dbo:abstract
|
- In der Mathematik sind Nielsen-Transformationen ein wichtiges Hilfsmittel der kombinatorischen Gruppentheorie, sie sind nach dem Mathematiker Jakob Nielsen benannt. (de)
- In mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups,. They were introduced in to prove that every subgroup of a free group is free (the Nielsen–Schreier theorem), but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. The textbook devotes all of chapter 3 to Nielsen transformations. (en)
- En mathématiques, et notamment dans le domaine de l'algèbre, les transformations de Nielsen sont un outil important dans la théorie combinatoire des groupes. Ce sont certains automorphismes d'un groupe libre et elles sont très utiles dans l'étude des groupes libres. Elles portent le nom du mathématicien danois Jakob Nielsen, qui les a introduites en 1921 pour prouver que tout sous-groupe d'un groupe libre est libre (le théorème de Nielsen-Schreier), et elles sont maintenant utilisées dans une variété de domaines mathématiques. (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 16025 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdfs:comment
|
- In der Mathematik sind Nielsen-Transformationen ein wichtiges Hilfsmittel der kombinatorischen Gruppentheorie, sie sind nach dem Mathematiker Jakob Nielsen benannt. (de)
- In mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups,. They were introduced in to prove that every subgroup of a free group is free (the Nielsen–Schreier theorem), but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. The textbook devotes all of chapter 3 to Nielsen transformations. (en)
- En mathématiques, et notamment dans le domaine de l'algèbre, les transformations de Nielsen sont un outil important dans la théorie combinatoire des groupes. Ce sont certains automorphismes d'un groupe libre et elles sont très utiles dans l'étude des groupes libres. Elles portent le nom du mathématicien danois Jakob Nielsen, qui les a introduites en 1921 pour prouver que tout sous-groupe d'un groupe libre est libre (le théorème de Nielsen-Schreier), et elles sont maintenant utilisées dans une variété de domaines mathématiques. (fr)
|
rdfs:label
|
- Nielsen-Transformation (de)
- Transformation de Nielsen (fr)
- Nielsen transformation (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |