铪
发现
编辑1923年由荷兰科学家科斯特(D.Coster)和匈牙利科学家乔治·德海韦西(George de Hevesy)由X射线光谱中发现。
背景故事
编辑在莫斯莱对元素的X射线研究后,确定在钡和钽之间应当有16个元素存在。这时除了61号元素和72号元素之外,其余14个元素都已经被发现,而且它们都属于今天所属的镧系,也就是当时认为的稀土元素。
那么72号元素应当归属于稀土元素?还是和钛、锆同属一族?当时多数化学家主张属于前者。法国化学家乌尔班1911年从镱的氧化物中分离出镥后,又分离出一个新的元素。在1914年乌尔班去英国将该元素的样品送请莫斯莱进行X射线光谱检测,得到的结论是否定的,没有发现相当于72号元素的谱线。乌尔班坚信新元素的存在,认为出现这样的结果是因为新研制的机器灵敏度不够,无法检测到样品中痕量新元素的存在。他回到巴黎后与光谱科学家达维利埃共同用第一次世界大战后改进的X射线谱仪进行检测。1922年5月,他们宣布测到两条X谱线,因此断定新元素是存在的。1913年,丹麦物理学家玻尔提出了原子结构的量子论。接着在1921-1922年之间又提出原子核外电子排布理论。玻尔认为根据他的理论,72号元素不属于稀土元素,而和锆一样是同族元素。也就是说,72号元素不会从稀土元素矿物中出现,而应当从含锆和钛的矿石中去寻找。
根据玻尔的推论,在1922年,匈牙利化学家德梅韦西和荷兰物理学家科斯特对多种含锆矿石进行了X射线光谱分析,果真发现了这一元素。他们为了纪念该元素的发现所在地——丹麦的首都哥本哈根,以哥本哈根的拉丁语名称Hafnia命名它为hafnium,元素符号定为Hf。后来德梅韦西制得了几毫克纯的铪的样品。
来源
编辑它存在于大多数锆矿中,地壳中含量很少。常与锆共存,无单独矿石。
生产
编辑从含钛矿石钛铁矿和金红石的重矿物砂矿石的矿床中可以开采出大量的锆,因此也会产生大部分的铪。[4]锆是一种良好的核燃料棒包覆金属,它的中子捕获截面非常小,且高温下化学稳定性良好。然而,由于铪可以吸收中子,锆中的铪杂质对核反应堆有危害,在核电使用中有必要将锆与铪完全分离。无铪锆的生产会将锆和铪分离,这也是铪的主要来源。[5]
铪和锆的化学性质极其相似,故难以分离。[6]最初使用的方法有利用氟代酸铵溶解度不同的分级结晶法,[7]以及利用氯化物沸点不同的分级蒸馏法,[8]但并未工业化。20世纪40年代后,核反应堆对无铪锆的需求推进了分离工艺的研发,如使用多种溶剂的液–液萃取法,现在仍然用于铪的生产。[9]
约半数金属铪是提纯锆的副产物。一些分离提纯方法的产物是四氯化铪,[10]被钠或镁还原可制备金属铪(克罗尔法)。[11]
- HfCl4 + 2 Mg —1100 °C→ 2 MgCl2 + Hf
Arkel和de Boer 利用了化学传递反应开发出了进一步提纯铪的方法:在密闭容器中,铪与碘在500 °C下反应,形成四碘化铪;再在1700 °C的钨丝上,发生逆反应,分解得到碘和铪。铪在钨丝上沉积为固体,而碘可以继续与剩余的铪反应,使转化趋于完全。[12][13]
- Hf + 2 I2 —500 °C→ HfI4
- HfI4 —1700 °C→ Hf + 2 I2
性质
编辑晶体结构有两种:在1300℃以下时,为六方密堆积(α型);在1300℃以上时,为体心立方(β型)。具有塑性的金属,当有杂质存在时质变硬而脆。空气中稳定,灼烧时仅在表面上发暗。细丝可用火柴的火焰点燃。性质似锆。不和水、稀酸或强碱作用,但易溶解在王水和氢氟酸中。
化合物
编辑在大部分铪的化合物中,铪呈现+4价,在溶液中为无色的。二氧化铪、四氯化铪和四碘化铪是常见的化合物。铪盐在水中会发生水解,但倾向比相应的锆盐要小。[14]
铪的化合物Ta4HfC5是目前已知物质中熔点最高的,为4,263 K(3,990 °C)[15];尽管在2015年有模拟计算预测一种Hf-C-N (碳氮化铪)材料的熔点比其高200 K,但尚未经实验证实[16]。
铪可以形成各种各样的配合物,如氟铪酸盐有HfF2−
6、HfF3−
7、HfF4−
8等几种,氯、溴、碘代的铪酸盐有过报道。[17]乙酰丙酮铪[18]、乙醇铪[19]等有机盐也是已知的。
用途
编辑由于它容易发射电子而很有用处,如用作白炽灯的灯丝[来源请求]。铪和钨或钼的合金用作高压放电管的电极用作X射线管的阴极。由于它对中子有较好的吸收能力,抗腐蚀性能好,强度高,因此常用来做核反应堆的控制棒,以减慢核子链反应的速率,同时抑制原子反应的"火焰"。
参考文献
编辑- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry. 2022-05-04. ISSN 1365-3075. doi:10.1515/pac-2019-0603 (英语).
- ^ Lide, D. R. (编). Magnetic susceptibility of the elements and inorganic compounds. CRC Handbook of Chemistry and Physics (PDF) 86th. Boca Raton (FL): CRC Press. 2005. ISBN 0-8493-0486-5. (原始内容 (PDF)存档于2011-03-03).
- ^ Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Nagorny, S.S.; Nahorna, V.V.; Nisi, S.; Wang, P. A new measurement of 174Hf alpha decay. Nuclear Physics A. 2025, 1053: 122976. doi:10.1016/j.nuclphysa.2024.122976.
- ^ Gambogi, Joseph. Yearbook 2008: Zirconium and Hafnium (pdf). United States Geological Survey. [2008-10-27]. (原始内容存档 (PDF)于2008-12-17).
- ^ Schemel, J. H. ASTM Manual on Zirconium and Hafnium. ASTM International. 1977: 1–5. ISBN 978-0-8031-0505-8.
- ^ Larsen, Edwin; Fernelius W., Conard; Quill, Laurence. Concentration of Hafnium. Preparation of Hafnium-Free Zirconia. Ind. Eng. Chem. Anal. Ed. 1943, 15 (8): 512–515. doi:10.1021/i560120a015.
- ^ van Arkel, A. E.; de Boer, J. H. (1924). "Die Trennung von Zirkonium und Hafnium durch Kristallisation ihrer Ammoniumdoppelfluoride (The separation of zirconium and hafnium by crystallization of the double ammonium fluorides)". Zeitschrift für anorganische und allgemeine Chemie (in German). 141: 284–288. doi:10.1002/zaac.19241410117.
- ^ van Arkel, A. E.; de Boer, J. H. (1924). "Die Trennung des Zirkoniums von anderen Metallen, einschließlich Hafnium, durch fraktionierte Distillation (The separation of zirconium and hafnium by fractionated distillation)". Zeitschrift für anorganische und allgemeine Chemie (in German). 141: 289–296. doi:10.1002/zaac.19241410118.
- ^ Hedrick, James B. "Hafnium (页面存档备份,存于互联网档案馆)" (pdf). United States Geological Survey. Retrieved 2008-09-10.
- ^ Griffith, Robert F. Zirconium and hafnium. Minerals yearbook metals and minerals (except fuels). The first production plants Bureau of Mines. 1952: 1162–1171 [2017-07-01]. (原始内容存档于2016-03-03).
- ^ Gilbert, H. L.; Barr, M. M. Preliminary Investigation of Hafnium Metal by the Kroll Process. Journal of the Electrochemical Society. 1955, 102 (5): 243. doi:10.1149/1.2430037.
- ^ Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 3-11-007511-3.
- ^ van Arkel, A. E.; de Boer, J. H. (1925). "Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall (Production of pure titanium, zirconium, hafnium and Thorium metal)". Zeitschrift für anorganische und allgemeine Chemie (in German). 148: 345–350. doi:10.1002/zaac.19251480133.
- ^ 北师大 等. 无机化学(第四版)下册. 高等教育出版社, 2003. ISBN 978-7-04-011583-3. pp 793
- ^ Andrievskii, R. A.; Strel'nikova, N. S.; Poltoratskii, N. I.; Kharkhardin, E. D.; Smirnov, V. S. Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC. Soviet Powder Metallurgy and Metal Ceramics. 1967, 6 (1): 65–67. ISSN 0038-5735. doi:10.1007/BF00773385.
- ^ Hong, Qi-Jun; van de Walle, Axel. Prediction of the material with highest known melting point fromab initiomolecular dynamics calculations. Physical Review B. 2015, 92 (2). ISSN 1098-0121. doi:10.1103/PhysRevB.92.020104.
- ^ 申泮文, 车云霞, 罗裕基 等. 无机化学丛书 第八卷 钛分族 钒分族 铬分族. 科学出版社, 1998. ISBN 7-03-005554-3
- ^ Zherikova, K. V.; Morozova, N. B.; Kuratieva, N. V.; Baidina, I. A.; Igumenov, I. K. Synthesis and structural investigation of hafnium(IV) complexes with acetylacetone and trifluoroacetylacetone. Journal of Structural Chemistry. November 2005, 46 (6): 1039–1046. doi:10.1007/s10947-006-0239-2.
- ^ 王长红, 杨声海, 陈永明 等. 电化学合成乙醇铪的参数优化、表征和热性能分析. 中国有色金属学报(英文版), 2017, 27 (3):694-700
外部链接
编辑- 元素铪在洛斯阿拉莫斯国家实验室的介绍(英文)
- EnvironmentalChemistry.com —— 铪(英文)
- 元素铪在The Periodic Table of Videos(诺丁汉大学)的介绍(英文)
- 元素铪在Peter van der Krogt elements site的介绍(英文)
- WebElements.com – 铪(英文)