タグ

Rに関するkomlowのブックマーク (9)

  • Rによるデータクリーニング実践――政府統計からのグラフ作成を例として|Colorless Green Ideas

    データクリーニングが繁雑な作業であることを示すために、政府の統計データから日の男のみの高校と女のみの高校の数の推移をグラフ化する事例を紹介する。クリーニングの作業にはR言語を用い、複数のファイルを統合し、整然データに変え、グラフを作成する。 はじめに データクリーニングは、データ分析の際に非常に重要なプロセスの1つであるが、データ分析の教科書では必ずしも十分に扱われていない。そこで、現実のデータクリーニングがどのように行われるかについて、一事例を紹介したいと思う。具体的には、統計処理に適したプログラミング言語のRを用いて、粗悪なデータから簡単な折れ線グラフが作成できる程度のきれいなデータにするまでのデータクリーニングを実施していく。 記事の対象読者 記事は、既存のデータに対して自らの手でデータ分析を実施している人、または実施しようと考えている人を主な対象にしている。データ分析の際にど

    Rによるデータクリーニング実践――政府統計からのグラフ作成を例として|Colorless Green Ideas
  • 一年で身に付ける!Rと統計学・機械学習の4ステップ - データサイエンティスト上がりのDX参謀・起業家

    久しぶりの投稿です。この一年間、Rの勉強会などに参加したり主催したりしてきて、後輩や勉強会の方々の話をいろいろ聞くとこができました。そんな中、一年間でRと統計学・機械学習を身に付けれるようなフローを作れるかも?と思ったので、ここで記録しておきます。統計学や機械学習は理論を勉強するだけでなく、Rで実際に解析してみることで、より理解が深まります。 ステップ1. 分布・検定 理論 統計学入門 (基礎統計学?) 作者: 東京大学教養学部統計学教室出版社/メーカー: 東京大学出版会発売日: 1991/07/09メディア: 単行購入: 158人 クリック: 3,604回この商品を含むブログ (79件) を見る R Rによるやさしい統計学 作者: 山田剛史,杉澤武俊,村井潤一郎出版社/メーカー: オーム社発売日: 2008/01/25メディア: 単行購入: 64人 クリック: 782回この商品を含

    一年で身に付ける!Rと統計学・機械学習の4ステップ - データサイエンティスト上がりのDX参謀・起業家
  • アンサンブル学習

    2. アジェンダ • 自己紹介 • アンサンブル学習 • アンサンブル学習アルゴリズム • バギング • ブースティング • ランダムフォレスト • R での実行方法 2

    アンサンブル学習
  • 統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む

    はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、

    統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む
  • GitHub - Sleepingwell/DjangoRpyDemo: A very simple django site for demonstrating the use of rpy for plotting

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert

    GitHub - Sleepingwell/DjangoRpyDemo: A very simple django site for demonstrating the use of rpy for plotting
  • マルコフ連鎖モンテカルロ法入門-1

    ※ここで解説しているお天気推移モデルはオリジナルなものですので、数値・計算等にミスがある可能性が否めませんので、もし間違いを見かけた方は優しく教えていただけると助かります。 お天気推移モデルで理解するマルコフ連鎖モンテカルロ法。2状態離散モデルの解説を中心に、メトロポリス法の解説まで行った。 次は連続モデルや熱浴法・メトロポリスヘイスティング法の解説資料も作成したい⇒完成。以下のLINKを参照下さい。http://www.slideshare.net/teramonagi/ss-5344006 誤字を修正(2010/11/01)Read less

    マルコフ連鎖モンテカルロ法入門-1
  • Rが使えるフリをするための14の知識

    米国FDAで公認され、ハーバード大学やイェール大学の授業で利用されるようになり、世間での認知度が着実に上昇している統計用プログラミング環境のRだが、ユーザーなのか、ユーザーになりたいのか、ユーザーとして振舞いたいのか分からない人が増えてきた。 スノッブなユーザーとして振舞う場合は、Rの特性を語れる必要があるので、ユーザーになるよりもRへの知識や理解が必要で、実は難易度が高い行動である。それでもあえて意識の高いRユーザーとして振舞いたい人々のために、最低限求められる事のチェック・リストを用意してみた。 1. 参考文献や参考ページを押さえておく 一番大事な事だが、参考文献や参考ページを押さえておこう。公式サイトで配布されている、「R 入門」「R 言語定義」「R のデータ取り込み/出力」は持っておくべきだ。R-TipsやRjpWikiも参考になる。 2. 演算子や制御構文をマスターする 四則演算

    Rが使えるフリをするための14の知識
  • 主成分分析が簡単にできるサイトを作った - ほくそ笑む

    あけましておめでとうございます。 年もよろしくお願いいたします。 主成分分析 さて、昨年の終わりごろから、私は仕事で主成分分析を行っています。 主成分分析というのは、多次元のデータを情報量をなるべく落とさずに低次元に要約する手法のことです。 主成分分析は統計言語 R で簡単にできます。 例として iris データで実行してみましょう。 data(iris) data <- iris[1:4] prcomp.obj <- prcomp(data, scale=TRUE) # 主成分分析 pc1 <- prcomp.obj$x[,1] # 第一主成分得点 pc2 <- prcomp.obj$x[,2] # 第二主成分得点 label <- as.factor(iris[,5]) # 分類ラベル percent <- summary(prcomp.obj)$importance[3,2] *

    主成分分析が簡単にできるサイトを作った - ほくそ笑む
  • Top 20 R posts of 2011 (and some R-bloggers statistics) | R-statistics blog

    R-statistics blog Statistics with R, and open source stuff (software, data, community) R-bloggers.com is now two years young. The site is an (unofficial) online R journal written by bloggers who agreed to contribute their R articles to the site. In this post I wish to celebrate R-bloggers’ second birthmounth by sharing with you: Links to the top 20 posts of 2011 Statistics on “how well” R-bloggers

  • 1