Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long γ-ray bursts and core-collapse supernovae have different environments

Abstract

When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration γ-ray burst. One would then expect that these long γ-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the γ-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long γ-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our own Milky Way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A mosaic of GRB host galaxies imaged by HST.
Figure 2: A mosaic of core-collapse supernova host galaxies imaged with HST as part of the GOODS programme.
Figure 3: The locations of the explosions in comparison to the host light.
Figure 4: A comparison of the absolute magnitude and size distributions of the GRB and supernova hosts.

Similar content being viewed by others

References

  1. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  3. Branch, D., Livio, M., Yungelson, L. R., Boffi, F. R. & Baron, E. In search of the progenitors of type IA supernovae. Publ. Astron. Soc. Pacif. 107, 1019–1028 (1995)

    Article  ADS  Google Scholar 

  4. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003)

    Article  ADS  Google Scholar 

  5. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, 101–104 (1993)

    Article  ADS  Google Scholar 

  6. Gehrels, N. et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225. Nature 437, 851–854 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Prochaska, J. X. et al. The galaxy hosts and large-scale environments of short-hard γ-ray bursts. Astrophys. J. Lett. (in the press): preprint at http://arxiv.org/astro-ph/0510022 (2005)

  8. Fruchter, A. S. et al. HST and Palomar imaging of GRB 990123: Implications for the nature of gamma-ray bursts and their hosts. Astrophys. J. 519, 13–16 (1999)

    Article  ADS  Google Scholar 

  9. Sokolov, V. V. et al. Host galaxies of gamma-ray bursts: Spectral energy distributions and internal extinction. Astron. Astrophys. 372, 438–455 (2001)

    Article  CAS  ADS  Google Scholar 

  10. Le Floc'h, E. et al. Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? Astron. Astrophys. 400, 499–510 (2003)

    Article  ADS  Google Scholar 

  11. Christensen, L., Hjorth, J. & Gorosabel, J. UV star-formation rates of GRB host galaxies. Astron. Astrophys. 425, 913–926 (2004)

    Article  CAS  ADS  Google Scholar 

  12. Bloom, J. S., Djorgovski, S. G., Kulkarni, S. R. & Frail, D. A. The host galaxy of GRB 970508. Astrophys. J. 507, L25–L28 (1998)

    Article  CAS  ADS  Google Scholar 

  13. Vreeswijk, P. M. et al. VLT spectroscopy of GRB 990510 and GRB 990712: Probing the faint and bright ends of the gamma-ray burst host galaxy population. Astrophys. J. 546, 672–680 (2001)

    Article  CAS  ADS  Google Scholar 

  14. Bloom, J. S. et al. The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection. Nature 401, 453–456 (1999)

    Article  CAS  ADS  Google Scholar 

  15. Galama, T. J. et al. Evidence for a supernova in reanalyzed optical and near-infrared images of GRB 970228. Astrophys. J. 536, 185–194 (2000)

    Article  ADS  Google Scholar 

  16. Levan, A. et al. GRB 020410: A gamma-ray burst afterglow discovered by its supernova light. Astrophys. J. 624, 880–888 (2005)

    Article  ADS  Google Scholar 

  17. Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Stanek, K. Z. et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003)

    Article  CAS  ADS  Google Scholar 

  19. Della Valle, M. et al. Evidence for supernova signatures in the spectrum of the late-time bump of the optical afterglow of GRB 021211. Astron. Astrophys. 406, L33–L37 (2003)

    Article  CAS  ADS  Google Scholar 

  20. Malesani, D. et al. SN 2003lw and GRB 031203: A bright supernova for a faint gamma-ray burst. Astrophys. J. 609, L5–L8 (2004)

    Article  CAS  ADS  Google Scholar 

  21. Zeh, A., Klose, S. & Hartmann, D. H. A systematic analysis of supernova light in gamma-ray burst afterglows. Astrophys. J. 609, 952–961 (2004)

    Article  CAS  ADS  Google Scholar 

  22. Panaitescu, A. & Kumar, P. Fundamental physical parameters of collimated gamma-ray burst afterglows. Astrophys. J. 560, L49–L53 (2001)

    Article  CAS  ADS  Google Scholar 

  23. Frail, D. A. et al. Beaming in gamma-ray bursts: Evidence for a standard energy reservoir. Astrophys. J. 562, L55–L58 (2001)

    Article  ADS  Google Scholar 

  24. MacFadyen, A. I., Woosley, S. E. & Heger, A. Supernovae, jets, and collapsars. Astrophys. J. 550, 410–425 (2001)

    Article  ADS  Google Scholar 

  25. van Dyk, S. D., Hamuy, M. & Filippenko, A. V. Supernovae and massive star formation regions. Astron. J. 111, 2017–2027 (1996)

    Article  CAS  ADS  Google Scholar 

  26. van den Bergh, S., Li, W. & Filippenko, A. V. Classifications of the host galaxies of supernovae, Set III. Publ. Astron. Soc. Pacif. 117, 773–782 (2005)

    Article  ADS  Google Scholar 

  27. Podsiadlowski, P., Mazzali, P. A., Nomoto, K., Lazzati, D. & Cappellaro, E. The rates of hypernovae and gamma-ray bursts: Implications for their progenitors. Astrophys. J. 607, L17–L20 (2004)

    Article  CAS  ADS  Google Scholar 

  28. Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: A robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002)

    Article  ADS  Google Scholar 

  29. Riess, A. G. et al. Identification of Type Ia supernovae at redshift 1.3 and beyond with the Advanced Camera for Surveys on the Hubble Space Telescope. Astrophys. J. 600, L163–L166 (2004)

    Article  CAS  ADS  Google Scholar 

  30. Strolger, L. G. et al. The Hubble Higher z Supernova Search: Supernovae to z∼1.6 and constraints on Type Ia progenitor models. Astrophys. J. 613, 200–223 (2004)

    Article  CAS  ADS  Google Scholar 

  31. Giavalisco, M. et al. The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging. Astrophys. J. 600, L93–L98 (2004)

    Article  CAS  ADS  Google Scholar 

  32. Conselice, C. J. et al. Gamma-ray burst selected high redshift galaxies: Comparison to field galaxy populations to z∼3. Astrophys. J. 633, 29–40 (2005)

    Article  CAS  ADS  Google Scholar 

  33. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

    Article  ADS  Google Scholar 

  34. Mirabal, N. et al. GRB 021004: A possible shell nebula around a Wolf-Rayet star gamma-ray burst progenitor. Astrophys. J. 595, 935–949 (2003)

    Article  CAS  ADS  Google Scholar 

  35. Klose, S. et al. Probing a gamma-ray burst progenitor at a redshift of z = 2: A comprehensive observing campaign of the afterglow of GRB 030226. Astron. J. 128, 1942–1954 (2004)

    Article  CAS  ADS  Google Scholar 

  36. Weidner, C. & Kroupa, P. in The Initial Mass Function 50 Years Later (eds Corbelli, E., Plla, F. & Zinnecker, H.) 125–186 (Springer, Dordrecht, 2005)

    Google Scholar 

  37. Bersier, D. et al. Evidence for a supernova associated with the x-ray flash 020903. Astrophys. J. (submitted)

  38. Vreeswijk, P. M. et al. The host of GRB 030323 at z = 3.372: A very high column density DLA system with a low metallicity. Astron. Astrophys. 419, 927–940 (2004)

    Article  CAS  ADS  Google Scholar 

  39. Prochaska, J. X. et al. The host galaxy of GRB 031203: Implications of its low metallicity, low redshift, and starburst nature. Astrophys. J. 611, 200–207 (2004)

    Article  CAS  ADS  Google Scholar 

  40. Chen, H.-W., Prochaska, J. X., Bloom, J. S. & Thompson, I. B. Echelle spectroscopy of a GRB afterglow at z = 3.969: A new probe of the interstellar and intergalactic media in the young Universe. Astrophys. J. 634, L25–L28 (2005)

    Article  CAS  ADS  Google Scholar 

  41. Kobulnicky, H. A. & Kewley, L. J. Metallicities of galaxies in the GOODS-North Field. Astrophys. J. 617, 240–261 (2004)

    Article  CAS  ADS  Google Scholar 

  42. Figer, D. F., Najarro, F., Geballe, T. R., Blum, R. D. & Kudritzki, R. P. Massive stars in the SGR 1806-20 cluster. Astrophys. J. 622, L49–L52 (2005)

    Article  CAS  ADS  Google Scholar 

  43. Crowther, P. A. & Hadfield, L. J. Reduced Wolf-Rayet line luminosities at low metallicity. Astron. Astrophys. 449, 711–722 (2006)

    Article  CAS  ADS  Google Scholar 

  44. Woosley, S. & Heger, A. The progenitor stars of gamma-ray Bursts. Astrophys. J. 637, 914–921 (2005)

    Article  ADS  Google Scholar 

  45. Yoon, S.-C. & Langer, N. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron. Astrophys. 443, 643–648 (2005)

    Article  CAS  ADS  Google Scholar 

  46. Chapman, S. C., Blain, A. W., Smail, I. & Ivison, R. J. A redshift survey of the submillimeter galaxy population. Astrophys. J. 622, 772–796 (2005)

    Article  CAS  ADS  Google Scholar 

  47. Fynbo, J. P. U. et al. On the Lyα emission from gamma-ray burst host galaxies: Evidence for low metallicities. Astron. Astrophys. 406, L63–L66 (2003)

    Article  CAS  ADS  Google Scholar 

  48. Soderberg, A. M., Nakar, E., Kulkarni, S. R. & Berger, E. Late-time radio observations of 68 Type Ibc supernovae: Strong constraints on off-axis gamma-ray bursts. Astrophys. J. 638, 930–937 (2006)

    Article  CAS  ADS  Google Scholar 

  49. van den Bergh, S. & Tammann, G. A. Galactic and extragalactic supernova rates. Annu. Rev. Astron. Astrophys. 29, 363–407 (1991)

    Article  ADS  Google Scholar 

  50. Mannucci, F. et al. The supernova rate per unit mass. Astron. Astrophys. 433, 807–814 (2005)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. Observations analysed in this work were taken by the NASA/ESA Hubble Space Telescope under programmes: 7785, 7863, 7966, 8189, 8588, 9074 and 9405 (Principal Investigator, A.S.F.); 7964, 8688, 9180 and 10135 (PI, S. R. Kulkarni); 8640 (PI, S.T.H.). We thank N. Panagia, N. Walborn and A. Soderberg for conversations; A. Filippenko and collaborators for early-time images of GRB 980326; and J. Bloom and collaborators for making public their early observations of GRB 020322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fruchter.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods providing additional detail on the analysis. A Supplementary Notes section gives further detail on sample bias. Supplementary Tables provide details on the observations of the objects in the sample and Supplementary Figures show how the extent of the hosts as determined by our analysis and the placement of the objects on the hosts. (PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fruchter, A., Levan, A., Strolger, L. et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 441, 463–468 (2006). https://doi.org/10.1038/nature04787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing