RAGに関する主要な論文まとめていきます。(過去の分含めて随時更新予定) 見つけたものからまとめているので、最新の2024年以降の論文多めです。 Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks(22/05/2022) 一言紹介❓ LLMって、事前学習された知識に関しては答えてくれるけど、最新のニュースだったり、専門的な情報や組織固有の情報には対応できないよなぁ 💡 外部知識をLLMに検索させよう!→RAGの誕生 Abstract日本語訳大規模な事前学習済み言語モデルは、そのパラメータに事実知識を蓄積し、下流の自然言語処理(NLP)タスクに微調整されたときに最先端の成果を達成することが示されています。しかし、知識をアクセスして正確に操作する能力は依然として限られており、知識集約型タスクでは、タスク固有のアーキ
LLMのファインチューニングで何ができて、何ができないのかまとめました。 1. LLMのファインチューニングLLMのファインチューニングの目的は、「特定のアプリケーションのニーズとデータに基づいて、モデルの出力の品質を向上させること」にあります。 OpenAIのドキュメントには、次のように記述されています。 ファインチューニングは、プロンプトに収まるよりも多くの例で学習することで、Few-Shot学習を改善します。一度モデルをファインチューニングすれば、プロンプトにそれほど多くの例を提供する必要がなくなります。これにより、コストを削減し、低レイテンシのリクエストを可能にします。 しかし実際には、それよりもかなり複雑です。 LLMには「大量のデータを投げれば自動的に解決する」ような創発的な特性があるため、ファインチューニングもそのように機能すると人々は考えていますが、必ずしもそうではありませ
Microsoft on Thursday published details about Skeleton Key – a technique that bypasses the guardrails used by makers of AI models to prevent their generative chatbots from creating harmful content. As of May, Skeleton Key could be used to coax an AI model - like Meta Llama3-70b-instruct, Google Gemini Pro, or Anthropic Claude 3 Opus - into explaining how to make a Molotov cocktail. The combination
It’s no secret that observability costs are top of mind for many organizations in the post-zero interest rate phenomenon (ZIRP) era (see here, here, and here for example discussions, though similar sentiments can be found far and wide). Organizations are frustrated with the percentage of infrastructure spend (sometimes > 25%!) allocated towards logging, metrics, and traces, and are struggling to u
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く