immersive linear algebra by J. Ström, K. Åström, and T. Akenine-Möller v1.1. ISBN: 978-91-637-9354-7 The world's first linear algebra book with fully interactive figures. Learn More Check us out on Twitter and Facebook Preface A few words about this book. Chapter 1: Introduction How to navigate, notation, and a recap of some math that we think you already know. Chapter 2: Vectors The concept of a
Remodeling Béziers This article is about how math creates an easier-to-use version of Béziers. We'll show examples of issues with Béziers, then discuss the issues academically, then derive a curve that fixes the problems (and can draw circles!). This is a Bézier. You can drag the handles. The green lines represent curvature. Béziers are a little unintuitive to use, because it's not always clear wh
スペクトル不変量とその応用について 助教・石川 卓 大学で習う幾何学の基本的な話に Morse 理論というものがあります。これは多様体の性質を、その上の函 数を用いて調べる理論です。これは基本的にはどのような関数を用いても同じ答えを出しますが、これを逆 に利用して、各関数に対してスペクトル不変量とよばれる値を紐づけることができます。シンプレクティッ ク幾何学等で用いられる Floer 理論は Morse 理論を手本としてつくられた理論であり、これに対するスペク トル不変量が、幾何学的性質を導きだすことに応用されています。このあたりのことについて、紹介する予 定です。 体構造の復元を通した遠アーベル幾何学入門 助教・辻村 昇太 遠アーベル幾何学では(体に対するガロア群のような)構造の対称性のなす群が元の構造の情報をどの程 度保持しているかについて考察します。この対称性のなす群が(高度に)非可
[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
https://www.nhk.jp/p/special/ts/2NY2QQLPM3/blog/bl/pneAjJR3gn/bp/pzwyDRbMwp/ (2022年4月10日の放送内容を基にしています) 2020年4月。「abc予想」と呼ばれる数学の重要な未解決問題を、日本人が証明したというニュースが駆けめぐりました。論文を書いたのは、京都大学数理解析研究所教授 望月新一博士。世界的天才として知られてきた人物です。 abc予想を証明した、博士の「宇宙際タイヒミューラー理論」。査読の完了と専門誌への掲載は、望月博士の偉業が、世界に正式に認められたことを意味しました。ところが…望月の証明はまだ受け入れられないと主張する数学者が多数現れ、今も激論が続いているのです。一つ一つ論理を積み上げていけば、誰もが同じ結論に達するはずの数学の世界。完全に正しいとする数学者がいる一方で、なぜ多くの数学者が理
セガは6月15日、社内勉強会で使った線形代数の教材を、公式ブログで無償公開した。ページ数は150以上。ゲーム開発に必要な3DCGの技術的基礎となる知識を学び直すために使ったものという。 2020年に行った社内勉強会向け教材の一部をPDF形式で公開。全8部構成で、ベクトルや行列、3次元での回転を計算するときに使う「クォータニオン」について教える。ただし簡潔に分かりやすく学べるよう編集したため、用語の定義が一般的なものと異なる場合があるとしている。 ゲーム制作では、キャラや背景を3次元で回転させたり、ゲームエンジンそのものを作ったりするときに線形代数を使うという。セガは教材について「興味のある方は参考にしてほしい。“大人の学び直し”をしてみたい方はぜひ」としている。 関連記事 任天堂がSwitch向けにプログラミング学習ソフト 作ったゲームの共有機能も 任天堂が、Nintendo Switch
4. 公開にあたって ●まえがきに代えて 本書は 株式会社 セガ にて行われた有志による勉強会用に用意された資料を一般に公開するもので す。勉強会の趣旨は いわゆる「大人の学び直し」であり、本書の場合は高校数学の超駆け足での復習 から始めて主に大学初年度で学ぶ線形代数の基礎の学び直し、および応用としての3次元回転の表現の 基礎の理解が目的となっています。広く知られていますように線形代数は微積分と並び理工系諸分野の 基礎となっており、だからこそ大学初年度において学ぶわけですが、大変残念なことに高校数学では微 積分と異なりベクトルや行列はどんどん隅に追いやられているのが実情です。 線形代数とは何かをひとことで言えば「線形(比例関係)な性質をもつ対象を代数の力で読み解く」 という体系であり、その最大の特徴は原理的に「解ける」ということにあります。現実の世界で起きて いる現象を表す方程式が線形な振
---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術本部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解
Apply to MS About Menu Toggle CDS Overview Diversity, Equity, and Inclusion Employment Contact Admissions Menu Toggle Admissions Overview Master’s Admissions Menu Toggle Program Overview Admissions Requirements FAQ Financial Aid & Fellowships Admissions Ambassadors PhD Admissions Menu Toggle Program Overview Areas & Faculty Admissions Requirements FAQ Non-Degree Admissions Menu Toggle Program Over
「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は本来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと
ボロノイとは プロシージャルな石畳や細胞のパターンの生成、破壊シミュレーション時のオブジェクトの分割に良く使われるノイズのことです。詳しくはThe Book of Shaders セルラーノイズを参照ください 通常のボロノイ ユークリッド(p=2) 通常のボロノイはこんな感じですが、距離関数を変えることで色々なボロノイを作ることができます。尚、使用するのは、符号なしのディスタンスフィールドの方です。SDFは使えません。 2次元ディスタンスフィールドの一覧はこちら 数学的な距離関数を使う 私たちが、普段2点間の距離を測る時に使用しているのは、三平方の定理で導かれる『ユークリッド距離』というものですが、『マンハッタン距離』、『チェビシェフ距離』、『ミンコフスキー距離』など2点間の距離の測り方にも様々な種類があります。 通常のボロノイは『ユークリッド距離』を使用していますが、この距離の測り方を『
これまで、3次元回転の表現や解析に関する書籍は、物理に軸足を置くものが多かった。しかし近年、コンピュータの発展によって、身近な問題で3次元回転を扱うことが増加した。例えば、カメラや3次元センサーによる計測、コンピュータビジョン、コンピュータグラフィクスにおける3次元の解析やモデリング、また、ロボットの制御やシミュレーションなどにおいて3次元回転の計算処理が必要となる。 計算処理の中心はパラメータ推定であり、特にデータに誤差があるときが問題になる。本書では、はじめに3次元回転に対する入門的な解説を行い、次に一般の非等方、非一様な誤差に対する非線形最適化の原理を述べる。まず、解が解析的に得られる場合を示し、次に一般の場合の数値探索法として、微小回転がリー代数を成すという性質を用いた「リー代数の方法」を定式化する。そして、例として、コンピュータビジョンの代表的な問題に適用する。さらに、計算した回
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く