タグ

ROCに関するcartman0のブックマーク (3)

  • 【ROC曲線とAUC】機械学習の評価指標についての基礎講座 - これで無理なら諦めて!世界一やさしいデータ分析教室

    機械学習ではモデルを作って終わり、ということは無く、モデル作成後にテストデータを使って「当に良いモデルなのか?」という評価を必ず行う必要があります。 では具体的にどのように評価をすれば良いのか?という話になりますが、今回は代表的な評価指標である ROC AUC ついて説明していきます。 この辺りについては、以下書籍でよくまとまっているので、よろしければ是非! Pythonと実データで遊んで学ぶ データ分析講座 作者: 梅津雄一,中野貴広出版社/メーカー: シーアンドアール研究所発売日: 2019/08/10メディア: 単行(ソフトカバー)この商品を含むブログを見る ※追記※ スマホだと数式がうまく表示されない可能性がありますので、こちらのリンク、もしくはPCから購読頂けますと幸いです。 正解率の問題点と、偽陽性率と真陽性率ROC・AUCに入る前に、それらを計算するための性能評価値につい

    【ROC曲線とAUC】機械学習の評価指標についての基礎講座 - これで無理なら諦めて!世界一やさしいデータ分析教室
  • ROC曲線

    試験の点数から○○大学に合格(T)か不合格(F)かを予測したいときや,検査値から病気(T)か健康(F)かを判断したいときなどがあります。要するに,与えられた値から,真(TRUE)か偽(FALSE)かを判断したいわけです。 例として右の表のような場合を考えましょう。 与えられた値をどこで切っても,TとFは完全には分離できません。例えば11で切って,11以上を陽性(positive),11未満を陰性(negative)とした場合,10個のTのうち5個がpositiveに入りますので,true positive(真陽性)の割合は0.5です。また,5個のFのうち1個がpositiveに入りますので,false positive(偽陽性)の割合は0.2です。そこで,(0.2, 0.5) をプロットします。このように,区切る値(閾値,カットオフポイント)をいろいろ変えて,横軸にfalse positi

    cartman0
    cartman0 2017/12/16
  • ROC曲線とは何か、アニメーションで理解する。 - Qiita

    なので、水色の面積(真陽性:病気の人を「病気」と判断)をなるべく大きくして、緑の面積(偽陽性:健康な人を「病気」と判断してしまう)を小さくすると、識別の性能が高いと言えます。 以上のデータからROC曲線を描くと下記のグラフになります。 これがどういうものかを、次項より説明していきます。 また、今回識別境界をx=27においていますが、これが良い境界であることは最初のグラフの2つの分布を引き算したグラフを描いてみるとわかります。正しい判定(水色面積:病気の人を病気と判断)を増やし、誤った判断(健康な人を病気と判断)を少なくするので、水色の面積は+、緑色の面積はーとなります。水色から緑を引いた曲線を描き、左から順に識別境界を右にずらして考えると、x=27のところより右はマイナスにしかならないので、面積が最大のところは下記のとおりx=27のところということがわかります。 2. ROC曲線の書き方

    ROC曲線とは何か、アニメーションで理解する。 - Qiita
  • 1