Keisuke Nishitani @Keisuke69 お恥ずかしい話なんだがこれの答えがなぜ25%になるのかわからん。正解は25%らしいんだが。娘の中学受験の過去問 「800円で仕入れた商品を1000円で売ったときの利益率」 pic.x.com/U9IiEt1EcU 2025-01-12 21:18:47
セガが手掛ける線形代数の解説書籍『セガ的 基礎線形代数講座』、2025年1月30日(木)に日本評論社より発売 セガが2021年6月に公開した社内勉強会用の資料を書籍化したもの ゲーム開発などで必須な線形代数について、基礎の振り返りから、3次元回転の表現に関する「クォータニオン」なども解説 セガの開発技術部課長である山中 勇毅氏が執筆した、ゲーム開発領域などで必要な線形代数の知識を解説した書籍『セガ的 基礎線形代数講座』が、日本評論社より発売されます。 発売日は2025年1月30日(木)。総ページ数は256ページ、価格は2,970円(税込)。Amazon.co.jpなど各種ECサイトにて予約を受付中です。 線形代数はゲーム開発領域を含む幅広い理工系技術の基礎を担う分野で、ゲーム開発では主に3DCG技術の基礎として活用されています。本書は、仕事で数学を活用する人や、改めて数学を学び直したい人に
このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 2023年、米国の高校生ネキヤ・ジャクソンさんとカルセア・ジョンソンさんは、地元の高校のコンテストで驚くべき成果を披露した。それは、三角関数を用いてピタゴラスの定理を証明するという方法の発見であった。 「a^2+b^2=c^2」で表されるピタゴラスの定理は、よく知られている数学の基本定理である。この式は、直角三角形において、最も長い辺(斜辺)の2乗が、残りの二辺の2乗の和に等しいことを示している。 これまで数多くの数学者たちが代数学や幾何学を用いてこの定理を証明してきたが、三角関数による証明はより難しかった。三角関数の基本公式自体がピタゴラスの定理を前
drivesketch @drivesketch こどもの教育市場で、いまだに公文式とそろばん教室に一定の人気がある理由も同じかも。事前に「計算」を鍛えることで、計算で消費される認知リソースをなるべく下げ、「数学的思考」になるべく多くのリソースを割けるようにするねらい。 x.com/tokoroten/stat… ところてん @tokoroten あとは、「子供向けのプログラミングスクール」で、なんで「キーボードタイピング」の授業が行われているのか?という話でもあったりする タイピングは慣れないと認知負荷が高すぎて、タイピングに認知リソースの大半を持ってかれてしまうので、コードを認識することすら困難だったりする
こんにちは。コグラフ株式会社データアナリティクス事業部の塩見です。 私は「カイ二乗検定」に対して、当初は納得できない部分がありました。やりたいことに対して、必要以上に複雑な手法のように感じたからです。同じような疑問を持つ方も多いのではないでしょうか。この記事では、私が「カイ二乗検定」を理解し納得するまでの過程をお伝えします。 結論から言いますと、一度頻度論を離れてベイズ統計の視点で考えてみたところ、実は非常に単純なことを行っていると気づきました。その後、カイ二乗検定を再び考え直すと、すんなり理解できたというお話です。 カイ二乗検定の手順まず、サイコロを何度も投げ、出た目の回数(実測値)を記録します。偏りのないサイコロでは、全ての目が均等に出るはずです。この理論的な回数を理論値と呼びます。 次に、実測値と理論値の差を計算し、その差を二乗してから理論値で割ります。この計算結果を「ズレ」と呼びま
元過激派の霊夢 @ykk_saikai 本当にヤバすぎる今世紀最大のニュースで草。 東大、贈与の相互作用によって様々な社会構造が組織されうることを理論的に解明:日本経済新聞 nikkei.com/article/DGXZRS… 2024-09-07 02:28:41 リンク 日本経済新聞 東大、贈与の相互作用によって様々な社会構造が組織されうることを理論的に解明 - 日本経済新聞 【プレスリリース】発表日:2024年09月05日贈り物の交換による地位の競争と社会構造の変化――文化人類学への統計物理学的アプローチ――【発表のポイント】◆文化人類学で議論されてきた贈与による覇権争いを数理モデルで表現し、贈与の規模や頻度に応じて多様な社会構造が組織されることを計算機シミュレーションで明らかにした。◆文化人類学の現象に統計物理学のアプローチを導入することで、個人レベル 73 users 112
藤原京左京七条一坊跡(奈良県橿原市上飛騨町)から2001年に出土した飛鳥時代末期の木簡1点を奈良文化財研究所(奈文研)が再調査した結果、当時の役人が使っていた「九九早見表」の一部とみられることが分かり、同研究所紀要で4日公表した。担当した桑田訓也・主任研究員(古代史)によると、最古級の九九早見表の確認例。律令国家で九九が広く用いられたことを示す貴重な史料という。 木簡は長さ16・2センチ、幅1・2センチ。縦書きで1行に文字群が3段分書かれ、肉眼で「十一」「六」「六八」の計5文字のみ判別できた。奈文研は当初、1段目を「九々(くく)八十一」、3段目を「六八卌(しじゅう)八」と推定。九九を練習したメモ代わりの木簡と解釈した。
ネット上で物議を醸した”ある投稿” 先日、ネット上である投稿が話題となりました。物議をかもしたのは、小学校の算数ドリルの一ページ。小学校3年生レベルの、ごく普通の割り算問題に混じって「18÷0」という問題が。これに対して、投稿者のお子さんが「答えなし」と回答したところ、先生はバツをつけた上に「正しい答えは0」と書き直したのです。 何が問題なのか、と思われるかもしれません。実は、数学において「0で割る」行為は、認められていない。ためしに、お手持ちの電卓や、スマートフォンで「18÷0」を試してみてください。きっと「エラー」と出るはずです。 小学校は、教育機関です。もちろん、誤ったことを教えてはいけないはず。それに、教員側は仮にも大学教育までを修了してきているはずなのに、正しい答えである「答えなし」にバツをつけただけではなく、「18÷0=0」と初歩的かつ致命的なミスをしてしまった。これについて、
インド科学研究所の科学者らが、高エネルギー粒子の振る舞いを研究している最中に、偶然「円周率(π)」の新しい表現方法を発見したことを報告しました。 Phys. Rev. Lett. 132, 221601 (2024) - Field Theory Expansions of String Theory Amplitudes https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.221601 Indian Institute of Science https://iisc.ac.in/events/iisc-physicists-find-a-new-way-to-represent-pi/ 円周率の新しい公式を発見したのは、インド科学研究所高エネルギー物理学センターのAninda Sinha氏(左)とArnab Saha
このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 英インペリアル・カレッジ・ロンドン(ICL)の教授であり、数学者のケビン・バザードさんの単著論文「Grothendieck’s use of equality」は、数学者が等式の概念をどのように使用しているか、そしてそれが数学の形式化を試みる際にどのような影響を与えるかについて議論した研究報告である。 バザードさんは「現状、数学者は等式の概念を曖昧に使っており、近年のコンピュータプログラムによる証明(形式化)においてその曖昧さが障害になっている」と指摘する。 「=」(等号)にみる一般的な等式の定義は、両辺が同じ数学的対象を表しており、一方から他方への論
先日こういうツイートが流れてきた。 Q:なぜ金融系では未だにCOBOLが使われるんですか? A:お手元にExcelがありましたら任意のセルに「=4.8-4.7-0.1」って入れてみてください。— 遊撃部長F/S&RWAs (@fstora) 2024年6月6日 Q:なぜ金融系では未だにCOBOLが使われるんですか? A:お手元にExcelがありましたら任意のセルに「=4.8-4.7-0.1」って入れてみてください。 普段我々がゴリゴリ馬車馬のように使っているソフトウェアでよく利用されている浮動小数点型、すなわちfloatやdoubleなどは特定の算術に弱いことが知られている。というかもうこの手の話題はあまりに拡散されてしまったので、なぜかネット民はみんな知っている基礎教養、三毛別羆事件とかデーモンコアみたいな感じになっている。 ちなみにこれはCOBOLかそうではないか、という軸が問題になっ
数学の超難問「ABC予想」を証明したとする京都大の望月新一教授(55)の独自理論をめぐって、「理論を修正し、新たにABC予想を証明した」とする新理論が登場した。疑問が指摘され、正しさをめぐる決着に1…
「2辺(a、b)上の2つの正方形の面積の和は、斜辺(c)上の正方形の面積に等しくなる」という三平方の定理は、「ピタゴラスの定理」とも呼ばれ、古代ギリシャのピタゴラスが発見したとの逸話が残されています。しかし、ピタゴラスが生まれる1000年以上前にバビロニアで作られたとされる粘土板に、三平方の定理について記されていたことが明らかになっています。 Pythagoras: Everyone knows his famous theorem, but not who discovered it 1000 years before him | Journal of Targeting, Measurement and Analysis for Marketing https://link.springer.com/article/10.1057/jt.2009.16 The Pythagorean
rtakenaka @rtakenakatky これすごい。小学生の中学受験の問題で、気づけば秒で解ける問題だけど(60分12問の最後の1問)。灘の数学教師って、学生の方が賢いし教えるのが上手い訳でもないのに作問のセンスだけヤバい。将棋強い訳でもないし将棋教えるの上手い訳でもないけど詰将棋の問題作るのがやたらヤバい、みたいな感じ。 pic.twitter.com/eUi4s0Sh12 2024-01-27 00:19:54 rtakenaka @rtakenakatky バズったので補足しますと、この問題が単独で美しいのは勿論ですが、試験全体の構成として、普通に難しい問題と、この問題のように一瞬で解ける問題と、何時間掛けても解けないレベルの問題が12問ランダムに配置されていて、制限時間内に前2者を見極める能力が要求されるのが何よりえげつないんです。 2024-01-27 17:11:22
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く