最近よく巷で耳にするモノ. SVM, Support Vector Machine, さぽーとべくたーましん. これっていったい,どんなもんなんでしょう. なにやら便利そうなモノらしいので,ちょいと調べて要点をまとめてみようかな,なんて. でも,ただまとめただけだとそのへんの記事を読むのとなんにも変わらないので, コーディングするために必要な知識を中心にまとめてみることにします.
最近よく巷で耳にするモノ. SVM, Support Vector Machine, さぽーとべくたーましん. これっていったい,どんなもんなんでしょう. なにやら便利そうなモノらしいので,ちょいと調べて要点をまとめてみようかな,なんて. でも,ただまとめただけだとそのへんの記事を読むのとなんにも変わらないので, コーディングするために必要な知識を中心にまとめてみることにします.
サポートベクターマシン(以下 SVM) とは ・ニューラルネットワークの一種 ・教師ありクラスタリング SVM の基本的な考え方 ・元々2クラスの線形分離手法として提案される ・単層パーセプトロンに似ているが、SVM はマージン最大化という手法をとっているのがポイント。 ・マージン最大化とは、超平面と学習データの隙間となるマージンをなるべく大きく取ろうというもの。 (ここでいう超平面とは、2つのクラスにぶった切る平面のこと) ・ちなみに超平面と、ちょうどマージンの分だけ離れている学習データをサポートベクトルという。 ・このマージン最大化という考えを取り入れることによって、テストデータの識別精度を高めている。 SVM の発展 ・線形分離不可能な問題への対応 - ソフトマージン(学習データが多少マージンにくい込んだり、反するクラスの空間にくい込んだりしても許す)で対応
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く