タグ

algorithmに関するebo-cのブックマーク (6)

  • 30分でわかる高性能な圧縮符号vertical code - EchizenBlog-Zwei

    検索エンジンの転置インデックスなどデータ列を小さいデータサイズで持たせたい、という状況がある。こういう場合圧縮符号を使うのが一般的でunary符号やgamma符号、delta符号など様々な種類がある。 圧縮符号の中でイチオシなのがvertical code(vcode)。これは岡野原(@hillbig)氏によって提案された圧縮符号で単純な仕組みでdelta符号並の性能を誇っている。 記事ではvcodeのポイントを絞って30分でわかるように解説してみる。 vcodeは棚にを並べる作業を連想すると理解しやすい。棚は予め高さが決まっているので全てのが入るような棚を用意する。つまり というようなものを想像する。 この棚は8冊のが並んでいるが左から5冊目のが他よりも背が高い。このため5冊目のに合わせて背の高い棚が必要になる。だが他のは5冊目のほどに背が高くないので、5冊目が

    30分でわかる高性能な圧縮符号vertical code - EchizenBlog-Zwei
  • データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家
  • DextroII先生のロマサガ閃きシステムのアルゴリズム講座

    つしま(あなたの原稿はどこから) @chartreuse37 @DextroII 先生ッ! サガシリーズの閃きシステムの概念ってどうなってるんですか!? って弟が言ってました よかったらちらっと教えてください 2011-11-13 18:26:54

    DextroII先生のロマサガ閃きシステムのアルゴリズム講座
  • P2Pの専門知識ゼロから独自DHTを実装評価するまでの学習方法と参考資料まとめ - 情報科学屋さんを目指す人のメモ(FC2ブログ版)

    何かのやり方や、問題の解決方法をどんどんメモするブログ。そんな大学院生の活動「キャッシュ」に誰かがヒットしてくれることを祈って。 P2P、特にDHTの前提知識が無い状態から、オリジナルDHTアルゴリズムを実装・評価できるようになるまでの学習方法と参考資料をまとめました。 基的なアルゴリズムの仕組みから、実装評価に用いるツールキットの使い方までを短期間で学習することが出来ます。 「P2Pに関する卒論を書こうと思っている人」や「P2Pアプリケーションの開発前に、アルゴリズムをテストしたい人」、「なんとなくP2Pアルゴリズムに興味が出た人」などにぴったりだと思います。また、研究室での後輩教育用資料にするのも良いと思います。実際に使いましたし。 ここで紹介する資料一覧は以下の通りです。 資料1:「ChordアルゴリズムによるDHT入門」 資料1ーオプション1:「DHTアルゴリズムSymphony

  • Twitterを利用した男女間マッチングシステム「社会主義的彼女ったー」 - chokudaiのブログ

    はじめに 今このブログを読んでいる貴方。貴方には、現在恋人はいますか? いるわけありませんよね? 一般的に、彼女や彼氏といった、恋人がいる状態は、恋人がいない状態と比べて、幸せである、という認識を持っている人が多いのではないかと思います。ですが、実際恋人がいる人は、非常に少ないでしょう。これはどうしてか?答えは簡単です。男性と女性を上手くマッチングさせる方法が、確立されていないからです。 こうした、きちんとした制度が確立されていない状態でマッチングを行った結果が、今の惨状です。イケメン、高学歴等の、生まれ持った武器を持った人ばかりに女性が集まり、一般の男性の元には人っ子一人として集まらない。万一彼女が居たとしても、何かしら不満を抱えていることが殆どでしょう。女性サイドだとしても、これは同様かと思います。不平等。非効率。この現状を言い表すのに、最も適した単語でしょう。 ああ、何と嘆かわしいこ

    Twitterを利用した男女間マッチングシステム「社会主義的彼女ったー」 - chokudaiのブログ
    ebo-c
    ebo-c 2011/04/01
    "プレテストの最中に、サービス制作者の彼女がマッチングされない、という、大きなバグを抱えている事実が発生してしまったため、現在修正を行っております。"→負けるな最速アルゴリズマー!
  • 大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記

    id:naoya さんのLatent Semantic Indexing の記事に触発されて、ここ1週間ほどちょくちょく見ている行列の近似計算手法について書いてみる。ここでやりたいのは単語-文書行列(どの単語がどの文書に出てきたかの共起行列)や購入者-アイテム行列(どの人がどのを買ったかとか、推薦エンジンで使う行列)、ページ-リンク行列(どのページからどのページにリンクが出ているか、もしくはリンクをもらっているか。PageRank などページのランキングの計算に使う)、といったような行列を計算するとき、大規模行列だと計算量・記憶スペースともに膨大なので、事前にある程度計算しておけるのであれば、できるだけ小さくしておきたい(そして可能ならば精度も上げたい)、という手法である。 行列の圧縮には元の行列を A (m行n列)とすると A = USV^T というように3つに分解することが多いが、も

    大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記
  • 1