どもお久しぶりです。林岳彦です。ローソンなどで売ってるいなばのタイカレーはそうめんのつけ汁として使ってもマジうまいのでオススメです。 さて。 今回は前々回の記事: 因果関係がないのに相関関係があらわれる4つのケースをまとめてみたよ(質問テンプレート付き) - Take a Risk:林岳彦の研究メモ の続編として、逆のケースとなる「因果関係があるのに相関関係が見られない」ケースについて見ていきたいと思います。あんまり長いと読むのも書くのも大変なので、今回はまずは前編として「検定力の問題」に絞って書いていきます。 (*今回は上記の前々回の記事での記述を下敷きに書いていきますので、分からないところがあったら適宜前々回の記事をご参照ください) まずは(今回の記事における)用語の定義:「相関」と「因果」 今回も少しややこしい話になると思うので、まずは用語の定義をしておきたいと思います。(*細かいと
どもっす。林岳彦です。ファミコンソフトの中で一番好きなのは『ソロモンの鍵』です*1。 さて。 今回は、因果関係と相関関係について書いていきたいと思います。「因果関係と相関関係は違う」というのはみなさまご存知かと思われますが、そこをまともに論じていくとけっこう入り組んだ議論となります。 「そもそも因果とは」とか「因果は不可知なのか」のような点について論じるとヒュームから分析哲学(様相論理)へと語る流れ(ここのスライド前半参照)になりますし、統計学的に因果をフォーマルに扱おうとするとRubinの潜在反応モデルやPearlのdo演算子やバックドア基準(ここのスライド後半参照)の説明が必要になってきます。 その辺りのガッツリした説明も徐々に書いていきたいとは考えておりますが(予告)、まあ、その辺りをいちどきに説明しようというのは正直なかなか大変です。 なので今回は、あまり細かくて遭難しそうな話には
メインページ / 更新履歴 数学:物理を学び楽しむために 更新日 2024 年 3 月 18 日 (半永久的に)執筆中の数学の教科書の草稿を公開しています。どうぞご活用ください。著作権等についてはこのページの一番下をご覧ください。 これは、主として物理学(とそれに関連する分野)を学ぶ方を対象にした、大学レベルの数学の入門的な教科書である。 高校数学の知識を前提にして、大学生が学ぶべき数学をじっくりと解説する。 最終的には、大学で物理を学ぶために必須の基本的な数学すべてを一冊で完全にカバーする教科書をつくることを夢見ているが、その目標が果たして達成されるのかはわからない。 今は、書き上げた範囲をこうやって公開している。 詳しい内容については目次をご覧いただきたいが、現段階では ■ 論理、集合、そして関数や収束についての基本(2 章) ■ 一変数関数の微分とその応用(3 章) ■ 一変数関数の
2010年12月27日18:00 カテゴリ書評/画評/品評Math Mathとハサミは使いよう- 書評 - エレガントな問題解決 オライリー矢野様より献本御礼。 エレガントな問題解決 Paul Zeitz / 山口文彦・松崎公紀・ 三橋泉・松永多苗子 伊知地宏訳 [原著:The Art and Craft of Problem Solving] これ、ローティーンだった頃の自分に贈りたい。 こんな面白い問題集があったら、今よりもっと数学が好きになっていただろうから。 本書「エレガントな問題解決」の原題は"The Art and Craft of Problem Solving"。この Craft という言葉が決め手である。。 目次 O'Reilly Japan - エレガントな問題解決 第1章 この本の内容と読み方 1.1 練習と問題 1.2 問題解決の3つの段階 1.3 問題例 1.4
オンラインで入手できる数理論理学・数学基礎論のテキスト 数理論理学、数学基礎論の教科書的に使えるテキスト(講義ノート、サーヴェイ、モノグラフ等)のうち、オンラインで入手できるものを集めました。 入門的概説 論理一般 高階論理と型理論 直観主義論理 コンビネータとラムダ計算 時相論理および時制論理 様相論理 適切さの論理 自然言語の論理 空間論理 モデル理論 安定性理論 無限論理 計算可能性理論および再帰理論 集合論 pcf理論 記述集合論 実数の集合論 選択公理 強制法と内部モデル 連続体仮説 NF 証明論と構成的数学 順序数解析 算術の体系と不完全性 証明可能性論理 線形論理 構成的数学 代数的論理と圏論 ブール代数 普遍代数 量子論理 圏論 歴史 入門的概説 [▲] 加茂静夫,「数理論理学(命題論理と述語論理)」.[PDF] 嘉田勝,「数理論理学 講義ノート(2013年度版)」. St
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く