dbo:abstract
|
- In mathematics, in the area of commutative algebra, tight closure is an operation defined on ideals in positive characteristic. It was introduced by Melvin Hochster and Craig Huneke . Let be a commutative noetherian ring containing a field of characteristic . Hence is a prime number. Let be an ideal of . The tight closure of , denoted by , is another ideal of containing . The ideal is defined as follows. if and only if there exists a , where is not contained in any minimal prime ideal of , such that for all . If is reduced, then one can instead consider all . Here is used to denote the ideal of generated by the 'th powers of elements of , called the th Frobenius power of . An ideal is called tightly closed if . A ring in which all ideals are tightly closed is called weakly -regular (for Frobenius regular). A previous major open question in tight closure is whether the operation of tight closure commutes with localization, and so there is the additional notion of -regular, which says that all ideals of the ring are still tightly closed in localizations of the ring. found a counterexample to the localization property of tight closure. However, there is still an open question of whether every weakly -regular ring is -regular. That is, if every ideal in a ring is tightly closed, is it true that every ideal in every localization of that ring is also tightly closed? (en)
- 数学の可換環論における密着閉包(みっちゃくへいほう、英: tight closure)とは、正標数の環のイデアルに対して定義されるある操作である。とによって考案された。 を可換なネーター環で標数 の体(したがって は素数)を含むものとする。 を のイデアルとする。 の密着閉包 とは、 を含む のイデアルで次のように定義されるものである。 であるのは、 のどの極小素因子にも含まれないある が存在して、全ての に対して が成り立つとき、かつそのときに限る。 が被約環のときは、全ての に対して、としてもよい。 ここでは の元のベキで生成されるのイデアルで、 の 次フロベニウス冪という。 が成り立つとき、このイデアルは密着的閉(tightly closed)という。全てのイデアルが密着的閉である環は弱 正則(weakly -regular, フロベニウス正則の意)という。また、環の任意の局所化が弱 正則であるとき 正則という。 かつては密着閉包の操作と局所化が交換可能かどうかが大きな未解決問題だったが、 が反例を見つけた。しかし、全ての弱 正則環が 正則かどうか、つまり環の全てのイデアルが密着的閉ならばその環の任意の局所化の任意のイデアルもまた密着的閉かどうか、という問題はまだ未解決である。 (ja)
- Em matemática, na área da álgebra comutativa, encerramento justo é uma operação definida em ideais em característica positiva. A operação foi introduzida por Melvin Hochster e Craig Huneke (1988, 1990). Brenner e Monsky em 2010, encontraram um contra-exemplo para a propriedade localização de encerramento justo. No entanto, ainda é uma questão em aberto sobre se cada anel -regular fraco é -regular. Ou seja, se cada ideal em um anel que é firmemente fechado, é verdade que cada ideal em cada localização de aquele anel de também é bem fechado? (pt)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3237 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:author2Link
| |
dbp:authorlink
| |
dbp:first
| |
dbp:last
|
- Huneke (en)
- Hochster (en)
|
dbp:wikiPageUsesTemplate
| |
dbp:year
|
- 1988 (xsd:integer)
- 1990 (xsd:integer)
|
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- 数学の可換環論における密着閉包(みっちゃくへいほう、英: tight closure)とは、正標数の環のイデアルに対して定義されるある操作である。とによって考案された。 を可換なネーター環で標数 の体(したがって は素数)を含むものとする。 を のイデアルとする。 の密着閉包 とは、 を含む のイデアルで次のように定義されるものである。 であるのは、 のどの極小素因子にも含まれないある が存在して、全ての に対して が成り立つとき、かつそのときに限る。 が被約環のときは、全ての に対して、としてもよい。 ここでは の元のベキで生成されるのイデアルで、 の 次フロベニウス冪という。 が成り立つとき、このイデアルは密着的閉(tightly closed)という。全てのイデアルが密着的閉である環は弱 正則(weakly -regular, フロベニウス正則の意)という。また、環の任意の局所化が弱 正則であるとき 正則という。 かつては密着閉包の操作と局所化が交換可能かどうかが大きな未解決問題だったが、 が反例を見つけた。しかし、全ての弱 正則環が 正則かどうか、つまり環の全てのイデアルが密着的閉ならばその環の任意の局所化の任意のイデアルもまた密着的閉かどうか、という問題はまだ未解決である。 (ja)
- Em matemática, na área da álgebra comutativa, encerramento justo é uma operação definida em ideais em característica positiva. A operação foi introduzida por Melvin Hochster e Craig Huneke (1988, 1990). Brenner e Monsky em 2010, encontraram um contra-exemplo para a propriedade localização de encerramento justo. No entanto, ainda é uma questão em aberto sobre se cada anel -regular fraco é -regular. Ou seja, se cada ideal em um anel que é firmemente fechado, é verdade que cada ideal em cada localização de aquele anel de também é bem fechado? (pt)
- In mathematics, in the area of commutative algebra, tight closure is an operation defined on ideals in positive characteristic. It was introduced by Melvin Hochster and Craig Huneke . Let be a commutative noetherian ring containing a field of characteristic . Hence is a prime number. Let be an ideal of . The tight closure of , denoted by , is another ideal of containing . The ideal is defined as follows. if and only if there exists a , where is not contained in any minimal prime ideal of , such that for all . If is reduced, then one can instead consider all . (en)
|
rdfs:label
|
- 密着閉包 (ja)
- Encerramento justo (pt)
- Tight closure (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |