タグ

statisticsに関するdecoy2004のブックマーク (3)

  • R vs Python:データ解析を比較 | POSTD

    主観的な観点からPythonとRの比較した記事は山ほどあります。それらに私たちの意見を追加する形でこの記事を書きますが、今回はこの2つの言語をより客観的な目線で見ていきたいと思います。PythonとRを比較をしていき、同じ結果を引き出すためにはそれぞれどんなコードが必要なのかを提示していきます。こうすることで、推測ではなく、それぞれの言語の強みと弱みの両者をしっかりと理解できます。 Dataquest では、PythonとRの両方の言語のレッスンを行っていますが、データサイエンスのツールキットの中では両者ともそれぞれに適所があります。 この記事では、NBA選手の2013/2014年シーズンの活躍を分析したデータセットを解析していきます。ファイルは ここ からダウンロードしてください。解析はまずPythonとRのコードを示してから、その後に2つの異なるアプローチを解説し議論していきます。つま

    R vs Python:データ解析を比較 | POSTD
  • 統計学の代表的な手法を実践する (1) - Qiita

    西内啓氏著書の「統計学が最強の学問である」と「統計学が最強の学問である実践編」はシリーズ累計 37 万部を突破する異例のベストセラーとなりました。読まれた方も多いのではないでしょうか。 この前後 2 冊では、統計学の教科書に登場する様々な手法を「一般化線形モデル」という考え方に基づき一枚の表にまとめています。 ここではその表を引用致します。 統計学が最強の学問である p170 一般化線形モデルをまとめた一枚の表 統計学が最強の学問である実践編 p344 統計学の理解が劇的に進む 1 枚の表増補版 これらの 2 冊は、ビジネスでよく使う統計手法について、一通りそれらがどういう意味を成しているか、どのようなアイデアから生まれてどう使えばいいかといったことが解説されています。 また上著実践編 p357 では書では得られない 3 つの知識として ツールと実データを使った実践 数理面での手法の深い

    統計学の代表的な手法を実践する (1) - Qiita
    decoy2004
    decoy2004 2015/02/13
    カイ二乗検定
  • 当社データサイエンティストがこよなく愛している『mコマンド』で数億行を高速集計する話 - ハウテレビジョンブログ

    どうも。 1月に入社したばかりの、データ分析担当のn_maoです。 と言いながら、最近はHTMLとjsばかりいじっております。 それはそれで楽しいです。 さて今回はデータ分析のざっくりとした仕事内容と、その分析にかかる手間を省くツールをご紹介します。 データ分析仕事 まずは私の行っているデータ分析という仕事の内容をご紹介します。 私の主な仕事は大きく分けて4つです。 売上げ、会員登録数などの簡単な集計&自動レポーティング データベースからの知識発見(いわゆるデータ分析) 分析結果をもとにした企画立案 実施された企画の効果検証 あくまで私個人の仕事内容であり、データ分析者全員に当てはまるわけではありません。 アルゴリズムの研究開発の方や、インフラ寄りの方もいらっしゃるでしょう。 ですが、同じ職種の方で業務範囲が被っている方も少なからずいらっしゃると思います。 これら4つの業務の中で一番時間

    当社データサイエンティストがこよなく愛している『mコマンド』で数億行を高速集計する話 - ハウテレビジョンブログ
    decoy2004
    decoy2004 2015/02/07
    awk と何が違うの?
  • 1