
(t) atnF will fall on the 40 dB/dec<br />
<br />
asymptote so that the ac components of V (t) will be attenuated and integrated<br />
<br />
twice. Therefore,the actual output voltage consists of the dc component V DV <br />
and a small periodic waveform, V (t),known as the output ripple voltage:<br />
<br />
V<br />
(t) V V (t); V (t) V (8.25)<br />
<br />
Figure 8.8<br />
Since the output ripple voltage is given by the high-frequency response of H(s) to<br />
V(t),we can approximate H(s) as:<br />
H(s) ω <br />
s<br />
(8.26)<br />
Equation (8.26) corresponds to a double integration so that we have:<br />
V<br />
(t) ω V (t)dt (8.27)<br />
in which V (t),according to Eqs. (8.16),(8.17) and (8.24),is given by:<br />
V (t) <br />
⎫<br />
⎬<br />
⎭<br />
V V nT t nT T <br />
(8.28)<br />
V nT T t (n 1)T <br />
Since V (t) is a constant in each subinterval,the double integration in Eq. (8.27)<br />
yields a parabolic segment in each subinterval as shown in Fig. 8.9. Note that the<br />
ripple voltage, V (t),and V (t) are inverted with respect to each other because all the
373 8.3 The buck converter<br />
frequency components of V (t) are phase shifted by 180° owing to the phase<br />
response of H(s) at high frequencies. Each parabolic segment of the voltage ripple<br />
is given by:<br />
V<br />
(t) V ω (V V ) t 2<br />
V<br />
(t) V ω V t<br />
2<br />
⎫<br />
⎬<br />
⎭<br />
(8.29a, b)<br />
in which the time origin of each segment is taken at its peak. The peak-to-peak<br />
output voltage ripple follows from Eqs. (8.29a, b) which,when normalized with<br />
respect to the output voltage (see Problem 8.5),is given by:<br />
δV <br />
V <br />
V <br />
π<br />
2 (1 D) f <br />
F <br />
<br />
(8.30a)<br />
For a regulating converter,the worse case normalized ripple,δ <br />
,occurs at D <br />
or<br />
M <br />
so that we have:<br />
δ <br />
π<br />
2 (1 M ) f <br />
F <br />
<br />
Hence,the LC filter is designed with a resonant frequency f <br />
given by:<br />
(8.30b)<br />
f <br />
F <br />
π 2δ <br />
1 M <br />
(8.31)<br />
Note that f <br />
is expressed in terms of the design specifications (δ <br />
, M <br />
) and a design<br />
parameter F <br />
which the designer chooses.<br />
Figure 8.9<br />
Example 8.2 A 100-kHz buck converter is to be used in the design of a regulated<br />
converter which operates from an unregulated bus voltage of 28 4 V and
374 PWM switching dc-to-dc converters<br />
delivers an output of 12 V at 2.3 A. The maximum output ripple voltage is specified<br />
to be 150 mV. Determine the range of the duty ratio and f <br />
of the output filter.<br />
According to the given variation in the bus voltage the specified range of the<br />
duty cycle and the conversion is:<br />
M D <br />
V 12<br />
V ῀V 28 4 0.375 ⎫<br />
<br />
⎬⎭<br />
(8.32a, b)<br />
M D <br />
V 12<br />
V ῀V 28 4 0.5 <br />
According to Eq. (8.31),the worse case,or the lowest corner frequency,requirement<br />
is dictated by M <br />
so that we have:<br />
f 1 F <br />
π 2δ 1 1 M <br />
π 2(0.15/12) 0.064 (8.33)<br />
1 0.375<br />
Hence,the corner frequency of the filter must be selected less than or equal to<br />
6.4 kHz to have an output ripple voltage of 150 mV or less. <br />
Determination of the corner frequency of the filter in the example above does<br />
not uniquely determine the inductor and the capacitor. We shall now determine<br />
the current in the inductor and show that its ripple component provides another<br />
design equation for the selection of L and C. The current in the inductor consists of<br />
a dc and a ripple component. The dc component of the inductor current is the<br />
same as the dc component of the output current because the capacitor does not<br />
carry any dc current. Hence,the inductor current can be written as:<br />
I<br />
(t) I I (t) (8.34)<br />
<br />
in which I V /R. <br />
The ripple current in the inductor is determined by integrating the voltage<br />
across it,which is given by:<br />
V<br />
(t) V (t) V (t)<br />
V V (t) V V<br />
<br />
V (t)<br />
(t) (8.35)<br />
<br />
In the last step we have ignored the output ripple voltage because it is much<br />
smaller in comparison with V (t). Since V (t) has a constant value in each subinterval,the<br />
ripple current consists of two linear segments as shown in Fig. 8.10. The<br />
first segment of the inductor current is given by:<br />
I<br />
(t) L 1 (V V )dt I V V t (8.36)<br />
L
375 8.3 The buck converter<br />
in which the time origin has been taken at I <br />
. For the second segment we have:<br />
I<br />
(t) L 1 (V )dt I V <br />
L t (8.37)<br />
<br />
in which the time origin has been taken at I . Since the ripple current is linear,the<br />
<br />
average value of the inductor current is midway between I and I and the<br />
<br />
peak-to-peak ripple current can be determined from either segment. Hence,letting<br />
t DT in Eq. (8.37),we obtain:<br />
<br />
I <br />
I <br />
V DT <br />
L<br />
(8.38)<br />
It follows that the peak-to-peak ripple current is given by:<br />
I<br />
<br />
I <br />
I <br />
V DT <br />
L<br />
(8.39)<br />
Figure 8.10<br />
It can be seen from Eq. (8.39) that for a buck converter with a regulated output<br />
voltage,the maximum ripple current occurs when D is a maximum,which occurs<br />
when the input voltage is a maximum. When the ripple current is normalized with<br />
respect to the average inductor current, I <br />
I <br />
,we obtain:<br />
δI I V DT <br />
I I L<br />
RDT <br />
L<br />
<br />
(8.40)<br />
The amount of ripple current determines the peak current in the inductor and<br />
the switches S <br />
and S <br />
. This peak is given by:<br />
I <br />
I <br />
I δI <br />
2<br />
(8.41)<br />
The maximum value of the peak current in Eq. (8.41) occurs at the specified
376 PWM switching dc-to-dc converters<br />
maximum load current so that we have:<br />
I<br />
<br />
I<br />
<br />
(1 δ <br />
) (8.42)<br />
in which δ <br />
is the worst case value of δI <br />
/2 and is given by:<br />
δ <br />
V (1 M )T <br />
2LI<br />
<br />
(8.43)<br />
It follows that,for a design choice of δ <br />
, L is determined uniquely according to:<br />
L 1<br />
F <br />
δ <br />
V <br />
(1 M <br />
)<br />
2I<br />
<br />
(8.44a)<br />
The value of C follows from the resonant frequency given in Eq. (8.31):<br />
C δ I<br />
<br />
F 4V δ <br />
(8.44b)<br />
Note that Eqs. (8.44a, b),just like Eq. (8.31),express L and C in terms of the design<br />
specifications (V <br />
, M <br />
, I<br />
<br />
, δ <br />
) and the design parameters (F <br />
, δ <br />
).<br />
The maximum peak current is an important design consideration and is expressed<br />
in terms of δ <br />
. For example,it can be seen that designing with a larger<br />
value of δ <br />
results in a smaller inductor,a larger capacitor and a larger peak<br />
current. There are many design tradeoff considerations which we will not discuss<br />
here and which result in practical values of δ <br />
in the range 0.1—1.0.<br />
Although not necessary,the design equations of the filter elements can be<br />
expressed in terms of the resonant frequency f <br />
given by Eq. (8.31) and the Q-factor,<br />
which we shall determine next. Hence,after performing the necessary substitutions,we<br />
can rewrite Eq. (8.43) as:<br />
δ <br />
π(1 M <br />
)Q <br />
f <br />
F <br />
(8.45)<br />
in which Q <br />
is given by:<br />
Q <br />
(V /I )<br />
ω <br />
L<br />
ω <br />
C(V <br />
/I<br />
<br />
)<br />
⎫<br />
⎬<br />
⎭<br />
(8.46a, b)<br />
If the load is a simple resistor R,then V <br />
/I <br />
R and Q <br />
is the same as the Q-factor<br />
of the LC filter. If the load,on the other hand,is a current source,another<br />
regulated converter,or a battery as in Example 8.1,then Q <br />
and the actual Q-factor<br />
are different. Performing the necessary substitutions for Q <br />
,we obtain an alternate<br />
set of design equations for the LC filter:
377 8.3 The buck converter<br />
⎫<br />
f F π 2δ <br />
1 M (8.47a, b)<br />
δ<br />
⎬<br />
Q <br />
2δ (1 M ) ⎭<br />
<br />
Example 8.3 If the maximum peak current in the buck converter of Example 8.2<br />
is to be 3 A,determine the values of L and C.<br />
The value of δ <br />
,given by Eq. (8.42),is computed first:<br />
δ I 1 3 1 0.3 (8.48)<br />
I 2.3<br />
<br />
Next we compute Q <br />
given by Eq. (8.47):<br />
0.3<br />
Q <br />
2.4 (8.49)<br />
2(1 0.375)(0.15/12)<br />
The values of L and C are obtained from Eqs. (8.46a, b):<br />
L (12/2.3)<br />
(2π6400)2.4 54 μH ⎫<br />
⎬<br />
(8.50a, b)<br />
2.4<br />
C<br />
(2π6400)(12/2.3) 11.14 μF ⎭<br />
These are exact values,which may or may not be available. Typically,the tolerances<br />
on power inductors and large capacitors can be of the order 5—10%. Hence,<br />
when the actual components are chosen,the nearest available values are selected<br />
such that their worst case values are greater or equal to those determined<br />
above.<br />
<br />
The currents and voltages of the switches S <br />
and S <br />
are examined next. These<br />
are shown in Fig. 8.11 and can be verified easily. Switch S <br />
is called the active<br />
switch and it carries the inductor current during DT <br />
. Switch S <br />
is called the passive<br />
switch and it carries the inductive current during DT <br />
. Two practical realizations<br />
of the switches are shown in Figs. 8.12a and b. The difference between these two<br />
realizations is in their modes of operation at low-output currents as shown in Fig.<br />
8.13. When a MOSFET is turned on,it can conduct in both directions whereas a<br />
diode can conduct only in one direction. Hence,in Fig. 8.12a,when Q <br />
is turned<br />
off,the current in the inductor turns on the diode to initiate the DT <br />
subinterval.<br />
The diode will conduct as long as the inductor current is positive,which is<br />
expressed quantitatively:<br />
I<br />
<br />
2 I <br />
(8.51)
378 PWM switching dc-to-dc converters<br />
Figure 8.11<br />
If this condition is not satisfied,then the diode will stop conducting before the end<br />
of DT <br />
and a third interval of operation will occur during which both switches will<br />
be in the off state and the output capacitor will discharge into the load. This is<br />
called the discontinuous conduction mode (DCM),which we shall not discuss<br />
here. In DCM,the conversion ratio is no longer the same as in the continuous<br />
conduction mode (CCM) and depends on the output current and the switching<br />
frequency in addition to the duty-cycle D. The current waveforms in DCM are<br />
shown in Fig. 8.13a.<br />
When a MOSFET is used instead of a diode,as shown in Fig. 8.12b,the<br />
converter is capable of operating in CCM down to zero load current,because<br />
when a MOSFET is turned on it can conduct in both directions allowing the<br />
current in the inductor to reverse direction. The currents in both MOSFETs at<br />
low-output currents,when the condition in Eq. (8.51) is not satisfied,are shown in<br />
Fig. 8.13b.<br />
Figure 8.12<br />
For the buck converter discussed above,the input current is pulsating and is the<br />
same as the current in S <br />
. The input current of an ideal converter,however,must<br />
be smooth and only follow the variations in the output current as required by the
379 8.3 The buck converter<br />
equivalent circuit model of an ideal converter shown in Fig. 8.3. Hence,another<br />
filter must be added on the input side to reduce the input ripple current down to an<br />
acceptable level. It is interesting to point out that the end-user of a converter<br />
usually does not care how much ripple current the converter generates on the<br />
input power bus. But,high frequency ripple currents on power lines,called<br />
conduction emissions,create serious interference problems for other users. Hence,<br />
for commercial applications,conducted emissions are specified and enforced by<br />
regulatory agencies such as the FCC in the USA,the CSA in Canada and the VDE<br />
in Germany. (For military and aerospace applications,conducted emissions must<br />
Figure 8.13<br />
comply with US Military Standards 461.) The simplest type of input filter,with<br />
series or shunt damping,is shown in Figs. 8.14a and b in which R L and R C <br />
are the series and shunt damping networks,respectively. The purpose of the<br />
damping networks is to prevent oscillations or ringing,and these will be discussed<br />
shortly.<br />
The input ripple current is calculated by determining the transfer function H (s) <br />
shown in Fig. 8.15,in which the current source I (s) is the pulsating current drawn<br />
<br />
by the converter. In this figure,we have assumed that the ripple voltage across C is <br />
small in comparison with the dc voltage across it so that the shape of I (t) is<br />
<br />
essentially the same with or without the input filter. In determining this transfer<br />
function,the effect of the damping network can be ignored so that we have from<br />
Fig. 8.15:<br />
I <br />
(s)<br />
I <br />
(s) 1<br />
1 s/ω <br />
(8.52)<br />
in which:<br />
ω <br />
1<br />
L <br />
C <br />
(8.53)
380 PWM switching dc-to-dc converters<br />
Figure 8.14<br />
According to Eq. (8.52),the dc component of I (t) will pass through the input<br />
<br />
circuit,while its ac component,I (t),will be attenuated,if its frequency spectrum<br />
<br />
falls above ω . Hence,as in the design of the output filter,we choose the corner<br />
<br />
frequency of the input filter to be much lower than the switching frequency so that<br />
I (t) will be attenuated and integrated twice. Hence,the input ripple current is<br />
<br />
given by:<br />
I (s) <br />
I (s) ω <br />
s I (t) ω <br />
I (t)dt (8.54)<br />
<br />
The exact calculation of the peak-to-peak ripple from the double integral in Eq.<br />
(8.54) is somewhat tedious because of the cubic term that arises from the current<br />
Figure 8.15<br />
slope during DT <br />
. This calculation can be simplified if the trapezoidal pulse is<br />
replaced with a rectangular pulse of the same area and duration. The height of this
381 8.3 The buck converter<br />
equivalent rectangular pulse,of course,is equal to the output current. This<br />
simplification is justified because the maximum input ripple current occurs at<br />
maximum load current; which,in most designs,corresponds to an I (t) that is close<br />
<br />
to rectangular. The resulting expression of the peak-to-peak input ripple current is<br />
given (see Problem 8.6) by:<br />
I<br />
<br />
I <br />
πDD<br />
2 f <br />
F <br />
(8.55)<br />
It is clear from Eq. (8.55) that the worst case value of the input ripple current occurs<br />
at maximum load. The maximum value of the term DD,however,depends on the<br />
specified range of D <br />
D D <br />
. Hence,we have from Eq. (8.55):<br />
I<br />
<br />
I<br />
<br />
π(max[DD])<br />
2 f <br />
F <br />
(8.56)<br />
in which<br />
max[DD] <br />
⎫<br />
⎬<br />
⎭<br />
D <br />
(1 D <br />
); D <br />
1/2<br />
1/4; D <br />
1/2D <br />
1/2<br />
D <br />
(1 D <br />
); D <br />
1/2<br />
(8.57)<br />
With these design equations we can only determine the resonant frequency of the<br />
input filter but not C <br />
and L <br />
individually. We could derive another design<br />
equation in terms of the voltage ripple on the input capacitor, C <br />
,so that C <br />
and L <br />
could be determined uniquely,but the input voltage ripple is hardly a design<br />
consideration. Hence,typically,once f <br />
is determined, L <br />
and C <br />
are usually<br />
determined such that their combined volume is as small as possible.<br />
Example 8.4 Determine the resonant frequency of the input filter for the buck<br />
converter in Example 8.3 so that I 10 mA. Since D 0.5,we have from<br />
<br />
Eqs. (8.56) and (8.57);<br />
0.01 2.3 π<br />
2<br />
1<br />
4 f <br />
F <br />
f 0.059 (8.58)<br />
F <br />
Hence,the input filter is designated with f <br />
5.9 kHz.<br />
Since the input impedance of a regulating converter is negative,the addition of<br />
an LC input filter can easily result in an instability because of the negative<br />
damping effect. Hence,it is always a good idea to damp the input filter of a<br />
regulating converter by adding either a series or shunt damping branch as shown<br />
in Figs. 8.14a and b. The design of the damping network can be optimized if the<br />
frequency response of the input impedance of the converter is known. We shall be<br />
brief and present a much simpler technique that assumes that the input impedance
382 PWM switching dc-to-dc converters<br />
is real and negative. In Fig. 8.14a,if C <br />
is chosen to be much larger than C <br />
,then at<br />
resonance the capacitive reactance of C <br />
will be much higher than that of C <br />
so<br />
that the damping resistor, R <br />
,will appear effectively in parallel with the negative<br />
resistance of the input converter resulting in a Q given by:<br />
Q <br />
R R <br />
L <br />
/C <br />
(8.59)<br />
in which:<br />
R <br />
V <br />
I <br />
1<br />
M<br />
(8.60)<br />
Typically, R <br />
is chosen such that Q <br />
1. Note that Q <br />
cannot be chosen to be<br />
very small simply because as R <br />
gets smaller,then C <br />
begins to appear effectively<br />
in parallel with C <br />
,which in turn gives rise to a new,lower,undamped resonance<br />
formed by C <br />
C <br />
and L <br />
(see Problem 8.7).<br />
Example 8.5 For the buck converter discussed in the previous examples,we<br />
select the input filter inductor to be 86 μH. With the resonant frequency determined<br />
to be f 5.9 kHz,the value of the input filter capacitor is given by:<br />
<br />
1<br />
C <br />
8.46 μF (8.61)<br />
(2π5900)86 10<br />
The smallest value of the negative input resistance of the converter occurs at M <br />
,<br />
so that we have:<br />
R 12 V 1<br />
20.9 Ω (8.62)<br />
2.3 A (0.5)<br />
The value of the damping resistor for the shunt branch is determined from Eq.<br />
(8.59) in which we select Q <br />
1. This yields:<br />
1 R (20.9)<br />
86/8.46 R 2.8 Ω (8.63)<br />
<br />
The value of C <br />
is chosen to be about ten times that of C <br />
:<br />
C <br />
10C <br />
84 μF (8.64)<br />
An OrCAD/Pspice simulation of the actual filter and its frequency response is<br />
shown in Figs. 8.16a and b. The response is seen to be properly damped so that any<br />
transient disturbance in the input voltage will not generate any ringing in the input<br />
filter.<br />
A simulation of the actual input ripple current is shown in Figs 8.17a and b in
383 8.3 The buck converter<br />
Li<br />
86uH<br />
Vin<br />
Rid<br />
2.8<br />
Cid<br />
84.6uF<br />
Ci<br />
8.46uF<br />
Rin<br />
-20.9<br />
0<br />
Figure 8.16<br />
Figure 8.17<br />
which we see that the peak-to-peak ripple current is 10.11 mA,which is very close<br />
to the specified design value of 10 mA.<br />
In this example we have shown that the approximate design equations for the<br />
damping network and for the determination of the input ripple current yield very<br />
accurate results when compared with actual simulations.<br />
<br />
For the series damping branch in Fig. 8.14b,if L <br />
is chosen much larger than L <br />
,
384 PWM switching dc-to-dc converters<br />
Figure 8.17 (cont.)<br />
then,at resonance,R <br />
will effectively appear in series with L <br />
and will counteract<br />
the negative input resistance of the converter. In this case (see Problem 8.8) the<br />
overall Q is given by:<br />
Q <br />
L /C <br />
R <br />
<br />
R <br />
(8.65)<br />
L /C <br />
As in the case of the shunt damping, R <br />
is chosen such that Q <br />
1. Observe that<br />
in this case too it is not possible to design with a much lower Q <br />
by making R <br />
very large because that would effectively create a new,lower,undamped resonance<br />
formed by L <br />
and C <br />
.<br />
Example 8.6 In this example we shall design a series damping branch for the<br />
input filter of the buck converter in Example 8.5. In this case,we chose L about <br />
ten times larger than L so that we have:<br />
<br />
L <br />
10L <br />
860 μH (8.66)<br />
The value of the damping resistor is determined from Eq. (8.65):<br />
1 86/8.46<br />
R <br />
20.9<br />
86/8.46 R 3.67 Ω (8.67)<br />
<br />
An OrCAD/Pspice simulation of this circuit and its frequency response are<br />
shown in Figs. 8.18a and b. In comparison to the response of the shunt damping<br />
network,the peaking seems to be a little higher because this transfer function has a<br />
zero at about 617 Hz and a pole at about 824 Hz,whereas the shunt network has
385 8.3 The buck converter<br />
Li<br />
86uH<br />
Rid<br />
3.67<br />
Lid<br />
860uH<br />
Vin<br />
Ci<br />
8.46uF<br />
Rin<br />
-20.9<br />
0<br />
Figure 8.18<br />
essentially a pole-zero cancellation at about 676 Hz (see Problems 8.7 and 8.8).<br />
A simulation run of the input ripple current yields a peak-to-peak ripple current<br />
of 11.14 mA,which is about 10% higher than the parallel-damped filter in the<br />
previous example. The reason for this slight increase is that,at the switching<br />
frequency,the pulsating current is divided between C and L L instead of C and<br />
<br />
L . (Here we have ignored the resistance of R with respect to the reactance of L at<br />
<br />
the switching frequency.) Since L 10L ,the reactance of their parallel combination<br />
is about 10% smaller than the reactance of L ,which is what accounts for the<br />
<br />
<br />
10% reduction in the ripple attenuation. Since L carries the dc input current,it<br />
<br />
may not be as economical as the shunt damping element for high input currents.<br />
The size and cost of an inductor increases with its inductance and its current<br />
handling capacity.
386 PWM switching dc-to-dc converters<br />
8.4 The boost converter<br />
By rearranging the filter elements around the switches in the buck converter we<br />
obtain different converters with different conversion ratio characteristics. All of<br />
these converters operate on the same basic principle of commutating the inductor<br />
current between the input and output circuits. When the elements of the buck<br />
converter are rearranged as shown in Fig. 8.19,we obtain the boost converter. The<br />
voltage and current waveforms of this converter are shown in Fig. 8.20. In this<br />
Figure 8.19<br />
circuit when S <br />
is turned on during T <br />
,while S <br />
is turned off,the inductor charges<br />
linearly from I <br />
to I <br />
and the output filter capacitor discharges into the load with<br />
a time constant much longer than T <br />
. When S <br />
is turned off and S <br />
is turned on<br />
during T <br />
,the current in the inductor discharges linearly from I <br />
to I <br />
into R <br />
and C. Since the capacitive reactance of C at the switching frequency is much lower<br />
than the load resistance,the ac component of the pulsating current in S <br />
is almost<br />
entirely absorbed by C while the dc component is absorbed by the load R <br />
. From<br />
the current waveforms in Fig. 8.20 we obtain the current conversion ratio:<br />
I <br />
DI <br />
M <br />
I <br />
I <br />
D (8.68)<br />
The voltage conversion ratio for the ideal boost converter follows immediately and<br />
is given by:<br />
M <br />
1 D 1 (8.69)<br />
Hence,in contrast to the buck converter,the output voltage of the boost converter<br />
is always larger than its input voltage.<br />
During the on-time,the inductor current charges up linearly with a slope V <br />
/L<br />
so that the peak-to-peak ripple current shown in Fig. 8.21 is given by:
387 8.4 The boost converter<br />
Figure 8.20<br />
I V <br />
L DT V DD<br />
F L <br />
(8.70)<br />
When I<br />
<br />
is normalized with respect to the average inductor current, I <br />
I <br />
,we<br />
obtain:<br />
δI I V DD<br />
<br />
I I F L V DD<br />
<br />
I F L<br />
<br />
(8.71)<br />
The peak value of the inductor current is given by:<br />
I <br />
I <br />
I <br />
2<br />
(8.72)<br />
Substituting Eqs. (8.68) and (8.70) in Eq. (8.72) we obtain:<br />
I <br />
V <br />
2LF <br />
DD I <br />
D<br />
(8.73)<br />
Hence,for a regulating converter in which V <br />
is a constant, I <br />
depends on I <br />
and D.<br />
In order to design the inductor,we need to know the operating conditions for<br />
which I <br />
is a maximum. Clearly,one of the operating conditions,according to Eq.<br />
Figure 8.21
388 PWM switching dc-to-dc converters<br />
(8.73),is that the load current be at its maximum value. To determine the value of<br />
D which causes I <br />
to be a maximum,we set its derivative with respect to D to zero<br />
and obtain:<br />
I <br />
D 0 (1 2D) 2LF I<br />
<br />
V D 0 (8.74)<br />
<br />
For typical designs,the average inductor current at maximum load is always larger<br />
than half the ripple current through it,so that according to Eqs. (8.72) and (8.73)<br />
we have:<br />
I<br />
V DD I 2LF<br />
D (8.75)<br />
D 2LF D V <br />
It follows that,for typical designs,there is no value of D which satisfies Eq. (8.74),<br />
and the maximum value of I <br />
occurs at D <br />
. Hence,the worst case value of the<br />
design parameter for the inductor,according to Eq. (8.71),is given by:<br />
δ <br />
δI <br />
2 <br />
V <br />
2LF <br />
I<br />
<br />
D <br />
(1 D <br />
) (8.76)<br />
Practical values of δ <br />
range from 0.1 to 1.0. Expressing the duty cycle in terms of<br />
the conversion ratio in Eq. (8.76),we obtain the design equation for the inductor:<br />
L V M 1 1<br />
(8.77)<br />
2I M δ F<br />
<br />
The output voltage ripple can be easily determined from the on-time when the<br />
capacitor is discharging into the load as shown in Fig. 8.22. Since the output time<br />
constant is much shorter than the on-time,we can assume the capacitor discharges<br />
linearly and write:<br />
C ῀v<br />
῀t C V <br />
DT <br />
I <br />
(8.78)<br />
The normalized output voltage ripple follows:<br />
V<br />
I DT<br />
<br />
V V C <br />
(8.79)<br />
Clearly,the capacitor now must be chosen in such a way as to meet the specified<br />
output ripple voltage under worst case conditions which correspond to maximum<br />
load current and maximum duty cycle. Hence we have:<br />
δ V <br />
V <br />
I D<br />
<br />
V F C<br />
<br />
(8.80)
389 8.4 The boost converter<br />
Figure 8.22<br />
Hence the design equation for the capacitor is given by:<br />
C I M 1 1<br />
(8.81)<br />
V M δ F <br />
Equation (8.79) is not very accurate at very light load currents as the current in the<br />
switches (assuming MOSFETs are used for both S and S ) begins to reverse. At<br />
<br />
zero load current Eq. (8.79) suggests that the output ripple voltage is zero,which<br />
certainly is not accurate (see Problem 8.9).<br />
Example 8.7 An OrCAD/Pspice simulation of a practical boost converter is<br />
shown in Fig. 8.23. The converter operates at 100 kHz and has a duty cycle of<br />
D 7/12. The inductor current and the output ripple voltage are shown in Fig.<br />
8.24 at I 0 A,1 A. The ideal output voltage is given by:<br />
<br />
V 5 12 V (8.82)<br />
1 7/12<br />
Since the MOSFETs have a finite resistance when turned on,the output voltage is<br />
slightly less than 12 V at I <br />
1A.<br />
According to Eq. (8.79),the output ripple voltage at full load is given by:<br />
V<br />
<br />
1<br />
(7/12)(10 10)<br />
117 mV (8.83)<br />
50 10<br />
which is in exact agreement with the ripple in Fig. 8.24a. At zero load current,we<br />
need to use the result derived in Problem 8.9:<br />
V<br />
<br />
V <br />
DDT <br />
8LC<br />
(1 7/12)(7/12)(10 10)<br />
12<br />
8(10 10)(50 10)<br />
(8.84)<br />
30 mV
390 PWM switching dc-to-dc converters<br />
L<br />
10uH<br />
M2<br />
IRF045<br />
PARAMETERS:<br />
R_load = 12<br />
5V<br />
Vin<br />
M1<br />
IRF045<br />
V_Dp<br />
C1<br />
50uF<br />
RL<br />
{R_load}<br />
V_D<br />
0<br />
Figure 8.23<br />
Figure 8.24
391 8.4 The boost converter<br />
which is in exact agreement with the ripple in Fig. 8.24a.<br />
<br />
Example 8.8 If a feedback loop is added to the boost converter in the previous<br />
example to maintain the output voltage at 12 V as the input voltage varies from<br />
5 V to 10 V,then the maximum value of the peak current would occur at D and <br />
I 1 A (assuming the specified maximum load current is 1 A). The maximum<br />
<br />
and minimum values of D are given by:<br />
D 1 V 1 5<br />
V 12 0.5833 ⎫<br />
<br />
⎬<br />
(8.85a, b)<br />
D 1 V 1 10<br />
V 12 0.1666 <br />
⎭<br />
According to Eq. (8.73),the maximum peak current is given by:<br />
I V D (1 D ) <br />
2LF <br />
I <br />
12(7/12)(1 7/12)<br />
<br />
2(10 10)(100 10) 1<br />
1 7/12<br />
1 D <br />
(8.86)<br />
This is in agreement with the waveforms shown in Fig. 8.25 in which the<br />
inductor current is shown at D <br />
and D <br />
.<br />
Figure 8.25<br />
If this were an unconventional design,then the maximum specified load current<br />
would have been fairly low,say 60 mA. Also,if the converter had to operate from<br />
an input voltage range 3.5 V V <br />
10 V,then the range of D would have been
392 PWM switching dc-to-dc converters<br />
given by:<br />
0.1666 D 0.708 (8.87)<br />
In this case,Eq. (8.74) would yield the value of D at which the maximum value of I <br />
would occur:<br />
(1 2D) 2LF <br />
V <br />
I<br />
<br />
(1 D) 0 (8.88)<br />
A numerical solution of Eq. (8.88) yields D 0.483. The peak inductor current at<br />
D 0.483 is equal to 1.614 A,whereas at D <br />
0.708 it is equal to 1.445 A,as can<br />
be seen in Fig. 8.26 in which the inductor currents at D <br />
, D <br />
and D 0.483 are<br />
shown.<br />
Figure 8.26<br />
The purpose of this exercise was to demonstrate the use of Eq. (8.74) even<br />
though the difference in the peak currents between the two operating points is not<br />
significant.<br />
<br />
8.5 The buck-boost converter<br />
The converter shown in Fig. 8.27 is called the buck-boost because it is capable of<br />
either stepping up or down the input voltage. When S <br />
is closed and S <br />
is opened<br />
during the on-time,the inductor charges up linearly from I <br />
to I <br />
with a slope<br />
V <br />
/L,while the output capacitor discharges into the load with a slope I <br />
/C. When<br />
S <br />
is opened and S <br />
is closed during T <br />
,the inductor discharges into the output<br />
circuit with a slope V <br />
/L.
393 8.5 The buck-boost converter<br />
Figure 8.27<br />
The voltages and currents of the switches are shown in Fig. 8.28 whence we can<br />
immediately determine:<br />
I <br />
DI <br />
(8.89a, b)<br />
I <br />
DI <br />
⎫<br />
⎬⎭<br />
Figure 8.28<br />
Hence the current conversion ratio is given by:<br />
M <br />
I <br />
I <br />
D<br />
D<br />
(8.90)<br />
The ideal voltage conversion ratio follows immediately:<br />
M <br />
1 M <br />
D D<br />
(8.91)<br />
The output ripple voltage is determined in the same manner as the output ripple<br />
voltage of the boost converter and is given by Eq. (8.79). Substituting Eq. (8.91) in<br />
(8.79),we obtain:
394 PWM switching dc-to-dc converters<br />
V<br />
<br />
I 1 M<br />
<br />
(8.92)<br />
V V F C 1 M <br />
As in the case of the boost converter,this expression is not accurate at very light<br />
load currents (see Problem 8.10).<br />
The output filter capacitor must be chosen to meet the output ripple voltage<br />
specification, δ <br />
,under worst case conditions which,for a converter with a<br />
regulated output voltage,occurs when the load current and the conversion ratio<br />
are at a maximum. Hence,we have from Eq. (8.92):<br />
δ V <br />
V <br />
I 1 M<br />
<br />
(8.93)<br />
V F C 1 M <br />
The peak-to-peak ripple current in the inductor is determined from the on-time<br />
and is given by:<br />
I<br />
<br />
V <br />
DT <br />
L<br />
V <br />
F <br />
L<br />
1<br />
M <br />
1<br />
⎫<br />
⎬<br />
⎭<br />
(8.94a, b)<br />
The average inductor current can be seen to be given by the sum of the average<br />
input and output currents so that when Eq. (8.94) is normalized with respect to the<br />
average inductor current,we obtain:<br />
δI I V 1 1<br />
<br />
I I F L (M 1)<br />
<br />
(8.95)<br />
The peak value of the inductor current is given by:<br />
I <br />
I <br />
I <br />
2<br />
I <br />
(1 M <br />
) V <br />
2F <br />
L<br />
1<br />
M <br />
1<br />
⎫<br />
⎬<br />
⎭<br />
(8.96a, b)<br />
Clearly,one of the operating conditions which maximizes the peak current is the<br />
maximum load current. The other condition is the duty cycle,which can be<br />
determined by setting the derivative of I <br />
with respect to D to zero. This yields:<br />
I <br />
D 0 1 D 2F L<br />
V <br />
/I<br />
<br />
(8.97)<br />
For most typical designs,no value of D satisfies this condition so that the<br />
maximum value of the peak occurs at M<br />
<br />
. Hence we have:
395 8.5 The buck-boost converter<br />
I I (1 M ) V 1<br />
<br />
2F L M 1<br />
<br />
(8.98)<br />
It follows that the worst case design parameter for the inductor is given by:<br />
δ δI <br />
2 V 1 1<br />
<br />
I 2F L (M 1)<br />
<br />
(8.99)<br />
Typical values of δ <br />
range from 0.1 to 1.0. Hence,the design equations for the<br />
values of L and C of the buck-boost converter are given by:<br />
L V <br />
I<br />
<br />
1<br />
2F <br />
δ <br />
1<br />
(M<br />
<br />
1)<br />
C I <br />
V <br />
1<br />
F <br />
δ <br />
⎫<br />
M ⎬⎭<br />
<br />
1 M<br />
<br />
(8.100a, b)<br />
The input current of the buck-boost converter in Fig. 8.27 is pulsating and must<br />
be filtered as shown in Fig. 8.29. The design procedure of the input filter and its<br />
damping elements is the same as that of the buck converter.<br />
Figure 8.29<br />
Example 8.9 The buck-boost converter in Fig. 8.30 generates a 12-V output<br />
from a 5-V source. The load current varies from 0 to 1 A. The output ripple<br />
voltage and the inductor current at three different load currents are shown in Figs.<br />
8.31a and b below.<br />
The peak-to-peak ripple voltage according to Eq. (8.92) is given by:<br />
1 M<br />
V I <br />
F C 1 M <br />
1<br />
I <br />
(100 10)(50 10)<br />
12/5<br />
1 12/5<br />
(8.101)<br />
0.141I <br />
At I <br />
1 A,the peak-to-peak ripple voltage is computed to be 141 mV,which is<br />
very close to the observed value of 143 mV in Fig. 8.31a.AtI <br />
0.5 A,we compute
396 PWM switching dc-to-dc converters<br />
M1<br />
IRF045<br />
M2<br />
IRF045<br />
PARAMETERS:<br />
R_load = 12<br />
V_D<br />
V_Dp<br />
5V<br />
Vin<br />
L<br />
10uH<br />
C1<br />
50uF<br />
RL<br />
{R_load}<br />
0<br />
Figure 8.30<br />
Figure 8.31<br />
V<br />
<br />
70 mV,while the observed value is 76 mV. At no load current,we can no<br />
longer use Eq. (8.92) and we must use Eq. (8.278b),see Problem 8.10,instead. This<br />
yields:<br />
V V T<br />
<br />
8LC<br />
<br />
1 M
397 8.6 The Cuk converter<br />
12 10 10<br />
<br />
8(10 10)(50 10)1 12/5 (8.102)<br />
26 mV<br />
which is in close agreement with the 25 mV seen in Fig. 8.31a.<br />
Note that the output voltage in Fig. 8.31a changes slightly as a function of the<br />
load current because the converter is not regulated and the MOSFETs have a<br />
resistance of 15 mΩ when turned on with an 8-V gate-drive signal.<br />
<br />
8.6 The Cuk converter<br />
This converter,named after its inventor Slobodan Cuk — (pronounced chook),is<br />
shown in Fig. 8.32. The input loop,consisting of V <br />
, L <br />
and S <br />
,looks like a boost<br />
converter while its output loop,consisting of S <br />
, L <br />
and V <br />
,looks like a buck<br />
converter. The switching voltage and current waveforms are shown in Fig. 8.33.<br />
Since the dc current in the capacitor C <br />
must be zero,we have:<br />
I <br />
D I <br />
D (8.103)<br />
It follows that the current conversion ratio is given by:<br />
M D<br />
D<br />
The ideal voltage conversion ratio follows:<br />
M D D<br />
(8.104)<br />
(8.105)<br />
The output voltage,as in the case of the buck-boost converter,is inverted with<br />
respect to the input. An isolated output can be easily obtained by introducing a<br />
transformer between S <br />
and S <br />
(see Problem 8.11).<br />
Figure 8.32
398 PWM switching dc-to-dc converters<br />
Since the dc voltage across each of L <br />
and L <br />
is zero,as we go around the outer<br />
loop containing V <br />
, V <br />
, L <br />
, L <br />
and C <br />
,we find that the dc voltage across C <br />
is equal<br />
to V <br />
V <br />
. It follows that the voltage waveforms across L <br />
and L <br />
,excluding the<br />
ripple component of the voltages across C and C <br />
,are essentially identical,as<br />
shown in Fig. 8.33. The peak-to-peak ripple current in L <br />
and L <br />
can be determined<br />
from the on-time, DT <br />
:<br />
I<br />
<br />
V <br />
DT <br />
L <br />
; i 1,2<br />
V <br />
F <br />
L <br />
1<br />
M <br />
1<br />
⎫<br />
⎬<br />
⎭<br />
(8.106a, b)<br />
An important feature of this converter is that L <br />
and L <br />
can be coupled as shown<br />
in Fig. 8.34 and the ripple current in either inductor can essentially be reduced to<br />
zero by adjusting the coupling coefficient. This can be shown by writing the<br />
equations for v <br />
(t) and v <br />
(t) in Fig. 8.34:<br />
Figure 8.33
399 8.6 The Cuk converter<br />
v <br />
(t) L <br />
di <br />
dt M di <br />
dt<br />
di<br />
v (t) L <br />
dt M di <br />
dt<br />
⎫<br />
⎬<br />
⎭<br />
(8.107a, b)<br />
in which M is the mutual inductance between the windings. In the Cuk converter,<br />
if we ignore the ripple voltages on C <br />
and C,then v <br />
and v <br />
are identical so that we<br />
have from Eq. (8.107):<br />
(L <br />
M) di <br />
dt (L M) di <br />
dt 0 (8.108)<br />
We can deduce from this equation that:<br />
L <br />
M 0 di <br />
dt 0 (8.109a, b)<br />
L <br />
M 0 di <br />
dt 0 ⎫<br />
⎬⎭<br />
Figure 8.34<br />
The disappearance of the derivative of the current implies that the current ripple is<br />
reduced to zero. Hence,if the mutual inductance is set according to Eq. (8.109a),<br />
then the ripple current in L <br />
is reduced to zero. This can be expressed in terms of<br />
the coupling coefficient:<br />
L <br />
M 0 L <br />
kL <br />
L <br />
0 k L <br />
L <br />
1 (8.110)<br />
This result states that if we want to null the ripple current in L <br />
,we must make L <br />
smaller than L <br />
so that we can adjust k to be equal to L <br />
/L <br />
. The coupling<br />
coefficient can be set by adjusting the air gap between the two cores. Similarly,we<br />
see from Eq. (8.109) that the ripple current in L <br />
can be reduced to zero if we set
400 PWM switching dc-to-dc converters<br />
k L <br />
/L <br />
,in which case L <br />
has to be made smaller than L <br />
.<br />
In an isolated Cuk converter, it is possible to reduce the ripple currents in both<br />
inductors to zero by coupling them to the isolation transformer. In reality,the<br />
ripple current is not exactly reduced to zero but is highly reduced. The reason for<br />
this is that the voltage across the inductors are not exactly identical because of the<br />
ripple voltage across the capacitors.<br />
8.7 The PWM switch and its invariant terminal characteristics<br />
The active and passive switches in the four converters discussed earlier can be<br />
lumped together in a single-pole—double-throw switch called the PWM switch, as<br />
shown in Fig. 8.35. The terminals designations a, p and c refer to active, passive and<br />
common,respectively. The common terminal is designated as such simply because<br />
it is common to both switches. All of the four converters discussed earlier are<br />
redrawn in Fig. 8.36 with the PWM switch identified as a three-terminal switching<br />
device. The important thing to see in this figure is that all the elements outside the<br />
PWM switch are linear passive elements which provide filtering,whereas the<br />
PWM switch is the only nonlinear element which performs the dc-to-dc conversion<br />
process. We shall capitalize on this point and show that the conversion<br />
process in the PWM switch is independent of the particular converter in which it<br />
occurs and can be described by a set of invariant equations. This invariance will<br />
lead to a very simple model of the PWM switch which can be used towards the<br />
determination of the dynamics of any (two switched-state) PWM converter.<br />
Figure 8.35<br />
We begin with a qualitative study of the invariance of the terminal voltages and<br />
currents of the PWM switch. The active terminal current is the current in the<br />
active switch S <br />
which has the invariant shape shown in Fig. 8.37a. By invariance<br />
we simply mean that one cannot tell which converter the active switch is in by<br />
looking at its current waveform. The common terminal current is the same as the<br />
total switched inductive current in the converter and has the invariant shape shown<br />
in Fig. 8.37b. For example in the Cuk converter,the current in the common<br />
terminal is the sum of the currents in the two switched inductors L <br />
and L <br />
. The<br />
inductor in the input filter of a buck converter is an example of an inductor which is
401 8.7 The PWM switch: invariant terminal characteristics<br />
Figure 8.36<br />
not switched. Hence,in the buck converter with an input filter,the common<br />
terminal current is the same as the current in the output filter inductor only and<br />
not the sum of the currents in the input and output filter inductors. Next we<br />
examine the port voltages of the PWM switch. Ignoring ripple voltages,the<br />
voltage across port ap in all the converters is a dc voltage while the voltage across<br />
port cp is a pulsating voltage,as shown in Figs. 8.37c and d. We can now write the<br />
following set of invariant equations for the terminal currents and port voltages of<br />
the PWM switch:<br />
i<br />
(t) d (t)i <br />
(t) (8.111a, b)<br />
v<br />
(t) d (t)v (t) ⎫<br />
⎬⎭<br />
Figure 8.37<br />
in which d (t) is the switching function defined in Eq. (8.16). These equations<br />
<br />
describe the entire switching action responsible for the dc-to-dc conversion process<br />
in a converter. By taking the time average of Eqs. (8.111a,b) we obtain the
402 PWM switching dc-to-dc converters<br />
following invariant average equations for the PWM switch:<br />
i <br />
di <br />
(8.112a, b)<br />
v <br />
dv <br />
⎫<br />
⎬⎭<br />
These are the invariant equations that describe the dc-to-dc conversion function of<br />
any two switched-state PWM converter in continuous conduction mode.<br />
If we allow for small-signal variations in the duty-ratio function and other<br />
voltages and currents in the converter about a steady-state operating point,then<br />
the propagation of these variations through the PWM switch can be determined<br />
by taking the differentials in Eqs. (8.112a, b):<br />
î Diˆ I d ⎫<br />
⎬⎭<br />
(8.113a, b)<br />
vˆ<br />
Dvˆ V d<br />
in which D, I <br />
and V <br />
are the steady-state dc operating points of the PWM switch<br />
which satisfy Eqs. (8.112a, b),i.e. I <br />
DI <br />
and V <br />
DV <br />
.<br />
8.8 Average large-signal and small-signal equivalent circuit models of<br />
the PWM switch<br />
An equivalent circuit model for Eqs. (8.112a, b) can most easily be constructed<br />
using dependent sources,as shown in Fig. 8.38. This is a nonlinear average model<br />
because it involves products of the time functions d(t)i (t) and d(t)v (t). This is also<br />
<br />
a large-signal model because it places no restriction on the magnitude of variations<br />
in the time functions. For small-signal variations,we can use the linearized<br />
small-signal equations in (8.113a, b) to construct the equivalent circuit model in<br />
Fig. 8.39a or b. In Fig. 8.39b the dependent sources Dî and Dvˆ have been replaced<br />
<br />
with a 1: D transformer and the control source d V has been moved from the<br />
<br />
common terminal side to the active terminal side. Note that the small-signal<br />
sources are evaluated at the dc operating point. Under steady-state conditions,the<br />
large- and small-signal models reduce to the same transformer model shown in<br />
Fig. 8.40.<br />
The model of the PWM switch is used very much in the same way as the<br />
Figure 8.38
403 8.8 Large- and small-signal equivalent circuit models<br />
Figure 8.39<br />
Figure 8.40<br />
equivalent circuit model of a transistor or a vacuum tube. First,the device is<br />
replaced point-by-point with its equivalent circuit model and a dc analysis is<br />
carried out to determine the operating point (D, I , V ). As usual,in a dc analysis<br />
<br />
all reactive elements and small-signal sources vanish. Second,the small-signal<br />
analysis is carried out using the small-signal model of the PWM switch evaluated<br />
at the dc operating point. As usual,in an ac analysis,all dc sources vanish. In a<br />
small-signal analysis,one of the most commonly determined transfer functions is<br />
the control-to-output transfer function:<br />
H (s) vˆ (s)<br />
(8.114)<br />
d (s)<br />
This transfer function is necessary for the design of a stable feedback loop for a<br />
converter whose output voltage is regulated. Other transfer functions of interest<br />
are the line-to-output transfer function and the input and output impedances. The<br />
line-to-output transfer function relates variations in the output voltage to variations<br />
in the input voltage:<br />
H (s) vˆ (s)<br />
vˆ<br />
(s) (8.115)
404 PWM switching dc-to-dc converters<br />
Ideally,for a regulating converter H <br />
(s) must be zero because the input voltage is<br />
simply a disturbance in the closed-loop system which the feedback circuit must<br />
attenuate and prevent from reaching the output.<br />
Example 8.10<br />
For the buck-boost converter in Fig. 8.41,determine:<br />
(i) The voltage conversion ratio.<br />
(ii) The control-to-output transfer function.<br />
(iii) The line-to-output transfer function.<br />
(iv) The input admittance.<br />
(v) The output impedance.<br />
Figure 8.41<br />
The complete dc and small-signal equivalent circuit model of the buck-boost<br />
converter is obtained by replacing the PWM switch with its equivalent circuit<br />
model as shown in Fig. 8.42. To determine the conversion ratio,we perform a dc<br />
analysis by setting all the small-signal sources to zero,shorting the inductors and<br />
opening all the capacitors,as shown in Fig. 8.43.<br />
In Fig. 8.43,we can see that the voltage across port ap is simply V <br />
/D so that<br />
writing KVL around the outer loop we obtain:<br />
V V D V V 1 D<br />
D<br />
V D<br />
D<br />
(8.116)<br />
The voltage conversion ratio follows immediately:<br />
M <br />
V <br />
V <br />
D D<br />
(8.117)<br />
Hence,we see how the invariant conversion function 1: D of the PWM switch can<br />
produce the conversion ratio D/D of the buck-boost converter by a simple<br />
rotation of the PWM switch. Before going to the small-signal analysis,we should<br />
determine the dc operating point of the PWM switch. The quiescent commonterminal<br />
current is given by:<br />
I <br />
I <br />
I <br />
I 1 1 M <br />
I 1 D D I <br />
D<br />
(8.118)
405 8.8 Large- and small-signal equivalent circuit models<br />
Figure 8.42<br />
Figure 8.43<br />
This establishes I <br />
in terms of the output current of the converter,which can be<br />
expressed in several different convenient forms using the results of the dc analysis:<br />
I I D V /R<br />
D<br />
V <br />
R<br />
D<br />
D<br />
(8.119)<br />
The quiescent port voltage V <br />
is readily seen to be V <br />
/D,which can be expressed in<br />
terms of the input voltage:<br />
V V D V <br />
(8.120)<br />
D<br />
All of the small-signal transfer functions have the same denominator which can<br />
be determined by setting all the independent excitations in Fig. 8.42 to zero as<br />
shown in Fig. 8.44a. The 2-EET can now be applied by taking out the inductor and<br />
the capacitor as shown in the reference circuit in Fig. 8.44b. The following port<br />
resistances required for the 2-EET are determined in reference to Fig. 8.45:<br />
R DR<br />
R 0<br />
(8.121a—c)<br />
R<br />
R<br />
⎫<br />
⎬⎭
406 PWM switching dc-to-dc converters<br />
Hence,the denominator is given by:<br />
D(s) 1 sL<br />
sL<br />
sCR <br />
R R sCR <br />
L LC<br />
1 s s<br />
DR D<br />
(8.122)<br />
Figure 8.44<br />
Figure 8.45
407 8.8 Large- and small-signal equivalent circuit models<br />
The line-to-output transfer function and the input admittance are determined<br />
by retaining only the small-signal source vˆ in the complete equivalent circuit<br />
<br />
model in Fig. 8.42 and examining the transform circuit for nulls in the response of<br />
the particular transfer function. For the line-to-output transfer function we see in<br />
Fig. 8.46 that there are no conditions in the transform circuit which result in a null<br />
in the response vˆ (s) so that the line-to-output transfer function is given by:<br />
<br />
H (s) vˆ (s)<br />
vˆ<br />
(s) M 1<br />
D(s) D 1<br />
(8.123)<br />
D L LC<br />
1 s s<br />
DR D<br />
in which M <br />
is clearly the low-frequency asymptote of H <br />
(s).<br />
The input admittance function is given by:<br />
G (s) iˆ (s)<br />
vˆ<br />
(s) G N (s) (8.124)<br />
D(s)<br />
in which G is the low-frequency asymptote of the input conductance discussed<br />
<br />
earlier and shown in Fig. 8.3. Hence we have:<br />
G <br />
M <br />
R D D 1 R<br />
(8.125)<br />
The numerator N (s) corresponds to conditions of the transform circuit that<br />
<br />
results in a null in the response î (s). Referring to Fig. 8.46,we see that a null in<br />
<br />
either iˆ<br />
(s) orî (s) would result in a null in î (s) simply because when one of the<br />
<br />
terminal currents of the 1: D transformer vanishes,the other two vanish as well.<br />
The impedance encountered by î (s) is: <br />
R<br />
1 sCR<br />
(8.126)<br />
Figure 8.46
408 PWM switching dc-to-dc converters<br />
The pole at s 1/RC corresponds to an ‘‘open-circuit’’ in the transform domain,which<br />
results in a null in î (s) and,hence,in iˆ<br />
(s). It follows that s 1/RC<br />
is a zero of G (s) and that N (s) 1 sCR. Hence,the input admittance is given<br />
<br />
<br />
by:<br />
G (s) D 1 1 sCR<br />
D R L LC<br />
1 s s<br />
DR D<br />
(8.127)<br />
The impedance encountered by iˆ (s) issL,which has no poles and hence does not<br />
<br />
contribute a zero to iˆ<br />
(s).<br />
The output impedance is determined from the equivalent circuit shown in Fig.<br />
8.47,whence we see that a zero of the impedance in the common terminal branch<br />
would cause the terminals a and c to be at the same potential,which in turn would<br />
require that the voltages on both sides of the 1: D transformer be the same,which<br />
could only happen if vˆ (s) 0. The impedance connected to terminal c is sL,which<br />
<br />
has a zero at the origin,so that the output impedance must have a zero at the<br />
origin too. Hence we have:<br />
Z <br />
(s) vˆ (s)<br />
î <br />
(s) sLk<br />
D(s)<br />
(8.128)<br />
in which k is a constant,which can be determined by examining the circuit. It can<br />
be seen from Fig. 8.47 that at high frequencies we have:<br />
lim Z (s) 1<br />
(8.129)<br />
sC<br />
<br />
Substituting this result in Eq. (8.128),we obtain k 1/D,and the output impedance<br />
can be written as:<br />
sL/D<br />
Z (s) L LC<br />
1 s S<br />
DR D<br />
(8.130)<br />
Figure 8.47
409 8.8 Large- and small-signal equivalent circuit models<br />
Finally,we determine the control-to-control transfer function by retaining the<br />
control sources as shown in Fig. 8.48. This transfer function can be written as:<br />
H (s) vˆ (s)<br />
d (s) H N (s) <br />
D(s)<br />
(8.131)<br />
The low-frequency asymptote, H <br />
,is simply the derivative of the output voltage<br />
with respect to the duty ratio and is given by:<br />
H <br />
dV <br />
dD V <br />
D (D)<br />
D<br />
V <br />
D<br />
(8.132)<br />
The numerator, N (s),is determined by examining the transform circuit for a null<br />
<br />
in the output voltage. This is shown in Fig. 8.49 in which we see that the only way<br />
to have a null in vˆ (s) is to have a null in iˆ<br />
(s). With vˆ (s) î (s) 0,from Fig. 8.49<br />
<br />
we have:<br />
î (s) iˆ (s) ⎫<br />
⎬⎭<br />
(8.133a, b)<br />
vˆ<br />
(s) 0<br />
Figure 8.48<br />
Figure 8.49
410 PWM switching dc-to-dc converters<br />
Hence:<br />
î (s)sL <br />
D<br />
V <br />
D d ⎬<br />
(8.134a, b)<br />
Dî I d î ⎫<br />
Solving these we obtain:<br />
1 s L D<br />
⎭<br />
I 0 N (s) 1 s L I <br />
(8.135)<br />
V D V <br />
Substituting for I <br />
and V <br />
from the operating point determined earlier in Eqs.<br />
(8.119) and (8.120),we obtain:<br />
N <br />
(s) 1 s L D<br />
I <br />
D<br />
D<br />
V <br />
(8.136a, b)<br />
1 s L R<br />
D<br />
D<br />
Hence,the control-to-output transfer function has a RHP zero and is given by:<br />
H <br />
(s) V <br />
D<br />
1 s L R<br />
D<br />
D<br />
(8.137)<br />
L LC<br />
1 s s<br />
DR D<br />
The presence of the RHP zero in H (s) above implies that the output voltage<br />
<br />
momentarily dips before rising when the duty cycle is increased abruptly (step<br />
function). The physical explanation for this is that an abrupt increase in the duty<br />
cycle d causes an abrupt decrease in d,which in turn causes an initial decrease in<br />
the average terminal current i (t) because the average inductor current cannot<br />
<br />
reach its higher steady-state value instantaneously. It is this momentary decrease<br />
in i (t) that causes the initial dip in the output voltage. In fact,we can use this<br />
<br />
physical explanation to determine the RHP zero as follows. Let us assume that the<br />
RHP zero in Eq. (8.137) is ω so that its high-frequency response is given by:<br />
<br />
H <br />
(s) V <br />
D<br />
s/ω <br />
s LC<br />
D<br />
<br />
V <br />
sω LC <br />
(8.138)<br />
The initial response to a step increase, ῀,in the duty cycle is then given by:<br />
vˆ<br />
<br />
(s) d (s)<br />
V<br />
<br />
sω LC ῀ V <br />
s sω LC<br />
<br />
(8.139)
411 8.9 The PWM switch in other converter topologies<br />
Taking the inverse Laplace transform,we have:<br />
vˆ<br />
(t) ῀ V <br />
ω <br />
LC t (8.140)<br />
Next,we look at the circuit to determine the initial response to a sudden increase<br />
in the duty cycle by an amount We can see from Fig. 8.50 that the passive<br />
῀.<br />
terminal current i (t) for the first few cycles experiences a step reduction in its<br />
<br />
average value by an amount:<br />
I<br />
δi <br />
῀ D<br />
(8.141)<br />
Figure 8.50<br />
This sudden reduction in the average current is absorbed by the output capacitor<br />
so that the change in the output voltage is given by:<br />
C dv <br />
dt ῀<br />
I <br />
D vˆ I<br />
(t) ῀ <br />
C D t (8.142)<br />
Comparing Eqs. (8.140) and (8.142),we determine the RHP zero:<br />
ω <br />
DV <br />
I <br />
L DV <br />
DI <br />
L DR<br />
DL<br />
which is the same as the RHP in Eq. (8.137).<br />
(8.143)<br />
<br />
8.9 The PWM switch in other converter topologies<br />
The three different types of conversion ratios we have seen so far, D,1/D and D/D,<br />
were generated by the three possible orientations of the PWM switch. It is possible<br />
to generate other types of conversion ratios by arranging the switches differently,<br />
using tapped inductors or inverting transformers,and using more switches. In all<br />
such converters,the PWM switch can be identified after a few simple circuit<br />
manipulations. In this section,we shall consider four such converters which cover<br />
most known types of basic topological variations.
412 PWM switching dc-to-dc converters<br />
Any of the basic converters discussed earlier can be modified by tapping the<br />
inductor and connecting one of the two switches to the tap point. The two<br />
variations of the tapped buck converter are shown in Figs. 8.51a, b.<br />
Figure 8.51<br />
The PWM switch cannot be identified directly in these converters because the<br />
common terminal,through which the inductive current flows,is lost. Since S and <br />
V are in series,one may interchange their positions and establish a common point<br />
<br />
between S and S and incorrectly identify the PWM switch. The mistake here is<br />
<br />
that the current through this common point is i (t),which is not a purely inductive<br />
<br />
current and has the shape shown in Figs. 8.51a,b. Immediately we recognize that<br />
the tapped inductor in these converters is actually acting as an auto-transformer so<br />
that the current i is actually a winding current rather than a magnetizing or<br />
<br />
inductive current. In order to recover the inductive current,we replace the tapped<br />
inductor with an untapped inductor L and an ideal transformer with the same<br />
turn-ratio as the tapped inductor as shown in Fig. 8.52a. The energy stored in L is<br />
the inductive energy of the converter and the current in L is the inductive current<br />
in the converter. The PWM switch can now be identified by moving S to the <br />
opposite side of the ideal transformer as shown in Fig. 8.52b. Now,the common<br />
terminal between S and S clearly carries a purely inductive current. The dc and<br />
<br />
small-signal characteristics can be determined by replacing the PWM switch with<br />
its equivalent circuit model as explained in the following example.<br />
Example 8.11 The voltage conversion ratio of the tapped buck converter is<br />
determined by replacing the PWM switch with its dc model as shown in Fig. 8.53.<br />
By applying KVL around the loop shown,we obtain:
413 8.9 The PWM switch in other converter topologies<br />
Figure 8.52<br />
V <br />
V <br />
nD V <br />
n V <br />
(8.144)<br />
from which the voltage conversion ratio is obtained:<br />
M 1<br />
<br />
1 D<br />
nD<br />
(8.145)<br />
The operating point of the PWM switch is given by:<br />
V V nD V <br />
nD D<br />
I I D M I <br />
D<br />
⎫<br />
⎬<br />
⎭<br />
(8.146a, b)<br />
The advantage of tapping the inductor can be immediately seen from Eq. (8.145)<br />
in which we see that by letting n 1 we can obtain large step-down conversion<br />
Figure 8.53
414 PWM switching dc-to-dc converters<br />
ratios without making the duty cycle too small. For example,we can convert 120<br />
to 5 V by making D 0.25 and n 3/23.<br />
The control-to-output transfer is obtained by replacing the PWM switch with<br />
its small-signal equivalent circuit model as shown in Fig. 8.54,in which the input<br />
dc voltage is set to signal ground. This transfer function is given (see Problem 8.12)<br />
by:<br />
1 s ω<br />
H (s) H <br />
<br />
1 s<br />
ω Q s<br />
(8.147)<br />
ω <br />
in which:<br />
H <br />
V (nD D)<br />
ω DR 1<br />
ML<br />
n 1 <br />
ω <br />
D M <br />
1<br />
LC<br />
Q R<br />
ω <br />
L D M <br />
<br />
⎫<br />
⎬<br />
⎭<br />
(8.148)<br />
Figure 8.54<br />
Note that for n 1,the zero is in the LHP,while for n 1,zero is the RHP. The<br />
reason for this is the same as that for the buck-boost converter given earlier (see<br />
Problem 8.12).<br />
<br />
Another topological variation is shown in Fig. 8.55,in which an inverting<br />
transformer is used. This converter,sometimes referred to as the Watkins—<br />
Johnson converter,is analyzed in the same way as the tapped buck converter.<br />
This is shown in Fig. 8.56,in which the inverting transformer is replaced with its
415 8.9 The PWM switch in other converter topologies<br />
equivalent circuit model and S <br />
is moved to the N <br />
-side of the transformer in order<br />
to identify the PWM switch.<br />
The complete equivalent circuit is the same as that of the tapped buck converter<br />
except for the 1: n transformer,which in this case is inverting. It follows that the<br />
voltage conversion ratio is the same as that of the tapped buck converter given in<br />
Eq. (8.145) with n replaced by n:<br />
M <br />
1<br />
1 D<br />
nD<br />
(8.149)<br />
Figure 8.55<br />
Figure 8.56<br />
A plot of M <br />
for n 1 is shown in Fig. 8.57,in which we notice that not only the<br />
conversion ratio becomes singular at D 0.5 but also the polarity of the output<br />
voltage changes. It is relatively easy to show that M <br />
becomes zero,and not<br />
infinite,at D 0.5,if the slightest parasitic resistance is included in the circuit (see<br />
Problem 8.13). By interchanging the source and load,another variation of this<br />
converter can be obtained,as shown in Fig. 8.58,whose conversion ratio monotonically<br />
increases from negative to positive values passing through zero at<br />
D 0.5 (see Problem 8.14).<br />
By rearranging the switches in a fourth-order converter,such as the Cuk<br />
converter,one can obtain new converters such as the one shown in Fig. 8.59a. In<br />
such a converter,the PWM switch cannot be identified immediately,but a simple<br />
circuit transformation can do the trick. The idea,of course,is to move one of the<br />
switches without altering the operation of the circuit. This is shown in Fig. 8.59b in
416 PWM switching dc-to-dc converters<br />
Figure 8.57<br />
Figure 8.58<br />
Figure 8.59
417 8.9 The PWM switch in other converter topologies<br />
which S <br />
is lifted from the input side and brought to its new position while<br />
maintaining the same potential difference across it with the help of the dependent<br />
source V <br />
. To preserve the input current,the dependent current source I <br />
is<br />
introduced. The PWM switch is identified in Fig. 8.59c simply by interchanging<br />
the positions of S <br />
and v <br />
. The voltage conversion ratio is determined by replacing<br />
the PWM switch with its dc model as shown in Fig. 8.60 in which,going around<br />
the outer loop,we have:<br />
V V V V V (8.150)<br />
D <br />
It follows that the conversion ratio is given by:<br />
M <br />
1 2D<br />
D<br />
(8.151)<br />
A plot of M <br />
is shown in Fig. 8.61,which shows that the polarity of the output<br />
voltage changes as the duty cycle is increased beyond 0.5.<br />
Figure 8.59 (cont.)<br />
Figure 8.60<br />
It is possible to cascade any two basic converters to obtain an ideal conversion<br />
ratio which has a quadratic dependence on the duty cycle. Furthermore,it is<br />
possible to rearrange the switches in a cascaded converter in such a way to drive<br />
only a single active switch instead of two. The formal synthesis procedure of such<br />
converters has been reported by Maksimovich and Cuk and one such converter is<br />
shown in Fig. 8.62. In this converter, D <br />
turns on in synchronism with the main<br />
active switch S <br />
during T <br />
,while D <br />
and D <br />
are turned off. During T off<br />
, D <br />
turns
418 PWM switching dc-to-dc converters<br />
Figure 8.61<br />
off in synchronism with S <br />
,while D <br />
and D <br />
are turned on together. For purposes<br />
of analysis in continuous conduction mode,the nature of these switches is immaterial.<br />
Our aim is to analyze this converter using the model of the PWM switch,<br />
which clearly cannot be identified directly. Since the PWM switch is applicable to<br />
all converters that are switched between two states,all we need to know are the<br />
two states of the converter during T <br />
and T off<br />
. These are shown in Fig. 8.63a. In<br />
Figure 8.62<br />
Fig. 8.63b,the on-state is redrawn by separating the L <br />
and L <br />
loops using the<br />
dependent sources V <br />
and I <br />
. The purpose of I <br />
in shunt with V <br />
is to preserve<br />
the input current I <br />
. The off-state is redrawn simply by interchanging the positions<br />
of L <br />
and C <br />
. We can now see that the on- and off-states in Fig. 8.63b correspond<br />
to the operation of two buck converters connected in cascode as shown in Fig.<br />
8.63c. The PWM switch in each converter is clearly identified and the complete dc<br />
and small-signal equivalent circuit model is shown in Fig. 8.64.<br />
Example 8.12 To determine the voltage conversion ratio of the converter in Fig.<br />
8.62 we set all the small-signal sources to zero,short the inductors,and open the<br />
capacitors in the equivalent circuit in Fig. 8.64. This yields the circuit in Fig. 8.65,<br />
whence we have for the first PWM switch:
419 8.9 The PWM switch in other converter topologies<br />
Figure 8.63<br />
Figure 8.64
420 PWM switching dc-to-dc converters<br />
V DV (8.152)<br />
<br />
For the second PWM switch we have:<br />
V V V V (DV ) V (1 D) (8.153)<br />
<br />
The output voltage is given by:<br />
V V V DV V (8.154)<br />
<br />
Substituting Eqs. (8.152) and (8.153) in (8.154),we obtain:<br />
V DV (1 D) DV DV (8.155)<br />
<br />
Hence,the voltage conversion ratio is given by:<br />
M D (8.156)<br />
<br />
Figure 8.65<br />
The dc operating point of each PWM switch is determined before performing<br />
the small-signal analysis. For the first and second PWM switches we have:<br />
V V <br />
I I DI DI <br />
V V (1 D)<br />
<br />
I <br />
V <br />
R DV <br />
R<br />
⎫<br />
⎬<br />
⎭<br />
The control-to-output transfer function has the following form:<br />
(8.157a—d)<br />
H (s) vˆ (s)<br />
d (s) H N (s) <br />
D(s)<br />
(8.158)<br />
in which H <br />
is the low-frequency asymptote and is given by:
421 8.9 The PWM switch in other converter topologies<br />
H <br />
dV <br />
dD 2DV <br />
(8.159)<br />
The denominator is obtained by the application of the 4-EET to the reference<br />
circuit in Fig. 8.66,whence we have by inspection:<br />
R R 0 ⎫<br />
⎬<br />
R R ⎭<br />
(8.160a, b)<br />
Figure 8.66<br />
From Fig. 8.67 we have:<br />
R R D<br />
(8.160c)<br />
Since L <br />
is connected across port (4) and L <br />
is connected across port (3),we shall<br />
renumber them after their port numbers to make the writing of the terms in the<br />
4-EET easier. Hence,we shall temporarily reassign L <br />
and L <br />
:<br />
L <br />
L <br />
; L <br />
L <br />
The fourth-order denominator is given by:<br />
D(s) 1 a <br />
s a <br />
sa <br />
sa <br />
s (8.161)<br />
Figure 8.67
422 PWM switching dc-to-dc converters<br />
Substituting for R in the coefficient a <br />
,we obtain:<br />
a <br />
RC <br />
RC <br />
L <br />
R L <br />
R<br />
L DL <br />
R<br />
(8.162)<br />
Since the reference circuit is almost purely reactive,we should expect indeterminate<br />
forms in the higher-order coefficients. We shall remove these indeterminate<br />
forms by changing the order of the ports. The coefficient a <br />
is given by:<br />
a RC R<br />
C RC L L RC <br />
R R<br />
<br />
L L<br />
RC RC <br />
R R<br />
<br />
By inspection of Fig. 8.66,we have:<br />
L <br />
R<br />
L <br />
R<br />
<br />
(8.163)<br />
R<br />
R R R 0<br />
⎫<br />
R<br />
<br />
⎬⎭<br />
(8.164a—c)<br />
R<br />
R<br />
It follows that the first two terms and the last term in the expression of a are all <br />
zero and the remaining terms in the middle have an indeterminacy of the form 0/0,<br />
which can easily be removed by changing the order in which the ports are taken:<br />
a <br />
L <br />
R R C L <br />
R R C L <br />
R R C <br />
(8.165)<br />
Once again by inspecting Fig. 8.66,we have:<br />
⎫<br />
⎬⎭<br />
R<br />
R<br />
R<br />
R<br />
R<br />
R<br />
Substituting these in Eq. (8.165),we obtain:<br />
(8.166a—c)<br />
a <br />
L <br />
C <br />
(L <br />
DL <br />
)C <br />
(8.167)<br />
The coefficient a <br />
is given by:<br />
a RC R<br />
C L RC R<br />
R C L <br />
R
423 8.9 The PWM switch in other converter topologies<br />
RC <br />
L <br />
R<br />
<br />
L <br />
R<br />
<br />
RC <br />
L <br />
R<br />
<br />
L <br />
R<br />
<br />
in which we can determine the following by inspection:<br />
(8.168)<br />
R<br />
R R 0<br />
R<br />
(8.169)<br />
<br />
The indeterminacy in the first term of a is removed by changing the order of the<br />
<br />
ports from 1,2,3 to 1,3,2. Using the fact that R 0,we obtain:<br />
<br />
RC R C L L RC R<br />
R R C 0 (8.170)<br />
<br />
The indeterminacy in the second term of a is removed by changing the order of<br />
<br />
the ports from 1,2,4 to 4,1,2. Using the fact that R<br />
0:<br />
RC R C L L <br />
R R R C R C 0 (8.171)<br />
<br />
In the third term of a ,the indeterminacy is removed by changing the order from 1,<br />
<br />
3,4 to 4,1,3. Using the fact that R R,we obtain:<br />
<br />
L L<br />
RC L <br />
R R R R<br />
<br />
C <br />
L L L C <br />
R R<br />
<br />
(8.172)<br />
In the last term of a ,the indeterminacy is removed by changing the order from 2,<br />
<br />
3,4 to 3,2,4. Using the fact that R<br />
:<br />
L L<br />
RC L <br />
R R R R C L 0 (8.173)<br />
R<br />
<br />
<br />
Hence, a is given by:<br />
<br />
a <br />
L <br />
C <br />
L <br />
R<br />
(8.174)<br />
Finally,we obtain a <br />
by continuing the order in a <br />
:<br />
a <br />
L <br />
R R<br />
C <br />
L R<br />
R C L C L <br />
R RC <br />
<br />
(8.175)<br />
Substituting for a <br />
in Eq. (8.161) and reverting the notation to L <br />
and L <br />
from L <br />
and L <br />
,we obtain the denominator:<br />
D(s) 1 s L DL s[L C (C DC )L ]<br />
R
424 PWM switching dc-to-dc converters<br />
sL <br />
C <br />
L <br />
R sL L C C <br />
(8.176)<br />
This denominator can be factored into the product of two quadratics:<br />
D(s) 1 s s<br />
ω Q ω <br />
1 s s<br />
(8.177)<br />
ω Q ω <br />
<br />
whose frequencies and damping factors are approximately given by:<br />
1<br />
ω L C (C DC )L <br />
R<br />
Q ω (L DL )<br />
<br />
ω 1 1<br />
<br />
L C L C C <br />
D<br />
Q <br />
RC ω C L <br />
ω 1 ω <br />
(8.178)<br />
The approximations for ω and ω are fairly good when they are separated by a<br />
<br />
factor of 2.5 or better. The second Q-factor, Q ,generally is very high and the<br />
<br />
accuracy of its approximation above is only moderate. In a real converter, Q is a <br />
strong function of parasitic resistances,so that the accuracy of Eq. (8.178d) is not<br />
very relevant.<br />
The numerator is determined by studying the nulls of vˆ (s) as shown in Fig. 8.68<br />
<br />
in which we see that a null in vˆ<br />
(s) requires a null in î (s) which in turn requires<br />
<br />
î (s) I d (s). It follows that the transform voltage across C is given by:<br />
<br />
vˆ<br />
(s) V d 1/sC <br />
sL <br />
1/sC <br />
I <br />
d [sL <br />
(1/sC <br />
)]<br />
d<br />
V 1<br />
sL<br />
I <br />
1 sL C 1 sL C <br />
<br />
(8.179)<br />
This transform voltage must be the same as the transform voltage across the<br />
D-side of the second PWM switch so that we have:<br />
vˆ<br />
(s) V <br />
D d vˆ (s) D (8.180)<br />
Equations (8.179) and (8.180) yield:
425 8.9 The PWM switch in other converter topologies<br />
DV <br />
1<br />
1 sL <br />
C <br />
DI <br />
sL <br />
1 sL <br />
C <br />
V <br />
0 (8.181)<br />
Multiplying out and substituting for V <br />
, V <br />
and I <br />
in Eq. (8.157),we obtain the<br />
numerator:<br />
DD<br />
N (s) 1 sL 2R sL C 1 D<br />
2D<br />
(8.182)<br />
Figure 8.68<br />
We can rewrite this in standard quadratic form:<br />
N (s) 1 <br />
s s<br />
(8.183)<br />
ω Q ω <br />
in which:<br />
ω <br />
1<br />
L <br />
C <br />
2<br />
1 1/D<br />
Q <br />
R 1<br />
L /C <br />
DD 1 D<br />
2D<br />
⎫<br />
⎬<br />
⎭<br />
(8.184a, b)<br />
To summarize,the control-to-output transfer function is given by:<br />
1 s s<br />
ω Q ω<br />
H (s) H <br />
<br />
1 <br />
s s<br />
ω Q ω <br />
1 s s<br />
ω Q ω <br />
<br />
(8.185)
426 PWM switching dc-to-dc converters<br />
A plot of H <br />
(s) using numerical values is discussed in Problem 8.15.<br />
<br />
8.10 The effect of parasitic elements on the model of the PWM switch<br />
The four important parasitic elements in a converter that affect the average model<br />
of the PWM switch are:<br />
(a) the high-frequency resistance across port a—p<br />
(b) the on-resistance of the switches<br />
(c) the storage-time modulation in bipolar transistors<br />
(d) the general saturation characteristics of the switches.<br />
These parasitic elements affect only the relationship between the average port<br />
voltages of the PWM switch but not its average terminal currents. In this section,<br />
we shall formulate their effect in an invariant way and model them by a resistor in<br />
series with the common terminal of the PWM switch. The first of these parasitic<br />
elements is the most subtle because it concerns the general problem of modeling<br />
the nonlinear part of a system (in our case the PWM switch) by separating it from<br />
its linear part. Naturally,the accuracy of such a modeling technique depends on<br />
how carefully the quantitative interaction between the linear and nonlinear parts<br />
is accounted for when separating both parts. In the absence of parasitic elements<br />
and in continuous conduction mode there is no quantitative interaction between<br />
the linear elements of the filter and the average voltages and currents of the PWM<br />
switch,so that the switch can easily be separated from the rest of the circuit and<br />
modeled accurately. In the presence of certain parasitic elements,a small amount<br />
of interaction between these elements and the average voltages and currents of the<br />
PWM switch exists which warrants a refinement of the ideal models in Figs. 8.38<br />
and 8.39.<br />
(a) The high-frequencyresistance across port a–p The pulsating active terminal<br />
current, i (t),in a converter is absorbed entirely by those elements which lie<br />
<br />
between terminals a and p of the PWM switch. All other elements lying between<br />
terminals c and p absorb the continuous inductive current in the common terminal.<br />
Hence,if i<br />
(t) encounters a resistance r it will give rise to a pulsating voltage<br />
<br />
ripple, r i (t),which will be superimposed on top of the smooth voltage across port<br />
<br />
a—p. To determine r ,one simply shorts the capacitive and input voltage ports,<br />
<br />
opens the inductive ports and determines the resistance between terminals a and p.<br />
This is best illustrated by examples. For the buck converter with an input filter<br />
shown in Fig. 8.69a, r is equal to the parasitic equivalent series resistance (ESR) of<br />
<br />
the input filter capacitor,i.e. r r . For the buck-boost converter with an input<br />
<br />
filter shown in Fig. 8.69b, r r R r . For the converter in Fig. 8.59 and for
427 8.10 The effect of parasitic elements on the model of the PWM switch<br />
the Cuk converter in Fig. 8.32, r r . For other converters, r is determined in a<br />
<br />
similar manner (see Problem 8.16).<br />
In all cases,we see that the high-frequency parasitic resistance across port a—p is<br />
due to the ESR of the filter capacitors connected effectively across that port. Since<br />
the pulsating current is absorbed by the filter capacitors,the ripple voltage it<br />
generates is balanced about the average value of the port voltage V as shown in<br />
<br />
Fig. 8.70. There is of course another ripple component in the port voltage v<br />
(t)<br />
(not shown in Fig. 8.70) which is essentially a triangular one and due to the<br />
capacitance,as explained earlier and shown in Fig. 8.22. The main difference<br />
between these two ripple components is that the average value of the capacitive<br />
ripple component in Fig. 8.22 is zero in each subinterval, T and T ,whereas the<br />
<br />
average value of the ripple due to the ESR in Fig. 8.70 is zero only over the entire<br />
switching interval, T ,and not over each subinterval. Hence,the average value of<br />
<br />
v<br />
(t) during T is not equal to the average value of v (t) over T ,which is simply<br />
<br />
the average value v<br />
(t). According to Fig. 8.70,the average value of v (t) during<br />
<br />
T is given by:<br />
<br />
Figure 8.69
428 PWM switching dc-to-dc converters<br />
v<br />
(t) v di r <br />
(8.186)<br />
All we have to do now is fix the relationship between the average values of the<br />
voltages across ports a—p and c—p:<br />
v dv (t) <br />
dv ddi r <br />
(8.187)<br />
The relationship between the average terminal currents i <br />
and i <br />
remains unaffected<br />
and is still given by i <br />
di <br />
. The interaction term, ddi <br />
r <br />
,can now be easily<br />
modeled by a parasitic resistance ddr <br />
in series with the common terminal in the<br />
large-signal average model of the PWM switch,as shown in Fig. 8.71. The<br />
small-signal model is obtained by perturbing Eq. (8.187):<br />
vˆ<br />
Dvˆ V d iˆ<br />
r DD (8.188)<br />
<br />
in which:<br />
V <br />
V <br />
I <br />
r <br />
(D D) V <br />
(8.189)<br />
The relationship between î and iˆ remains unaffected and is still given by Eq.<br />
<br />
(8.116a). The dc and small-signal model corresponding to Eqs. (8.188) and (8.116)<br />
now follows and is shown in Fig. 8.72.<br />
(a)<br />
(b)<br />
(c)<br />
Figure 8.70
429 8.10 The effect of parasitic elements on the model of the PWM switch<br />
Figure 8.71<br />
Figure 8.72<br />
(b) The on-resistance of the switches When MOSFETS are used to realize the<br />
active and passive switches,the effect of their finite on-resistance can easily be<br />
incorporated in the model of the PWM switch. Let r and r be the resistances of<br />
<br />
the active and passive switches of the PWM switch,respectively,as shown in Fig.<br />
8.73. Intuitively,one can see that since the common terminal spends D% of its time<br />
in series with r and D% of its time in series with r ,the effective resistance<br />
<br />
appearing in series with the common terminal must be Dr Dr . We can verify<br />
<br />
this by re-examining the relationship between v and v . We can see from Fig.<br />
<br />
8.73 that during T the voltage across port c—p is less than v by a factor of i r ,<br />
<br />
while during T it is less than zero by a factor of i r . It follows that the<br />
<br />
relationship between v and v is:<br />
<br />
v d(v i r d i r ) di r ⎫<br />
⎬<br />
(8.190a, b)<br />
dv i (r dd dr dr ) ⎭<br />
<br />
This result is consistent with our expectation,so that the effect of r <br />
and r <br />
can be<br />
modeled by adding another parasitic resistor, dr <br />
dr <br />
,in series with ddr <br />
in the<br />
Figure 8.73
430 PWM switching dc-to-dc converters<br />
average large-signal model of the PWM switch in Fig. 8.71. The small-signal<br />
model is determined by perturbing Eq. (8.190) and obtaining:<br />
vˆ<br />
Dvˆ V d i r <br />
in which:<br />
V V I [r (D D) r r ] ⎫ ⎬⎭<br />
r <br />
DDr <br />
Dr <br />
Dr <br />
(8.191)<br />
(8.192)<br />
Since the relationship between iˆ<br />
and iˆ is still given by Eq. (8.116),the small-signal<br />
<br />
model corresponding to Eqs. (8.191) and (8.116a) looks the same as in Fig. 8.72 in<br />
which V is given by Eq. (8.191b) and Dr Dr is added to DDr .<br />
<br />
(c) The storage-time modulation of BJTs When a bipolar junction transistor is<br />
used to realize the active switch,the modulation in the duty ratio at the collector<br />
generally differs from the modulation in the duty ratio applied to the base of the<br />
BJT. It has been shown that:<br />
d d<br />
in which:<br />
î <br />
I <br />
(8.193)<br />
d modulation in the duty ratio at the collector of the BJT<br />
d modulation in the duty ratio applied to the base of the BJT<br />
(8.194a—c)<br />
I modulation parameter<br />
<br />
⎫<br />
⎬<br />
⎭<br />
The modulation parameter has a negative value for constant base drive and a<br />
positive value for proportional base drive. More sophisticated types of base drive<br />
can render the value of I infinite so that d d . Since storage-time modulation<br />
<br />
modifies the duty-ratio,the relationships between the port voltages and the<br />
terminal currents are both affected. The effect of storage-time modulation on the<br />
port voltages is determined by substituting Eq. (8.193) in (8.191):<br />
vˆ<br />
Dvˆ V d î (r r ) (8.195)<br />
in which:<br />
r <br />
V <br />
I <br />
Storage-time modulation resistance (8.196)<br />
The effect of storage-time modulation on the average terminal currents is determined<br />
by substituting Eq. (8.193) in (8.113a):<br />
î <br />
D I <br />
I <br />
iˆ d I <br />
(8.197)
431 8.10 The effect of parasitic elements on the model of the PWM switch<br />
Typically D I <br />
/I <br />
,so that Eq. (8.197) reduces back to its original form:<br />
î Dî d I (8.198)<br />
<br />
Equations (8.197) and (8.198) correspond to the small-signal model shown in Fig.<br />
8.74 in which r is an ac resistance which,unlike r ,vanishes under dc conditions.<br />
<br />
Figure 8.74<br />
Storage-time modulation can have a pronounced effect on the high-frequency<br />
response of certain converters (see Problem 8.17).<br />
(d) Simple and general saturation models for the switches When a BJT and a<br />
diode are used for the active and passive switches,respectively,their simple<br />
saturation models can be easily included in the model of the PWM switch. If we<br />
assume that a transistor or a diode in its on-state sustains a fixed voltage across its<br />
terminals,then we can write the relationship between v and v : <br />
v <br />
d(v <br />
V<br />
<br />
) dV <br />
(8.199)<br />
in which V<br />
<br />
is the saturation voltage of the transistor and V <br />
is the diode<br />
voltage. The relationship between the average terminal currents remains unaffected<br />
and is still given by i <br />
di <br />
. Equation (8.199) can be rewritten as:<br />
v <br />
dv <br />
(dV<br />
<br />
dV <br />
) (8.200)<br />
which,along with i <br />
di <br />
,can be incorporated in the large-signal average model of<br />
the PWM switch,as shown in Fig. 8.75a. It can easily be shown that the smallsignal<br />
model is still given by Fig. 8.72,in which V <br />
is given by:<br />
V <br />
V <br />
V<br />
<br />
V <br />
V <br />
(8.201)<br />
Figure 8.75
432 PWM switching dc-to-dc converters<br />
Instead of assuming a fixed on-voltage or an on-resistance when a switch is<br />
closed,we can assume a general relationship V <br />
(i <br />
,. . .) so that:<br />
v <br />
d[v <br />
i <br />
r <br />
V <br />
(i <br />
,. . .)] dV <br />
(i <br />
,...)<br />
i <br />
di <br />
d d(v <br />
, i <br />
,...)<br />
⎫<br />
⎬<br />
⎭<br />
(8.202a—c)<br />
In these equations, V <br />
(i <br />
,. . .) and V <br />
(i <br />
,. . .) are the on-voltages of the active and<br />
passive switches,respectively,which depend on the current i <br />
and possibly upon<br />
other parameters which depend on drive mechanisms. The duty ratio is shown to<br />
be a function of the control voltage, v <br />
,and possibly the current i <br />
and other<br />
parameters which also depend on drive mechanisms. An equivalent circuit model<br />
corresponding to Eqs. (8.202a—c) is shown in Fig. 8.75b.<br />
Figure 8.75 (cont.)<br />
8.11 Feedback control of dc-to-dc converters<br />
The output voltage or current of a dc-to-dc converter can be regulated using one of<br />
the feedback schemes shown earlier in Fig. 8.2. With output voltage feedback,an<br />
optional current feedback loop can also be added to form a two-loop,or two-state,<br />
feedback system. There are several ways of implementing the current feedback<br />
loop,all of which require special modeling techniques. We shall discuss only one<br />
popular method of current feedback,known as peak current-mode control,and<br />
show two different ways of modeling it. We shall use a buck converter to illustrate<br />
the use of single-loop and two-loop feedback control circuits.<br />
Regardless of the type of feedback used,the most common way of converting the<br />
control signal to a PWM waveform is to compare it to a sawtooth waveform. This<br />
is shown in Fig. 8.76,in which a pulse with a fixed repetition rate,T <br />
,is initiated at<br />
the beginning of the ramp and is terminated when the ramp voltage exceeds the
433 8.11 Feedback control of dc-to-dc converters<br />
control signal. In this figure we have ignored the small ripple component in control<br />
voltage. By similar triangles we have,from Fig. 8.76:<br />
v V t d (8.203)<br />
V T <br />
It follows that:<br />
d vˆ <br />
V <br />
K <br />
vˆ<br />
<br />
(8.204)<br />
in which:<br />
K <br />
1 V <br />
modulator gain (8.205)<br />
Typical values of V <br />
range from 1 to 2 V.<br />
Figure 8.76<br />
8.11.1 Single-loop voltage feedback control<br />
The buck converter in Fig. 8.77 operates from a fixed bus voltage of 5 V and<br />
delivers 0—10 A at 2.5 V. The converter is designed to operate at 100 kHz and uses<br />
power MOSFET switches. The feedback compensation is designed to yield a<br />
stable loop which has a very large gain (10) at dc and a crossover frequency of<br />
17 kHz. The large loop gain at dc ensures excellent regulation against quasi-static<br />
load and line variations (even though the line in this application is fixed at 5 V).<br />
The crossover frequency at 17 kHz ensures the smallest deviation in the output<br />
voltage when the load current changes abruptly from 0 to 10 A,or vice versa. An<br />
approximate expression of the overshoot (or undershoot) in the output voltage is<br />
given by:<br />
῀V <br />
῀I <br />
2πf <br />
C ; r 1<br />
2πf <br />
C<br />
(8.206)
434 PWM switching dc-to-dc converters<br />
in which f <br />
is the crossover frequency, ῀I <br />
is the step load current and C is the<br />
output capacitor. This expression is valid when the change in the load current<br />
takes place over one or more switching cycles. For faster changes in the load<br />
current,other factors need to be considered which will not be discussed here.<br />
Another restriction on the validity of Eq. (8.206) is that the value of the ESR has to<br />
be less than the reactance of the output filter capacitor at the crossover frequency.<br />
Figure 8.77<br />
The purpose of the relatively large value of the output capacitor is to ensure that<br />
the output voltage ripple stays within 0.3% of the output voltage (7.5 mV) under<br />
worst case conditions. Such a large capacitance is typically obtained by paralleling<br />
several capacitors made of solid tantalum which have significant equivalent series<br />
resistance (ESR). The capacitor in this converter has an ESR of 2 mΩ and is<br />
obtained by paralleling twenty 250-μF solid tantalum capacitors each with an<br />
ESR of 40 mΩ. When the capacitive reactance at the switching frequency is much<br />
smaller than the ESR,the output ripple voltage,instead of being piecewise<br />
parabolic as discussed earlier,is triangular and is given by the product of the ripple<br />
current in the inductor and the value of the ESR. In this converter,the reactance of<br />
C at 100 kHz is 3.2 10 Ω,which is much less than 2 10 Ω.<br />
The control-to-output transfer function is determined from the equivalent<br />
circuit diagram shown in Fig. 8.78,where:<br />
r Dr Dr r ⎫<br />
⎬⎭<br />
(8.207a, b)<br />
V V <br />
In Eq. (8.207b), r is the on-resistance of the MOSFETs and has a typical value
435 8.11 Feedback control of dc-to-dc converters<br />
of 28 mΩ at a gate-drive voltage of 10 V. The transfer function relating the output<br />
voltage to the control voltage is given by:<br />
G (s) vˆ (s) d vˆ<br />
K G (s) (8.208)<br />
vˆ (s) vˆ d <br />
<br />
in which G (s) is given by:<br />
<br />
1 s/ω<br />
G (s) V <br />
1 s/(ω Q) (s/ω )<br />
<br />
(8.209)<br />
Figure 8.78<br />
Using the numerical values shown,we compute the following values for the<br />
zero,the resonant frequency and the characteristic impedance:<br />
ω 1 (2π)15.9 10 rad/s<br />
r C <br />
ω 1 (2π)1.24 10 rad/s<br />
LC (8.210a—c)<br />
⎬⎭<br />
⎫<br />
Z L 25.7 mΩ<br />
C<br />
The Q-factor is computed for the cases of resistive and current loading:<br />
1<br />
Q <br />
Z <br />
r r R r (r r ) R <br />
Z <br />
⎫<br />
⎬<br />
⎭<br />
0.83; R <br />
0.85; R 250 mΩ<br />
(8.211)<br />
The compensation network has a transfer function H(s) of the form:<br />
H(s) K ω <br />
s<br />
(1 s/ω <br />
)<br />
[1 s/(ω <br />
/2)]<br />
(8.212)<br />
An asymptotic construction of H(s) is shown in Fig. 8.79. The pole at the origin
436 PWM switching dc-to-dc converters<br />
provides infinite gain at dc for excellent dc regulation. The double zero at ω <br />
is<br />
placed on top of ω <br />
of the power stage in Eqs. (8.209) and (8.210) to compensate for<br />
the 180° phase shift due to ω <br />
. The double pole at ω <br />
/2 provides 20 dB/dec<br />
attenuation for the switching ripple. In terms of the circuit elements in Fig. 8.77,<br />
H(s) is given by:<br />
1<br />
H(s) <br />
sR (C C )<br />
<br />
(1 sC <br />
R <br />
)[1 sC <br />
(R <br />
R <br />
)]<br />
(1 sC <br />
C <br />
R <br />
)(1 sC <br />
R <br />
)<br />
(8.213)<br />
Since ω <br />
ω <br />
/2,we can deduce from the expressions of ω <br />
and ω <br />
/2 that C <br />
C <br />
and R <br />
R <br />
,so that Eq. (8.213) can be simplified to:<br />
H(s) 1<br />
sR <br />
C <br />
(1 sC <br />
R <br />
)(1 sC <br />
R <br />
)<br />
(1 sC <br />
R <br />
)(1 sC <br />
R <br />
)<br />
(8.214)<br />
Figure 8.79<br />
The loop gain is given by:<br />
T (s) G <br />
(s)H(s) (8.8.215)<br />
An asymptotic construction of the magnitude of the loop gain,with ω <br />
placed<br />
on top of ω <br />
,is shown in Fig. 8.80. The closed-loop model can be simulated using<br />
Figure 8.80
437 8.11 Feedback control of dc-to-dc converters<br />
OrCAD/Pspice in which the large-signal average model of the PWM switch in<br />
continuous conduction mode is available as a subcircuit called VMLSCCM<br />
(voltage-mode large-signal continuous conduction mode). The simulation circuit<br />
is shown in Fig. 8.81a,and a magnitude and phase plot of T ( jω) is shown in Fig.<br />
8.81b. The phase margin and the crossover frequency are seen to be 96° and<br />
17.6 kHz,respectively. Note that the simulation program uses the large-signal<br />
average model of the PWM switch to determine the dc operating point automatically.<br />
Subsequently,the simulation program expands the large-signal model numerically<br />
at the dc operating point to determine the small-signal response.<br />
U1<br />
rL1<br />
29m<br />
L1<br />
3.3uH<br />
VMLSCCM<br />
3<br />
Vg<br />
5Vdc<br />
1<br />
A<br />
C<br />
4<br />
VC<br />
P<br />
2<br />
rC1<br />
2m<br />
C1<br />
5000uF<br />
I1<br />
10Adc<br />
0<br />
0<br />
0<br />
0<br />
Vinj<br />
1mV<br />
C1c<br />
31pf<br />
C2c<br />
2.58nF<br />
R2c<br />
1.23k<br />
R3c<br />
105k<br />
C3c<br />
1.24nF<br />
R1c<br />
50k<br />
0<br />
-<br />
+<br />
+<br />
-<br />
E_amp<br />
0<br />
Vref<br />
2.5Vdc<br />
Figure 8.81<br />
To complete the design,a properly damped input filter is added to reduce the<br />
input ripple current to about 170 mA,as shown in Fig. 8.82. The effect of the input<br />
filter on loop gain is shown in Fig. 8.83,in which the crossover frequency is seen to<br />
remain the same as before.<br />
The time-domain response of the converter in Fig. 8.82,to a 0—10-A step change<br />
in the load current,is shown in Fig. 8.84. In this figure,the predicted response of<br />
the output voltage obtained by the large-signal average model of the PWM switch
438 PWM switching dc-to-dc converters<br />
Figure 8.81 (cont.)<br />
Figure 8.82<br />
and the actual response obtained by cycle-by-cycle simulation of the actual circuit<br />
are compared. The agreement between the average and the actual response is quite<br />
satisfactory considering the fact that the simulation run time of the average model<br />
is much shorter than that of the cycle-by-cycle simulation. If we substitute the
439 8.11 Feedback control of dc-to-dc converters<br />
Figure 8.83<br />
value of the crossover frequency from Fig. 8.83 in Eq. (8.206),we obtain the<br />
estimated undershoot in the output voltage:<br />
῀V ῀I 2πf C <br />
10A<br />
19 mV (8.216)<br />
2π(16.6 10)(5000 10) <br />
which is about 4 mV away from the average value of 23 mV observed in Fig. 8.84.<br />
The reason for this discrepancy is that Eq. (8.206) is at the limit of its validity<br />
because the reactance of the output capacitor at the crossover frequency is<br />
1.92 mΩ,which is larger than the value of its ESR.<br />
Figure 8.84
440 PWM switching dc-to-dc converters<br />
8.11.2 Current feedback control<br />
A very popular type of current feedback control,known as peak current-mode<br />
control, is shown in Fig. 8.85. In this type of control,the positive ramp of the<br />
active switch current during the on-time serves as the sawtooth waveform in the<br />
pulse-width-modulating circuit. When the peak current reaches a specified threshold,<br />
V <br />
,the comparator resets a flip—flop terminating the on-time. A clock with a<br />
fixed period, T <br />
,always sets the flip—flop to initiate the on-time. It is not hard to see<br />
that it is the common terminal current that is effectively being fedback,since the<br />
active and common terminal currents of the PWM switch are coincident during<br />
the on-time. Therefore,it should be possible to derive an invariant model for peak<br />
current mode control similar to that of the PWM switch. This is shown in Fig. 8.86<br />
in which the PWM switch and the current feedback loop are combined in a new<br />
invariant structure called the current-controlled PWM switch (CC-PWM<br />
switch). The sawtooth waveform which is added to the current waveform is called<br />
the external ramp and its purpose is to provide stability,as we shall see presently.<br />
The steady-state current waveform for D 0.5 is shown in Fig. 8.87a. It is fairly<br />
easy to see by a simple geometric construction that a steady-state duty cycle<br />
greater than 0.5 cannot be sustained as shown in Fig. 8.87b. Here we see that peak<br />
Figure 8.85<br />
current control becomes unstable for D 0.5 where it breaks into subharmonic<br />
instability,i.e. the duty cycle increases with a subharmonic periodicity resulting in<br />
a periodic waveform at half the switching frequency. In Fig. 8.87a we see how an<br />
initial disturbance in the current waveform settles down for D 0.5. The addition<br />
of an external sawtooth waveform,or ramp,as shown in Fig. 8.88 extends the<br />
stable operation of peak current control to D 0.5. It can be seen from these<br />
figures that the dynamics of peak current mode control is independent of any<br />
particular converter so that it should be possible to derive an invariant model of<br />
the CC-PWM switch. Such a model should contribute to the characteristic equation<br />
of a converter,a quadratic factor whose frequency is at half the switching
441 8.11 Feedback control of dc-to-dc converters<br />
Figure 8.86<br />
frequency and whose damping becomes negative for D 0.5 in the absence of an<br />
external ramp.<br />
In order to describe the action of peak current control in invariant terms,all we<br />
need to do is describe the slopes of the common terminal current in terms of the<br />
terminal quantities of the PWM switch. It is not hard to verify that the slopes of<br />
the current signal during the on-time and off-time for any converter are given by:<br />
Figure 8.87
442 PWM switching dc-to-dc converters<br />
Figure 8.88<br />
S V L R V D<br />
L<br />
R <br />
S <br />
V <br />
L R <br />
⎫<br />
⎬<br />
⎭<br />
(8.217a, b)<br />
in which R <br />
is a scaling constant which transforms the current signal into a voltage<br />
signal and L is the effective inductance which dictates the slope of the current. In a<br />
single inductor converter, L is the same as the switched inductor in that converter.<br />
For example,in the buck converter with an input filter,shown earlier in Fig. 8.69a,<br />
L L; whereas in the Cuk converter, L L <br />
L <br />
. According to Fig. 8.88,the<br />
following dc equation holds at the switching instants:<br />
I R S DT S DT V (8.218)<br />
2 <br />
When time variations in the duty cycle are considered,all quantities in Eq. (8.218)<br />
must be replaced with their instantaneous values resulting in a sampled-data<br />
equation. If,for the moment,we ignore the effects of sampling,then we can replace<br />
all the quantities in Eq. (8.218) with their average values to determine the effect of<br />
the control law on these quantities. Hence,Eq. (8.218) together with the invariant<br />
equation of the PWM switch yield:<br />
i <br />
v <br />
R <br />
S <br />
dT <br />
R <br />
s (1 d)T <br />
2R <br />
i <br />
di <br />
v <br />
dv <br />
⎫<br />
⎬<br />
⎭<br />
(8.219a—c)<br />
If we substitute d v <br />
/v <br />
and s <br />
v <br />
R <br />
/L in Eqs. (8.219a, b),we obtain:
443 8.11 Feedback control of dc-to-dc converters<br />
i <br />
v <br />
R <br />
v <br />
v <br />
T <br />
S <br />
R <br />
v 1 v <br />
v <br />
T <br />
2L<br />
⎫<br />
⎬⎭<br />
(8.220a, b)<br />
i <br />
i <br />
v <br />
v <br />
These two equations correspond to the large-signal average model of the CC-<br />
PWM switch shown in Fig. 8.89. The capacitance C <br />
in this figure does not follow<br />
from Eqs. (8.220a, b) and has been added to predict the subharmonic instability of<br />
the current loop,as will be discussed shortly. Equations (8.220a, b) were written<br />
assuming positive i <br />
flowing out of the common terminal. If positive i <br />
flows into<br />
the common terminal,then the direction of the control and external ramp sources<br />
should be reversed. Although we can always identify the PWM switch with<br />
positive i <br />
flowing out of the common terminal,we can allow,in general,for i <br />
to<br />
flow in either direction and automatically reverse the control and ramp control<br />
sources by multiplying these sources by i <br />
/ i <br />
(with positive i <br />
defined flowing out<br />
of the common terminal). This is particularly useful in creating a user-defined<br />
subcircuit for simulation purposes. The dc model of the CC-PWM switch is<br />
essentially the same as the large-signal average model without C <br />
. Generally,it is<br />
not possible to solve for the dc operating point in terms of V <br />
in closed form<br />
because the solution is generally given by the roots of a cubic equation,as we shall<br />
see in Example 8.13.<br />
Figure 8.89<br />
The equivalent small-signal circuit model of the CC-PWM switch is obtained by<br />
perturbing the large-signal average equations in Eqs. (8.220):<br />
î <br />
vˆ<br />
k vˆ g g vˆ <br />
î <br />
Dî <br />
g <br />
vˆ<br />
g vˆ <br />
⎫<br />
⎬<br />
⎭<br />
(8.221a, b)<br />
in which the reader can verify:
444 PWM switching dc-to-dc converters<br />
k 1 I R I <br />
g T L D S 1 S 2 D <br />
<br />
g <br />
Dg <br />
DDT <br />
2L<br />
g <br />
I <br />
V <br />
⎫<br />
⎬<br />
⎭<br />
(8.222a—e)<br />
g <br />
I <br />
V <br />
These equations correspond to the circuit model shown in Fig. 8.90. Clearly,there<br />
are many different ways of expressing the small-signal parameters in Eqs. (8.222).<br />
For example,we have expressed g <br />
explicitly in terms of S <br />
/S <br />
because it is typical<br />
to specify the amount of the external ramp by its ratio to the natural current ramp<br />
during the on-time.<br />
The capacitance C <br />
in the model of the CC-PWM switch is determined quite<br />
easily by examining the dynamics of peak current control in the vicinity of half the<br />
switching frequency,as shown in fig. 8.87b. As mentioned earlier,the dynamics<br />
Figure 8.90<br />
shown in Fig. 8.87b is independent of the type of converter and is characteristic of<br />
peak current control only. This observation is verified by examining the equivalent<br />
circuit of any converter with peak current control using the model of CC-PWM<br />
switch in Fig. 8.90. Hence,with the control voltage and input held constant and the<br />
output voltage essentially at signal ground in the vicinity of half the switching<br />
frequency,the equivalent circuit model of any converter in peak current control<br />
reduces to the parallel resonant circuit shown in Fig. 8.91b. To see this,we use the<br />
buck-boost converter in Fig. 8.91a as an example and write:<br />
V <br />
constant vˆ<br />
0 (8.223)<br />
V <br />
, V <br />
constant V <br />
constant vˆ<br />
0<br />
We could have started with any other converter and arrived at the same circuit in
445 8.11 Feedback control of dc-to-dc converters<br />
Fig. 8.91b using the conditions in Eq. (8.223). This is the circuit which contributes<br />
to the characteristic equation a quadratic factor at half the switching frequency<br />
which becomes unstable for D 0.5 when S <br />
0. In fact,the characteristic<br />
equation for this parallel resonant circuit is:<br />
῀(s) 1 sLg <br />
s<br />
LC <br />
(8.224)<br />
If this circuit were to resonate at half the switching frequency,the value of C <br />
would have to be such that:<br />
ω <br />
2 1<br />
LC <br />
C <br />
4<br />
Lω <br />
(8.225)<br />
According to Eq. (8.222b),the value of g <br />
in the absence of an external ramp is<br />
given by:<br />
g T L 1 2 D (8.226)<br />
<br />
which for D 0.5 becomes negative and the parallel resonant circuit oscillates at<br />
half the switching frequency. The addition of an external ramp allows g <br />
to remain<br />
Figure 8.91<br />
positive for D 0.5,as can be seen from Eq. (8.222),thereby stabilizing the current<br />
loop. Hence,the predictions of the model of the CC-PWM switch in Fig. 8.90 and<br />
the behavior of peak current control are consistent. In the following example we
446 PWM switching dc-to-dc converters<br />
shall determine the dynamics of a boost converter with peak current control.<br />
The quadratic factor in Eq. (8.224) is common to the denominator of the<br />
small-signal dynamics of PWM converters operating in CCM with peak current<br />
control. Performing the necessary substitutions,Eq. (8.224) can be written as:<br />
῀(s) 1 <br />
s s<br />
(8.227)<br />
ω Q ω <br />
in which<br />
ω <br />
ω <br />
2<br />
1<br />
Q <br />
π S D 1 S 2 D <br />
<br />
1<br />
<br />
π D S <br />
S <br />
1 1 2<br />
⎫<br />
⎬<br />
⎭<br />
(8.228a, b)<br />
Example 8.13 A boost converter with peak current control is shown in Figs.<br />
8.92a and b. In Fig. 8.92a the CC-PWM switch is identified with positive i flowing <br />
into the common terminal and in Fig. 8.92b it is identified with positive i flowing <br />
out of the common terminal. Using the circuit in Fig. 9.92a,we replace the<br />
CC-PWM switch with its dc model as shown in Fig. 8.93,in which the arrows of<br />
the ramp and control source have been reversed. According to Fig. 8.93,we have:<br />
Figure 8.92
447 8.11 Feedback control of dc-to-dc converters<br />
I <br />
V <br />
R <br />
V <br />
V <br />
T <br />
S <br />
R <br />
V 1 V <br />
V <br />
T <br />
2L<br />
V <br />
I I <br />
V <br />
V <br />
<br />
V <br />
V <br />
V <br />
V <br />
V <br />
⎫<br />
⎬<br />
⎭<br />
(8.229a—d)<br />
Solving these simultaneously,we obtain the following cubic equation in V <br />
:<br />
V <br />
V <br />
V T S R<br />
R <br />
RT V <br />
2L<br />
R V<br />
R <br />
T RS V RT V <br />
R 2L 0 (8.230)<br />
<br />
Clearly it is not possible to obtain an analytical answer for V <br />
for a given control<br />
voltage V <br />
. Unfortunately,this is the case with peak current control regardless of<br />
the type of converter. The best that we can do is get an approximate idea by letting<br />
L be very large and ignore S <br />
. This yields:<br />
R<br />
V V V V 0 V R V V R<br />
(8.231)<br />
R <br />
The control-to-output transfer function is determined by replacing the CC-<br />
PWM switch with its small-signal model as shown in Fig. 8.94 and has the form:<br />
vˆ N (s)<br />
A <br />
vˆ D(s)<br />
<br />
(8.232)<br />
Figure 8.93
448 PWM switching dc-to-dc converters<br />
Figure 8.94<br />
At dc,the circuit in Fig. 8.94 reduces to the one in Fig. 8.95,whence the lowfrequency<br />
asymptote can be obtained:<br />
k D<br />
A <br />
g g G D(g g )<br />
<br />
R 1<br />
R 2M RT <br />
LM 1 2 S <br />
S <br />
<br />
(8.233a, b)<br />
in which G 1/R. The same result can be obtained by an implicit differentiation of<br />
Eq. (8.230) with respect to V <br />
.<br />
Figure 8.95<br />
The demoninator is obtained by setting the control source vˆ in Fig. 8.94 to zero.<br />
<br />
We already know that at high frequencies this circuit reduces to the parallel<br />
resonant circuit in Fig. 8.91b,which contributes the quadratic term at half the<br />
switching frequency in Eq. (8.224) as discussed earlier. Hence we have:<br />
D(s) (1 s/ω <br />
)[1 s/(ω <br />
Q <br />
) s/ω <br />
] (8.234)
449 8.11 Feedback control of dc-to-dc converters<br />
in which:<br />
ω <br />
ω <br />
2<br />
Q <br />
1<br />
ω <br />
Lg <br />
<br />
1<br />
π D S <br />
S <br />
1 2 D <br />
⎫<br />
⎬<br />
⎭<br />
(8.235a, b)<br />
The dominant pole ω <br />
is determined by examining the circuit in Fig. 8.94 at low<br />
frequencies in which the output filter capacitor is seen to dominate the dynamics.<br />
The conductance looking into the capacitive port is determined from Fig. 8.95,<br />
which the reader can verify to be:<br />
1<br />
R g g G D(g g ) ⎫<br />
(8.236)<br />
⎬<br />
2G T <br />
LM 1 2 S <br />
S <br />
⎭<br />
Hence,the dominant pole in Eq. (8.234) is given by:<br />
ω 1 2G T <br />
<br />
LM 1<br />
RC 2 S <br />
S <br />
<br />
C<br />
(8.237)<br />
The numerator, N (s),in Eq. (8.232) is determined by examining the null response<br />
of the circuit as shown in Fig. 8.96. A null in the output voltage implies<br />
<br />
vˆ 0,which in turn implies that:<br />
<br />
vˆ<br />
iˆ<br />
sL (8.238a, b)<br />
î <br />
Dî <br />
g <br />
vˆ<br />
<br />
⎫<br />
⎬<br />
⎭<br />
The simultaneous solution of these equations yields:<br />
D g <br />
sL 0 (8.239)<br />
Substituting g <br />
1/DR we obtain the numerator:<br />
L<br />
N (s) 1 s RD<br />
(8.240)
450 PWM switching dc-to-dc converters<br />
Figure 8.96<br />
This is the same RHP zero in the duty-ratio-to-output transfer function in continuous<br />
conduction mode as explained earlier in Fig. 8.50 and in Eqs. (8.141—<br />
8.143). This is expected since a step change in the control voltage v in peak current<br />
<br />
control results in a simultaneous step change in the duty cycle.<br />
<br />
Another model for peak current control,which actually preceded the model of<br />
the CC-PWM switch,was developed by R. Ridley and is shown in Fig. 8.97. In<br />
this figure,the power stage is modeled using the PWM switch with duty ratio<br />
control,while the current loop is modeled using the blocks k <br />
, k <br />
, F <br />
and H <br />
(s). The<br />
blocks k <br />
and k <br />
model the effect of the input and output voltages and their<br />
expressions for certain converters are:<br />
k <br />
<br />
⎫<br />
⎬<br />
⎭<br />
DT R <br />
L<br />
T R <br />
2L<br />
1 D 2 buck,buck-boost<br />
boost<br />
(8.241)<br />
k <br />
<br />
⎫<br />
⎬<br />
⎭<br />
T R <br />
L<br />
DT R <br />
2L<br />
buck<br />
boost,buck-boost<br />
(8.242)<br />
The modulator gain is modeled by F <br />
,while the effect of sampling is modeled by<br />
H <br />
(s). These are given by:<br />
1<br />
F (S S )T <br />
(8.243a, b)<br />
H (s) <br />
sT e 1 1 s π<br />
ω 2 s ; ω ω <br />
ω 2<br />
<br />
The approximation of H <br />
(s) by a quadratic is valid up to the neighborhood of half<br />
the switching frequency.<br />
⎫<br />
⎬<br />
⎭
451 8.11 Feedback control of dc-to-dc converters<br />
Figure 8.97<br />
Both modeling techniques yield the same results for the control-to-output<br />
transfer functions,as shown in the next example.<br />
Example 8.14 The complete small-signal equivalent circuit of the boost converter<br />
in peak current control using the model in Fig. 8.97 is shown in Fig. 8.98. The<br />
denominator D(s) in Eq. (8.232) is determined by setting all the excitations to zero<br />
in Fig. 8.98 and examining the resulting circuit at low and high frequencies shown<br />
in Figs. 8.99a, b,respectively. The dominant pole is obtained from Fig. 8.99a and<br />
can be shown to be given by Eq. (8.237). The roots of the high-frequency factor are<br />
obtained from Fig. 8.99b:<br />
[d ] V <br />
D D [î R H (s)F ] V <br />
D D sLî <br />
(8.244)<br />
Figure 8.98
452 PWM switching dc-to-dc converters<br />
The quadratic factor follows by canceling î <br />
in the last two equalities:<br />
H (s) <br />
sL 0 (8.245)<br />
F R V <br />
Substituting S <br />
from Eq. (8.217a) in the expression for F <br />
,we obtain:<br />
F <br />
R <br />
V <br />
1<br />
T <br />
S <br />
R V L<br />
1 S /S T D <br />
1<br />
1 S <br />
/S <br />
(8.246)<br />
Substituting Eqs. (8.245) and (8.243) in (8.246),we obtain the same quadratic factor<br />
as in Eq. (8.234).<br />
The numerator of the control-to-output transfer function is determined by<br />
examining the null response of the circuit as shown in Fig. 8.101,whence we have:<br />
Figure 8.99
453 8.11 Feedback control of dc-to-dc converters<br />
Figure 8.100<br />
d V <br />
D D î sL ⎫<br />
(8.247a, b)<br />
⎬<br />
⎭<br />
î I d Dî <br />
The simultaneous solution of these equations yields:<br />
1 sL I <br />
V <br />
D 0 (8.248)<br />
When the dc operating point, I I /D andV V ,is substituted in the<br />
<br />
above,the same RHP zero as in Eq. (8.240) is obtained.<br />
<br />
8.11.3 Voltage feedback control with peak current control<br />
In this section we shall demonstrate one of the advantages of adding a peak<br />
current feedback loop to a voltage feedback loop. In Eq. (8.215),we saw that the<br />
loop gain of the regulated buck converter was directly proportional to the input<br />
voltage because of the dc gain G of G (s) given by Eq. (8.209). Hence,if the input<br />
<br />
voltage was to vary significantly,the crossover frequency would vary proportionally,which<br />
in certain applications could be undesirable. To show how peakcurrent<br />
control renders the crossover frequency of the loop gain insensitive to the<br />
input voltage,consider the small-signal equivalent circuit of a simple buck converter<br />
without an input filter in peak-current mode control,as shown in Fig. 8.101.<br />
The control-to-output transfer function is obtained after setting vˆ 0 and is given<br />
<br />
by:<br />
vˆ 1 s/ω 1<br />
G <br />
vˆ 1 s/ω 1 s/(ω Q ) (s/ω )<br />
<br />
<br />
(8.249)
454 PWM switching dc-to-dc converters<br />
in which the quadratic factor is the same as the one discussed earlier in Eqs. (8.234)<br />
and (8.235a, b). The zero at ω <br />
is the usual zero due to r <br />
of the output filter<br />
capacitor and is given by:<br />
ω <br />
1<br />
r <br />
C <br />
(8.250)<br />
If we let s 0,then the circuit in Fig. 8.101 reduces to the current source k <br />
vˆ<br />
<br />
feeding the parallel combination of the load resistance and g <br />
. It follows that G <br />
in<br />
Eq. (8.249) is given by:<br />
G <br />
k <br />
(8.251)<br />
g G <br />
Figure 8.101<br />
in which g and k are given by Eqs. (8.222a, b).<br />
<br />
The low-frequency pole at ω is obtained by examining the circuit in Fig. 8.101<br />
<br />
at low frequencies with vˆ<br />
vˆ 0. At low frequencies, L is ineffective and the<br />
<br />
dominant time constant is formed by C C parallel with g and the load<br />
<br />
resistance. Hence,the dominant pole is given by:<br />
ω <br />
g G <br />
C <br />
C <br />
g G <br />
C <br />
(8.252)<br />
The crossover frequency is normally well above ω <br />
and well below ω <br />
ω <br />
/2.<br />
Hence,in the vicinity of the crossover,G <br />
and ω <br />
combine together in the<br />
approximate behavior of the control-to-output transfer function:<br />
1 s/ω<br />
G (s) G k (1 s/ω ) (8.253)<br />
s/ω sC <br />
in which we have made use of Eqs. (8.251) and (8.252). Since k is independent of<br />
<br />
the input voltage,it follows that the control-to-output transfer function and,<br />
hence,the loop gain are both independent of the input voltage near the crossover<br />
frequency. It follows that the crossover frequency itself is practically independent<br />
of the input voltage. An asymptotic sketch of G(s) is shown in Fig. 8.102.
455 8.11 Feedback control of dc-to-dc converters<br />
Figure 8.102<br />
The voltage feedback compensation of a dc-to-dc converter with peak-current<br />
control is somewhat simpler than that of a converter without peak-current control.<br />
The reason of course is that the power stage in current mode has a dominant<br />
single pole whereas a power stage without peak-current control and operating in<br />
CCM has a dominant complex pole-pair. A typical compensation scheme for<br />
converters in peak-current control is shown in Fig. 8.103. The transfer function<br />
relating the control voltage to the converter output voltage of the amplifier in Fig.<br />
8.103 is given by:<br />
H(s) vˆ (s)<br />
vˆ<br />
in which:<br />
(s) H <br />
1 ω <br />
s<br />
1 s<br />
ω <br />
(8.254)<br />
H R R <br />
ω 1<br />
R C <br />
1<br />
ω <br />
1<br />
R C C <br />
R <br />
C <br />
⎫<br />
⎬⎭<br />
(8.255a—c)<br />
The pole at ω <br />
is optional and is placed at or above half the switching frequency<br />
mainly to attenuate high-frequency switching noise. The zero at ω <br />
is placed<br />
between the dominant pole of the power stage and the desired crossover frequency.<br />
It should be placed low enough to provide adequate phase margin but not so low<br />
as to cause a sluggish response. A numerical illustration of a practical voltage<br />
feedback loop around a power stage with peak-current control is given in the<br />
following example.
456 PWM switching dc-to-dc converters<br />
Figure 8.103<br />
Example 8.15 An OrCAD/Pspice simulation of the equivalent circuit of a buck<br />
converter with peak-current control and output voltage feedback control is shown<br />
in Fig. 8.104. The subcircuit CMLSCCM (current-mode large-signal continuous<br />
conduction mode) is a large-signal model of the current-controlled PWM switch in<br />
continuous conduction mode. The converter operates at 100 kHz from an input<br />
voltage range of 13 to 26 V and has an output voltage of 5 V at 0—10 A. The load is<br />
assumed to behave as a current source so that its incremental resistance is infinite,<br />
i.e. G 0. <br />
The reader can verify that the output ripple voltage is dictated by r of the <br />
output filter capacitor C instead of C and that it has a maximum value of 25 mV,<br />
<br />
which occurs when the input voltage is 26 V.<br />
rL1<br />
50m<br />
L1<br />
16uH<br />
1<br />
Vg<br />
13Vdc<br />
4<br />
A<br />
VC C<br />
2<br />
P<br />
3<br />
U1<br />
CMLSCCM<br />
rC1<br />
10m<br />
C1<br />
1000uF<br />
0<br />
I_Load<br />
10Adc<br />
0<br />
V_inj<br />
10mV<br />
0<br />
C2c<br />
500pF<br />
C1c<br />
20pF<br />
R2c<br />
160K<br />
R1c<br />
10K<br />
0<br />
-<br />
+<br />
+<br />
-<br />
E_amp<br />
V_ref<br />
5Vdc<br />
0<br />
0<br />
Figure 8.104
457 8.11 Feedback control of dc-to-dc converters<br />
The two parameters of peak-current control that must be determined are the<br />
amount of the external stabilizing ramp, S ,and the current-to-voltage conversion<br />
<br />
resistance R ,both of which are shown in the model of the CC-PWM switch in Fig.<br />
<br />
8.86. The value of R is dictated by the maximum value of the current-sense voltage<br />
<br />
signal which,for most commercially available PWM control chips,is in the range<br />
of a few volts. In this design,we shall assume the maximum value of the currentsense<br />
signal to be 2.5 V and that the maximum current to be sensed is about 12 A.<br />
Hence:<br />
R 2.5 V 0.2 Ω (8.256)<br />
12 A<br />
Also,in this design,the amount of external ramp is chosen to yield Q <br />
0.5 in the<br />
subharmonic quadratic factor in Eq. (8.228). Hence,according to Eq. (8.228):<br />
Q <br />
<br />
1<br />
π D S <br />
S <br />
1 1 2<br />
0.5 (8.257)<br />
The minimum duty cycle,assuming an efficiency of η 85%,is computed to be:<br />
D <br />
V <br />
5V 0.225 (8.258)<br />
ηV (0.85)26 V<br />
<br />
The slope of the inductor current during the off-time can now be computed:<br />
S <br />
V R <br />
L<br />
5 V(0.2 Ω)<br />
6.25 V/μs (8.259)<br />
16 μH<br />
Substituting Eqs. (8.258) and (8.259) in Eq. (8.257) yields the amount of external<br />
ramp:<br />
S <br />
10 V/μs (8.260)<br />
The values of R <br />
, S <br />
, L and the switching frequency are the arguments which are<br />
supplied to the subcircuit CMLSCCM,which in turn computes the value of C <br />
according to Eq. (8.225).<br />
The loop gain is given by the product of H(s) and G <br />
(s):<br />
1 s 1 ω <br />
ω s 1<br />
T (s) T <br />
1 s 1 s 1 s s<br />
(8.261)<br />
ω ω ω Q ω <br />
in which T <br />
is given by:<br />
T <br />
k <br />
g <br />
R <br />
R <br />
(8.262)
458 PWM switching dc-to-dc converters<br />
The numerical values of k <br />
and g <br />
are given by:<br />
k <br />
1 R <br />
5 Ω (8.263)<br />
g <br />
T <br />
L <br />
D S <br />
S <br />
1 2 D <br />
⎫<br />
⎬<br />
⎭<br />
0.416 Ω; V <br />
13 V<br />
0.364 Ω; V <br />
26 V<br />
(8.264)<br />
The following values are computed for the numerical determination of the loop<br />
gain:<br />
T k R 192; V 13 V<br />
<br />
g R 219; V 26 V <br />
⎫<br />
ω 1<br />
1<br />
<br />
(2π)15.9 krad/s<br />
r C (10 mΩ)(1000 μF) <br />
ω 1<br />
1<br />
<br />
(2π)1989 rad/s<br />
R C (160 kΩ)(500 pF) <br />
ω 1<br />
1<br />
<br />
(2π)50 krad/s (8.265a—g)<br />
R C (160 kΩ)(20 pF) <br />
⎬<br />
ω ω (2π)50 krad/s<br />
2<br />
⎫<br />
⎬<br />
⎭<br />
Q <br />
<br />
1<br />
π D S <br />
S <br />
1 1 2 <br />
ω <br />
g <br />
C <br />
<br />
⎫<br />
⎬<br />
⎭<br />
(2π)66 rad/s; V <br />
13 V<br />
(2π)58 rad/s; V <br />
26 V<br />
⎫<br />
⎬<br />
⎭<br />
0.5; V <br />
26 V<br />
0.4; V <br />
13 V<br />
⎭<br />
Note that the shape of the loop gain past the dominant pole, ω <br />
,is practically<br />
independent of the input voltage for the same reason given earlier in Eq. (8.253).<br />
In Fig. 8.105,a magnitude and phase plot of the loop gain is obtained using an<br />
injection signal,as shown in the simulation program in Fig. 8.104. As expected the<br />
shape of the loop gain and the crossover frequency are independent of the input<br />
voltage.
459 8.11 Feedback control of dc-to-dc converters<br />
Figure 8.105<br />
Figure 8.106<br />
The dynamic response of the output voltage to a 0—10 A step change in the<br />
output load current is shown in Fig. 8.106. The continuous trace shows the<br />
response obtained using the large-signal average model of the CC-PWM switch<br />
(CMLSCCM) in Fig. 8.105. Also shown in Fig. 8.106 is the actual response of the<br />
converter obtained by cycle-by-cycle simulation. The agreement between the<br />
predictions of the cycle-by-cycle simulation and the large-signal average model<br />
simulation is generally good.
460 PWM switching dc-to-dc converters<br />
8.12 Review<br />
An ideal dc-to-dc converter transforms the dc level of a voltage or a current source<br />
in a controllable and nondissipative manner using switches,inductors and capacitors.<br />
The inductors and capacitors form effective low-pass filters which extract the<br />
dc component of the switching waveforms and provide smooth dc voltages and<br />
currents at the input and output ports of the converter. A practical converter<br />
dissipates a relatively small amount of power in comparison with its output power<br />
because of nonideal components. The ratio of the output voltage to the input<br />
voltage is defined as the conversion ratio and is controlled by the duty cycle of the<br />
switches. Although,in principle,a myriad number of switches,driven in myriad<br />
ways,can be used to generate nonisolated converters ad nauseam,a pair of<br />
switches,driven in a complementary fashion,is sufficient to generate basic converters<br />
which accomplish all the necessary functions of dc-to-dc power conversion.<br />
The buck,the boost,the buck-boost,the Cuk,the Watkins—Johnson and its<br />
bilateral inverse are among the basic converters discussed in this chapter. The<br />
buck converter steps down the input voltage and the boost converter steps up the<br />
input voltage. The sign of the output voltage in both of these converters follows the<br />
sign of the input voltage. The Cuk and the buck-boost converters can either step<br />
up or step down the input voltage and the sign of their output voltage is always<br />
opposite that of the input voltage. The Watkins—Johnson and its bilateral inverse<br />
can either step up or step down the input voltage while the sign of their output<br />
voltage can either be the same or opposite that of the input voltage. Other<br />
converters,some of which use four switches,are also discussed.<br />
Like amplifiers,dc-to-dc converters are nonlinear circuits whose exact solutions<br />
can only be determined numerically using circuit simulation programs. Nevertheless,the<br />
vast amount of design-oriented analytical techniques available for amplifier<br />
circuits are also desirable for dc-to-dc converter circuits. In an amplifier circuit,<br />
these techniques are applied once an equivalent circuit model of the amplifier is<br />
obtained by replacing the transistor,or the vacuum tube,with its equivalent circuit<br />
model. In order to apply these techniques to a PWM converter circuit,we have<br />
introduced the concept of the PWM switch and derived an equivalent circuit<br />
model for it. The PWM switch,just like the transistor,is a three-terminal nonlinear<br />
device which can be replaced with its equivalent circuit model to yield an<br />
equivalent circuit model of a PWM converter circuit. The model of the PWM<br />
switch does not depend on any particular converter topology,just like the model<br />
of a transistor does not depend on any particular amplifier topology. Hence,the<br />
analyses of the dynamics of amplifiers and PWM converters are identical. For
461 Problems<br />
example,to determine the small-signal characteristics of a PWM converter,first a<br />
dc analysis is performed and the dc operating point of the PWM switch is<br />
determined. Second,the small-signal parameters in the model of the PWM switch<br />
are evaluated at the dc operating point and a small-signal equivalent circuit of the<br />
converter is obtained from which the input and output impedance,the line-tooutput<br />
and the control-to-output transfer functions are determined.<br />
Various feedback control techniques can be used to regulate the output voltage<br />
of a converter against variations in the input voltage and the load current. In a<br />
single-loop feedback system,only the output voltage is fed back into the PWM<br />
control circuit where it is compared with a reference voltage. In a two-loop<br />
feedback system,in addition to the output voltage,the current in the active switch<br />
is fed back to improve the loop-gain characteristics of the voltage feedback loop.<br />
The nature of the sampled data of the active-switch current feedback loop must be<br />
correctly accounted for whenever a continuous-time model of the converter is<br />
sought. This can be done either by deriving a model for the current feedback loop<br />
alone or by deriving a model for the PWM switch and the current feedback loop<br />
combined together. The combination of the PWM switch and the current feedback<br />
loop is called the current-controlled PWM switch.<br />
Problems<br />
8.1 Linear series voltage regulator. A simplified diagram of a series regulator<br />
using a bipolar transistor is shown in Fig. 8.107a. An equivalent circuit diagram is<br />
shown in Fig. 8.107b.<br />
(a) Show that the line-to-output transfer function and the output impedance are<br />
given by:<br />
v (s) <br />
v (s) 1<br />
1<br />
a r 1 sC R R α <br />
r <br />
αa <br />
(8.266a, b)<br />
Z <br />
(s) <br />
R r <br />
αa <br />
1 sC R r <br />
αa <br />
⎫<br />
⎬<br />
⎭<br />
(b) Ifa <br />
is an operational amplifier,then its gain can be approximated by<br />
a(s) ω <br />
/s. Show that the regulator in this case becomes unstable as R <br />
.<br />
One way to prevent this oscillation is to connect a large capacitance from the<br />
emitter to ground in order to shunt r <br />
. Determine the transfer functions in part
462 PWM switching dc-to-dc converters<br />
(a) with C connected from emitter to ground and discuss how the circuit<br />
becomes stable. (When a linear regulator is placed far from the source, r <br />
accounts for the resistance of the connecting wires. This is why manufacturers<br />
of linear regulator ICs recommend that a large capacitance (100 μF,solid<br />
tantalum) be connected immediately to the input terminals of the linear<br />
regulator whenever it is placed far from V <br />
.)<br />
Figure 8.107<br />
8.2 Linear shunt regulator. Show that for the shunt regulator in Fig. 8.108a we<br />
have:<br />
r<br />
R r<br />
v (s)<br />
<br />
<br />
<br />
i (s) Z (s) Z (s) <br />
1 a <br />
(8.267)<br />
r 1 sC R r <br />
<br />
1 a <br />
8.3 Incremental output resistance.<br />
(a) Show that the incremental output resistance of an ideal unregulated converter<br />
is given by:
463 Problems<br />
Figure 8.108<br />
M /I<br />
r V <br />
(8.268)<br />
1 V M /V <br />
Hint: Recall that M <br />
,in general,can be a function of α, V <br />
and I <br />
. Also we have:<br />
r dV d(M V ) dM<br />
V <br />
(8.269)<br />
dI dI dI <br />
(b) Deduce that when M is only a function of control parameter,then r 0.<br />
<br />
(c) Certain converters have certain modes of operation in which they act as<br />
gyrators,i.e. they transform the input voltage source to a current source which<br />
is linearly proportional to the input voltage:<br />
I <br />
g <br />
(α)V <br />
(8.270)<br />
in which g <br />
is some transconductance that depends on the control parameter α.<br />
(An example of such a converter is the series resonant converter operating in an<br />
even-type discontinuous conduction mode.) It is clear then that the output<br />
impedance for such a converter is infinite. Show that r <br />
indeed is infinite in Eq.<br />
(8.268) for such converters.<br />
Hint: Show that M <br />
can be written as:
464 PWM switching dc-to-dc converters<br />
M <br />
g <br />
R <br />
g <br />
V <br />
I <br />
(8.271)<br />
8.4 Transfer function of the LC low-pass filter. Use the 2-EET to determine the<br />
transfer function of the LC low-pass filter shown in Fig. 8.109.<br />
Figure 8.109<br />
8.5 Output ripple voltage in the buck converter.<br />
(a) Derive the expression of the output ripple voltage in the buck converter<br />
starting with the expressions of the individual components of the ripple voltage<br />
in Eqs. (8.29a, b).<br />
(b) Derive the same expression by recognizing that the peak-to-peak ripple voltage<br />
on the capacitor is equal to the amount of charge delivered to the capacitor<br />
in the time interval T /2 t (T T )/2 divided by the capacitance. This is<br />
<br />
shown in Fig. 8.110 in which I (t) is the ripple component of the inductor<br />
<br />
current.<br />
Figure 8.110<br />
8.6 Input ripple current of a buck converter with an input filter. Using simple<br />
geometry,derive the expression of the peak-to-peak ripple current of the input<br />
filter of the buck converter in Eq. (8.55).<br />
Hint: Recognize that the double integral in Eq. (8.54) is nothing more than the area under the<br />
triangle shown in Fig. 8.111,whose height is half the area of the rectangular voltage pulse during<br />
T <br />
.
465 Problems<br />
Figure 8.111<br />
8.7 Parallel damping of the input filter. An LC filter with parallel damping is<br />
shown in Fig. 8.112a. Use the 3-EET to show that the characteristic equation is<br />
given by:<br />
D(s) 1 s C R R L s LC LC R <br />
R R <br />
<br />
sLCC <br />
R <br />
(8.272)<br />
In order to ensure that R <br />
C <br />
damps the LC resonance (and does not create a new<br />
lower resonance),it should be chosen such that:<br />
1<br />
R <br />
C <br />
ω <br />
1<br />
LC<br />
(8.273)<br />
Figure 8.112<br />
If R 0,as in the case of loading by a regulating switching converter,we should<br />
further require that:<br />
R <br />
R (8.274)<br />
so that:<br />
R R <br />
0 (8.275)<br />
Hence,provided R is not too small,practical values of R <br />
can be realized. Show<br />
that under these considerations D(s) can be factored:
466 PWM switching dc-to-dc converters<br />
D(s) (1 sC R ) s L<br />
R R sLC (8.276)<br />
<br />
<br />
in which we see that the Q-factor of the quadratic term is given by Q <br />
in Eq. (8.59).<br />
Hint: Use the reference circuit in Fig. 8.112b to derive D(s) in Eq. (8.272).<br />
8.8 Series damping of the input filter. Following the same procedure as in<br />
Problem 8.7,derive similar results for the series-damped input filter shown in Fig.<br />
8.113.<br />
Figure 8.113<br />
8.9 Output ripple voltage of the boost converter under conditions of no load. Show<br />
that under conditions of no load (R <br />
) the current through S <br />
(assuming S <br />
is<br />
a bi-directional switch) in the boost converter in Fig. 8.19 has the shape shown in<br />
Fig. 8.114. Determine the ripple voltage across the capacitor and show that its<br />
peak-to-peak value is given by:<br />
V<br />
<br />
V <br />
DDT <br />
8LC<br />
T M 1<br />
<br />
8LC M <br />
⎫<br />
⎬<br />
⎭<br />
(8.277a,b)<br />
Figure 8.114<br />
8.10 Output ripple voltage of the buck-boost converter under conditions of no<br />
load. Show that the peak-to-peak ripple voltage in the buck-boost converter<br />
under no-load conditions (assuming bi-directional switches) is given by:
467 Problems<br />
V<br />
(DT )<br />
⎫<br />
V 8LC <br />
<br />
8LC<br />
1 T ⎬⎭<br />
<br />
1 M <br />
<br />
(8.278a,b)<br />
8.11 Isolated Cuk converter. The isolated Cuk converter is shown in Fig. 8.115.<br />
Show that the conversion ratio is given by:<br />
M <br />
n D D<br />
(8.279)<br />
Figure 8.115<br />
The magnetizing inductance of the transformer can have a significant effect on<br />
the control-to-output transfer function because it can resonate with C <br />
and C <br />
,<br />
both of which must be properly damped.<br />
8.12 The control-to-output transfer function of the tapped buck converter.<br />
(a) Determine the transfer function in Eq. (8.147).<br />
(b) Examine the current waveform i (t) in Figs. 8.51a, b,and explain why the zero<br />
<br />
in the control-to-output transfer function is in the right-half plane for n 1<br />
and in the left-half plane for n 1.<br />
(c) Derive the analytical expression of this zero using a similar argument given for<br />
the boost converter in Eqs. (8.138—8.143).<br />
8.13 Effect of parasitic elements on the voltage conversion ratio of the Watkins–<br />
Johnson converter.<br />
(a) Substitute the dc model of the PWM switch in the converter shown in Fig. 8.56<br />
and include a parasitic resistance, r <br />
,in series with the active terminal (or at any<br />
other place that you like). Determine the new conversion ratio using the EET<br />
with r <br />
as the designated extra element.<br />
(b) Show that the conversion in the presence of r <br />
is zero for D 0.5.<br />
(c) Sketch the conversion ratio in part (b) and determine its maximum value.
468 PWM switching dc-to-dc converters<br />
8.14 Inverse of the Watkins–Johnson converter. Identify the PWM switch in the<br />
converter shown in Fig. 8.58 and determine its voltage conversion ratio.<br />
8.15 Frequencyresponse of a quadratic converter. An OrCAD/Pspice simulation<br />
of the quadratic converter in Fig. 8.64 is shown below in which the control-tooutput<br />
transfer function is determined by expanding the large-signal model of the<br />
PWM switch (VMLSCCM) at a duty cycle of D 0.35. This is accomplished by<br />
setting the control voltage at a dc value of 1.35 V with a small-signal ac voltage<br />
superimposed on it.<br />
Using the numerical values of the components in Fig. 8.116a,verify the controlto-output<br />
transfer function derived in Eq. (8.185) against Fig. 8.116b.<br />
rL2<br />
0.233<br />
L2<br />
1200uH<br />
3<br />
Vg<br />
25V<br />
F1<br />
GAIN = 1<br />
1<br />
U1<br />
VMLSCCM<br />
A<br />
C<br />
4<br />
VC<br />
P<br />
2<br />
C2<br />
5uF<br />
0<br />
R1<br />
8.05<br />
0<br />
0<br />
rL1<br />
0.133<br />
L1<br />
524uH<br />
V_control<br />
ACMAG = 10mV<br />
DC = 1.35Vdc<br />
E1<br />
GAIN = -1<br />
+<br />
+<br />
-<br />
-<br />
0<br />
0<br />
1<br />
A<br />
3<br />
C<br />
4<br />
VC<br />
P<br />
U2<br />
VMLSCCM<br />
2<br />
0<br />
C1<br />
5uF<br />
0<br />
0<br />
Figure 8.116<br />
Notes: (a) Pspice simply ignores the actual magnitude of the ac voltage,shown here as 10 mV,<br />
and numerically expands the model of the PWM switch at the dc operating point and determines<br />
the numerical transfer function of the linearized circuit. (b) In the specification of the<br />
parameters of VMLSCCM,the height of the ramp is set to 1 V and the valley voltage at 1 V.<br />
Hence,a dc value of 1.35 V in the control voltage results in a duty cycle of 0.35.<br />
8.16 The high-frequencyresistance r e<br />
in the model of the PWM switch. (a) Show<br />
that r <br />
r<br />
<br />
for the converter in Fig. 8.59. (b) Show that r <br />
(r <br />
R)(1 n)/n for<br />
the Watkins—Johnson converter in Fig. 8.56. (c) Determine r <br />
for the converter in<br />
Fig. 8.58.<br />
8.17 Storage-time modulation in the Cuk converter. The effect of storage-time<br />
modulation on the line-to-output transfer function of the Cuk converter can be
469 Problems<br />
Figure 8.116 (cont.)<br />
easily studied by using the model of the PWM switch in Fig. 8.74 as shown in Fig.<br />
8.117. In particular,we are interested in determining the numerator of the line-tooutput<br />
transfer function. Using the technique explained in (Section 2.4),show that:<br />
v (s)<br />
s<br />
<br />
v (s) 1 ω <br />
1 s<br />
ω <br />
<br />
D(s)<br />
<br />
(8.280)<br />
where:<br />
ω 1<br />
r C ⎫<br />
(8.281a, b)<br />
DD<br />
ω C (DDr Dr Dr r )<br />
<br />
in which the modulation resistance is given by:<br />
⎬<br />
⎭<br />
r <br />
V <br />
I <br />
V <br />
DI <br />
(8.282)<br />
It can be seen that ω <br />
can be either in the left-half plane or the right-half plane<br />
depending on the relative magnitudes of the parasitic resistances and the modulation<br />
resistance which can have either a positive or a negative value depending<br />
upon the type of base drive used.
470 PWM switching dc-to-dc converters<br />
Figure 8.117<br />
REFERENCES<br />
1. S. Cuk and R. D. Middlebrook,‘‘A New Optimum Topology Switching dc-to-dc<br />
Converter’’, Proceedings of the 1977 IEEE Power Electronics Specialist Conference,PESC<br />
77 Record,<br />
pp. 160—179.<br />
2. S. Cuk,‘‘Switching dc-to-dc Converter with Zero Input or Output Current’’, Proceedings of<br />
the 1978 IEEE Industry and Applications Society Annual Meeting,October 1—5,Record,pp.<br />
1131—1146.<br />
3. S. Cuk,‘‘A New Zero-Ripple dc-to-dc Converter and Integrated Magnetics’’,Proceedings of<br />
the 1980 IEEE Power Electronics specialist Conference,PESC 80 Record,pp. 12—32.<br />
4. V. Vorpérian,‘‘Simplified analysis of PWM Converters Using the Model of the PWM<br />
Switch: Parts I and II’’, IEEE Transactions on Aerospace Electronic Systems,Vol. 26,No. 3,<br />
1990,<br />
pp. 490—505.<br />
5. B. Israelson,J. Martin,C. Reeve and V. Scown,‘‘A 2.5-kV High Reliability TWT Power<br />
Supply: Design <strong>Techniques</strong> for High Efficiency and Low Ripple’’, Proceedings of the 1977<br />
IEEE Power Electronics Specialist Conference,PESC 77 Record,pp. 109—130.<br />
6. D. Maksimovic and S. Cuk,‘‘General Unified Properties and Synthesis or PWM<br />
Converters’’, Proceedings of the 1989 IEEE Power Electronics Specialist Conference,PESC<br />
89 Record,<br />
pp. 515—525.<br />
7. W. Polivka,P. Chetty and R. Middlebrook,‘‘State-Space Average Modelling of Converters<br />
with Parasitics and Storage-Time Modulation’’, Proceedings of the 1980 IEEE Power<br />
Electronics Specialists Conference,PESC 80 Record.<br />
8. C. Deisch,‘‘Switching Control Method Changes Power Converter into a Current Source’’,<br />
Proceedings of the 1978 Power Electronics Specialist conference,PESC 78 Record,pp.<br />
300—306.<br />
9. V. Vorpérian,‘‘Analysis of Current-Controlled PWM Converters Using the Model of the<br />
Current-Controlled PWM Switch’’, Power Conversion and Intelligent Motion Conference,<br />
1990,pp. 183—195.
471 References<br />
10. R. B. Ridley,‘‘A New Continuous-Time Model for Current-Mode Control’’,IEEE<br />
Transactions of Power Electronics,Vol. 6,April 1991,pp. 271—280.<br />
11. V. Vorpérian and S. Cuk,‘‘A Complete DC Analysis of the Series Resonant Converter’’,<br />
Proceedings of the 1982 Power Electronics Specialist Conference,PESC 82 Records,pp.<br />
85—100.<br />
12. R. D. Middlebrook,‘‘Input Filter Considerations in the Design and Application of<br />
Switching Regulators’’, Proceedings of the 1976 IEEE Industry and Applications Society<br />
Annual Meeting,October 11—14,1976 Record,pp. 366—382.<br />
13. V. Vorpérian,‘‘The Effect of the Magnetizing Inductance on the Small-Signal Dynamics of<br />
the Isolated Cuk Converter’’, IEEE Transactions on Aerospace and Electronic Systems,<br />
Vol. 32, No. 3,July 1996,pp. 967—983.
台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />
電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />
[References]<br />
Introduction<br />
[1] A. J. Forsyth and S. V. Mollov, "Modelling and control of DC-DC converters," IEEE<br />
Power Engineering Journal, vol. 12, no. 5, pp. 229-236, 1998. [8 pages]<br />
[2] D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, G. C. Verghese, "<strong>Modeling</strong> and<br />
simulation of power electronic converters," Proceedings of the IEEE, vol. 89, no. 6,<br />
pp. 898-912, June 2001. [15 pages]<br />
[3] V. Ramanarayanan, "DC to DC Converters - Dynamics," Switched Mode Power<br />
Conversion Course Note, Indian Institute of Science, 2002. [28 pages]<br />
[4] V. Ramanarayanan, "Closed Loop Control of Power Converters," Switched Mode<br />
Power Conversion Course Note, Indian Institute of Science, 2002. [16 pages]<br />
[5] V. Ramanarayanan, "Current Programmed Control of DC to DC Converters,"<br />
Switched Mode Power Conversion Course Note, Indian Institute of Science, 2002.<br />
[10 pages]<br />
[6] V. Ramanarayanan, "Computer Aided Simulation of a Few Power Supplies,"<br />
Switched Mode Power Conversion Course Note, Indian Institute of Science, 2002.<br />
[20 pages]<br />
<strong>Modeling</strong> <strong>Techniques</strong>: State-Space Averaging<br />
[7] R. D. Middlebrook and S. C'uk, "A general unified approach to modeling switching<br />
converter power stages," IEEE PESC Conf. Rec., pp. 18-34, 1976. [17 pages]<br />
[Pioneer paper]<br />
[8] R. D. Middlebrook, "Small-signal modeling of PWM switched-mode power<br />
converters," IEEE Proc. vol. 76, no. 4, pp. 343-354, April 1988. [12 pages]<br />
[9] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, "Generalized<br />
averaging method for power conversion circuits," IEEE Trans. Power Electron., vol.<br />
6, pp. 251–259, Apr. 1991. [9 pages]<br />
[10] B. Lehman and R. M. Bass, "Recent advances in averaging theory for PWM DC-DC<br />
converters," Proceedings of the 35th IEEE Decision and Control, pp. 4467-4471,<br />
Dec. 1996. [5 pages]<br />
<strong>Modeling</strong> <strong>Techniques</strong>: PWM Switch<br />
[11] Christophe Basso, "A tutorial introduction to simulating current mode power stages,"<br />
PCIM, February 1997.<br />
[12] V. Voperian, "Simplified analysis of PWM converters using model of PWM switch,<br />
part I: CCM mode & part II: DCM mode," IEEE Trans. Aerospace Electronic<br />
Systems, vol. 26, no. 3, May 1990. [16 pages]<br />
[13] K.D.T. Ngo, "Alternate forms of the PWM switch models," IEEE Trans. Aerospace<br />
Electronic Systems, vol. 35, no. 4, 1283-1292, Oct. 1999. [10 pages]<br />
<strong>Modeling</strong> <strong>Techniques</strong>: Equivalent Circuit <strong>Modeling</strong><br />
[14] P. R. K. Chetty, "CIECM modeling of switching DC-DC converters in CIC mode,"<br />
IEEE Trans. Aerospace Electronic Systems, vol. 17, no. 6,pp. 802-808, Nov 1981. [9<br />
pages]<br />
[15] P. R. K. Chetty, "CIECM modeling of switching DC-DC converters in DIC mode,"<br />
IEEE Trans. on IE, vol. 18, no.3, pp. 295-299, May/June 1982. [5 pages]<br />
[16] P. R. K. Chetty, "<strong>Modeling</strong> and design of switching regulators," IEEE Trans.<br />
Aerospace Electronic Systems, vol. 18, no. 3, pp. 333-344, May 1982. [12 pages]
台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />
電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />
[17] S. R. Sanders and G. C. Verghese, "Synthesis of averaged circuit models for<br />
switched power converters," IEEE Trans. Circuits Syst., vol. 38, pp. 905–915, Aug.<br />
1991.<br />
<strong>Modeling</strong> <strong>Techniques</strong>: Large-Signal <strong>Modeling</strong><br />
[18] F. Guinjoan, J. Calvente, A. Poveda, and L. Martinez, "Large-signal modeling and<br />
simulation of switching DC-DC converters," IEEE Trans. on Power Electronics, vol.<br />
12, no. 3, 485-494, May 1997. [10 pages]<br />
[19] G. Nirgude, R. Tirumala, and N. Mohan, "A new, large-signal average model for<br />
single-switch DC-DC converters operating in both CCM and DCM," IEEE PESC<br />
Conf. Rec., pp. 1736-1741, 2001. [6 pages]<br />
[20] D. Maksimovic and S. Cuk, "A unified analysis of PWM converters in discontinuous<br />
modes," IEEE Trans. on Power Electronics, vol. 6, no. 3, 476-490, July 1991. [15<br />
pages]<br />
<strong>Modeling</strong> <strong>Techniques</strong>: Comparison and Evaluation<br />
[21] W. M. Moussa and J. E. Morris, "Comparison between state space averaging and<br />
PWM switch for switch mode power supply analysis," IEEE Proc. of Southern Tier<br />
Technical Conference, 25 April 1990. [7 pages]<br />
<strong>Modeling</strong> <strong>Techniques</strong>: Computer Simulation Technique<br />
[22] Sam Ben-Yaakov, "Simulation of Power Conversion Systems: From the State of the<br />
Art to Future Trends," pp. 13-24, PCIM Proc., Nuremberg, 1999. [12 pages]<br />
[23] N. Mohan, W. P. Robbins, T. M. Undeland, R. Nilssen, and O. Mo, "Simulation of<br />
Power Electronic and Motion Control Systems-An Overview (Invited Paper),"<br />
Proceedings of the IEEE, vol. 82, no. 8, pp. 1287-1302, Aug. 1994. [16 pages]<br />
[24] H. Jin, "Behavior-mode simulation of power electronic circuits," IEEE Trans. on<br />
Power Electronics, vol. 12, no. 3, pp. 443-452, May 1997. [10 pages]<br />
[25] Sun Jian and H. Grotstollen, "Symbolic analysis methods for averaged modeling of<br />
switching power converters," IEEE Trans. on Power Electronics, vol. 12, no. 3, pp.<br />
537-546, May 1997. [10 pages]<br />
[26] Christophe Basso, "Average simulations of FLYBACK converters with SPICE3," May<br />
1996. [19 pages]<br />
CAD of SPS<br />
[27] Y. S. Lee, Chap. 8: CAD of Converters and Regulators, Marcel Dekker, Inc., 1993.<br />
[89 pages]<br />
[28] S. Chwirka, "Power converter design using the Saber simulator," A step-by-step<br />
guide to the design of a two-switch, voltage-mode, forward converter using the<br />
Saber simulator," Analogy, Inc., 1991. [32 pages]<br />
[29] Edited by Charles E. Hymowitz, Power Specialists Application Note Book, Intusoft,<br />
1998. [171 pages]<br />
[30] Michele Sclocchi, SWITCHING POWER SUPPLY DESIGN: DISCONTINUOUS<br />
MODE FLYBACK CONVERTER, National Semiconductor. (MATHCAD Design<br />
Example)<br />
[31] Michele Sclocchi, SPS Design: PWM current mode dual synchronous buck<br />
converter using LM5642, National Semiconductor. (MATHCAD Design Example)
台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />
電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />
Frequency Response Measurement<br />
[32] R. D. Middlebrook, "Measurements of loop gain in feedback systems," International<br />
J. of Electronics, vol. 38, no. 4, pp. 485-512, April 1975. [28 pages]<br />
[33] Cho and Lee, "Measurement of loop gain with the digital modulator," IEEE Trans. on<br />
Power Electronics, vol. 1, no. 1, pp. 55-62, Jan. 1986. [8 pages]<br />
[34] R. B. Ridley, B. H. Cho, and F. C. Lee, "Analysis and interpretation of loop gains of<br />
multiloop-controlled SPS," IEEE Trans. on Power Electronics, vol. 3, no. 4, pp. 489-<br />
498, Oct. 1988. [10 pages]<br />
[35] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, "Generalized<br />
averaging method for power conversion circuits," IEEE Trans. on Power Electronics,<br />
vol. 6, no. 2, pp. 251-259, April 1991. [9 pages]<br />
[36] S. R. Sanders and G. C. Verghese, "Synthesis of averaged circuit models for<br />
switched power converters," IEEE Trans. on Circuits and Systems, vol. 38, no. 8, pp.<br />
905-915, Aug. 1991. [10 pages]<br />
[37] Ray Ridley, Frequency Response Measurements for Switching Power Supplies,<br />
Ridley Engineering, Inc., 2001.<br />
[38] LeCroy, Measure The Phase Margin of Power Supply Control Loops, LeCroy<br />
Application Brief No. LAB 748.<br />
[39] Powertek Technical Note, "Measuring closed loop feedback system response,"<br />
application note of Powertek GP102 Frequency Response Analyzer.<br />
[40] Venable Technical Paper #02: Specify Gain and Phase Margins On All Your Loops,<br />
Venable Instruments.<br />
[41] Venable Technical Paper #13: Testing Power Factor Correction Circuits For Stability,<br />
Venable Instruments.<br />
[42] Venable Technical Paper #14: New <strong>Techniques</strong> for Loop Stability Testing in PFC<br />
Circuits, Venable Instruments.<br />
[43] Venable Technical Paper #16: Practical Testing <strong>Techniques</strong> for Modern Control<br />
Loops, Venable Instruments.<br />
[44] Venable Technical Paper #17: Testing and Stabilizing Feedback Loops in Today's<br />
Power Supplies, Venable Instruments.<br />
[45] Venable Technical Paper #18: New <strong>Techniques</strong> for Measuring Feedback Loop<br />
Transfer Function, Venable Instruments.<br />
Control Loop Design<br />
[46] L. H. Dixon, Closing the Feedback Loop, Unitrode Application Note, 1988. [31 pages]<br />
[47] Sable, Ridley, and Cho, "Comparison of performance of single-loop and currentinjection-control<br />
for PWM converters which operate in both continuous and<br />
discontinuous modes of operation," IEEE PESC Conf. Rec., 1990. [6 pages]<br />
[48] G. K. Schoneman and D. M. Mitchell, "Closed-loop comparisons of switching<br />
regulators with current-injected control," IEEE Trans. on Power Electronics, vol. 3,<br />
no. 1, pp. 31-43, Jan. 1988. [13 pages]<br />
[49] R. D. Middlebrook, "Topics in multiple-loop regulators and current-mode<br />
programming," IEEE Trans. on Power Electronics, vol. 2, no. 2, pp. 109-124, April<br />
1987. [16 pages]<br />
[50] G. Ioannidis, A. Kandianis, and S. N. Manias, "Novel control design for the buck<br />
converter," IEE Proceedings-Electric Power Applications, vol. 145, no. 1, pp. 39-47,<br />
Jan. 1998. [9 pages]
台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />
電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />
[51] S. Hiti and D. Boroyevich, "Control of boost converter with adjustable output voltage<br />
and unknown resistive load," IEEE PESC Conf. Rec., pp. 294-300, 1994. [7 pages]<br />
[52] F. C. Lee, Y. Yu, and M. F. Mahmoud, "A unified analysis and design procedure for<br />
the standardized control module for DC-DC switching regulators," VPEC<br />
Publications. [18 pages]<br />
[53] F. C. Lee and R. A. Carter, "Investigations of stability and dynamic performances of<br />
switching regulators employing current-injected control," VPEC Publications. [13<br />
pages]<br />
[54] F. C. Lee, Z. D. Fang, and T. H. Lee, "Optimal design strategy of switching<br />
converters employing current injected control," VPEC Publications. [15 pages]<br />
Control Loop Design: Output Impedance<br />
[55] G. K. Schoneman and D. M. Mitchell, "Output impedance considerations for<br />
switching regulators with current-injected control," IEEE Trans. on Power Electronics,<br />
vol. 4, no. 1, pp. 25-35, Jan. 1989. [10 pages]<br />
Control Loop Design: Input Filter Effect<br />
[56] H. Tsafrin and S. Ben-Yaakov, "The dynamic response of PWM DC-DC converters<br />
with input filters," IEEE APEC Conf. Rec., 764-771, Boston, 1992. [8 pages]<br />
<strong>Modeling</strong> and Control of Flyback and Forward Converters<br />
[57] M. K. Kazimierczuk and S. T. Nguyen, "Small-signal analysis of open-loop PWM<br />
flyback dc-dc converter for CCM," IEEE Aerospace and Electronics Conference,<br />
1995. [8 pages]<br />
[58] Z. D. Fang, T. H. Lee, and F. C. Lee, "Some design considerations of switching<br />
regulator employing current injected control," Power Conversion International, 1983.<br />
[20 pages]<br />
[59] T. H. Chen, W. L. Lin, and C. M. Liaw, "Dynamic modeling and controller design of<br />
flyback converter," IEEE Trans, on Aerospace and Electronic Systems, vo. 35, no. 4,<br />
pp. 1230-1239, Oct. 1999. [10 pages]<br />
[60] I. D. Jitaru and Seban Birca-Galateanu, "Small-signal characterization of the<br />
forward-flyback converters with active clamp," IEEE APEC Conf. Rec., pp. 626-632,<br />
1998. [7 pages]<br />
<strong>Modeling</strong> and Control of Converters with Multiple Outputs<br />
[61] Yie-Tone Chen ( 陳 一 通 ), "Small-signal analysis of a synchronous-switch post<br />
regulator with coupled inductors," IEEE Transactions on Industrial Electronics, vol.<br />
47, no. 1, pp. 55-66, Feb. 2000. [12 pages]<br />
[62] A. Ferreres, J. A. Carrasco, E. Maset, and J. B. Ejea, "Small-signal modeling of a<br />
controlled transformer parallel regulator as a multiple output converter high efficient<br />
post-regulator," IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 183-191, Jan.<br />
2004. [9 pages]<br />
[63] Youhao Xi and P. K. Jain, "A single-stage converter topology to achieve efficient onboard<br />
power distribution for multi-points loads," IEEE APEC Conf. Rec., pp. 885-891,<br />
2002. [7 pages]<br />
[64] D. Maksimovic, R. W. Erickson, and C. Griesbach, "<strong>Modeling</strong> of cross-regulation in<br />
converters containing coupled inductors," IEEE Transactions on Power Electronics,<br />
vol. 15, no. 4, pp. 607-615, July 2000. [9 pages]
台 灣 新 竹 交 通 大 學 808 實 驗 室 (Power Electronics Systems and Chips Design Lab)<br />
電 力 電 子 系 統 與 晶 片 、 開 關 電 源 、 綠 色 能 源 、 數 位 電 源 、 馬 達 控 制 、 伺 服 控 制<br />
[65] Y. Xi, P.K. Jain and Y. Liu, "A precisely regulated multiple output forward converter<br />
topology," IEEE APEC Conf. Rec., pp. 986-992, 2000.<br />
[66] Xi Youhao and P. K. Jain, "Small signal model and control of an independently<br />
regulated multiple output forward converter topology," IEEE APEC Conf. Rec., pp.<br />
221-227, 2000. [7 pages]<br />
[67] Q. Chen, F. C. Lee, and M. M. Jovanovic, "Small-signal analysis and design of<br />
weighted voltage-mode control for a multiple-output forward converter," IEEE Trans.<br />
Power Electronics, vol. 10, pp. 589–596, Sept. 1995.<br />
[68] Y. L. Lin and K. H. Liu, "A new synchronous-switch post regulator for multi-output<br />
forward converters," IEEE PESC Conf. Rec., 1990, pp. 693–696, 1990.<br />
[69] I. J. Lee, D. Y. Chen, Y. P. Wu, and C. Jamerson, "<strong>Modeling</strong> of control loop behavior<br />
of magamp post regulators," IEEE Trans. on Power Electronics, pp. 476–483, Oct.<br />
1990.<br />
[70] Y. T. Chen and F. Y. Shih, "New multi-output switching converters with MOSFETrectifier<br />
post regulators," IEEE Transactions on Industrial Electronics, vol. 45, pp.<br />
609–616, Aug. 1998.<br />
[71] M. Goldman and A. F. Witulski, "Small signal effects of the coupled inductor in a<br />
multiple-output converter," Proc. HFPC, pp. 510–523, 1994.<br />
[72] A. F. Witulski, "<strong>Modeling</strong> and design of transformers and coupled inductors," IEEE<br />
PESC Conf. Rec., pp. 589–595, 1993.<br />
[73] S. Cuk and Z. Zhang, "Coupled-inductor analysis and design," IEEE PESC Conf.<br />
Rec., pp. 655–665, 1986.<br />
[74] J. A. Carasco, J. B. Ejea, A. Ferreres, E. J. Dede, "A multiple output regulator using<br />
the variable transformer turns ratio regulator technique," IEEE PESC Conf. Rec.,<br />
pp.1098-1103, 1995.<br />
[75] Y. Xi, P. K. Jain, Y. Liu and R. Orr, "A zero voltage switching and self reset forward<br />
converter topology," IEEE APEC Conf. Rec., pp. 827-833, 1999.<br />
[76] C. Jamerson and T. Long, "Design techniques for synchronous-switch post<br />
regulators," Proc. HFPC, 1993, pp. 10–20.<br />
[77] Y. Lin and K. Liu, "A new synchronous switch post regulator for multi-output<br />
forward," IEEE APEC Conf. Rec., pp. 693-696, 1990.<br />
[78] H. Matsuo and F. Kurokawa, "Precise Regulation of multiple output voltages in a dcdc<br />
converter," IEEE PESC Conf. Rec., pp. 275-283, 1980.<br />
[79] H. Matsuo, "Comparison of multiple output dc/dc converter using cross regulation,"<br />
IEEE PESC Conf. Rec., pp.169-185, 1979.<br />
[80] K. Harada, T. Ninomiya and T. Nabeshima, "On the precise regulation of multiple<br />
outputs in a dc-dc converter with an energy storage reactor," IEEE PESC Conf. Rec.,<br />
1979.<br />
[81] T. G. Wilson, Jr., "Cross regulations in an energy-storage DC-to-DC converter with<br />
two regulated outputs," IEEE PESC Conf. Rec., pp. 190–199, 1977.<br />
Design Examples<br />
[82] Unitrode, General Power Supply Selection Guides, [13 pages]<br />
[83] Unitrode, UC3842/3/4/5 provides low-cost current mode control, [UC3842/3/4/5 data<br />
sheet] [21 pages]<br />
[84] J.-J. Shieh, "Closed-form oriented loop compensator design for peak current-mode<br />
controlled DC-DC regulators," IEE Proc. Elect. Power Appli., vol. 150, no. 3, pp. 351-<br />
355, May 2003. [6 pages]