Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001469
Genocchi numbers (of first kind); unsigned coefficients give expansion of x*tan(x/2).
(Formerly M3041 N1233)
76
-1, 1, -3, 17, -155, 2073, -38227, 929569, -28820619, 1109652905, -51943281731, 2905151042481, -191329672483963, 14655626154768697, -1291885088448017715, 129848163681107301953, -14761446733784164001387, 1884515541728818675112649, -268463531464165471482681379
OFFSET
1,3
COMMENTS
The Genocchi numbers satisfy Seidel's recurrence: for n>1, 0 = Sum_{j=0..[n/2]} C(n,2j)*a(n-j). - Ralf Stephan, Apr 17 2004
The (n+1)st Genocchi number is the number of Dumont permutations of the first kind on 2n letters. In a Dumont permutation of the first kind, each even integer must be followed by a smaller integer and each odd integer is either followed by a larger integer or is the last element. - Ralf Stephan, Apr 26 2004
According to Hetyei [2017], "alternation acyclic tournaments in which at least one ascent begins at each vertex, except for the largest one, are counted by the Genocchi numbers of the first kind." - Danny Rorabaugh, Apr 25 2017
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
L. Euler, Institutionum Calculi Differentialis, volume 2 (1755), para. 181.
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
A. Genocchi, Intorno all'espressione generale de'numeri Bernulliani, Ann. Sci. Mat. Fis., 3 (1852), 395-405.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 528.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..275 (first 100 terms from T. D. Noe)
F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, 2012.
R. C. Archibald, Review of Terrill-Terrill paper, Math. Comp., 1 (1945), pp. 385-386.
R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
M. Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
Dominique Dumont and Arthur Randrianarivony, Sur une extension des nombres de Genocchi, European J. Combin. 16 (1995), 147-151.
Dominique Dumont and Arthur Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1994), 37-49.
Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin. 21 (2000), no. 5, 593-600. MR1771988 (2001h:05008).
J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914.
I. M. Gessel, Applications of the classical umbral calculus, arXiv:math/0108121 [math.CO], 2001.
Ira M. Gessel, On the Almkvist-Meurman Theorem for Bernoulli Polynomials, Integers (2023) Vol. 23, #A14.
Ira M. Gessel, A short proof of the Almkvist-Meurman theorem, arXiv:2310.15312 [math.NT], 2023.
René Gy, Bernoulli-Stirling Numbers, Integers (2020) Vol. 20, #A67.
J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23. (Annotated scanned copy)
Gábor Hetyei, Alternation acyclic tournaments, arXiv:math/1704.07245 [math.CO], 2017.
D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
T. Mansour, Restricted 132-Dumont permutations, arXiv:math/0209379 [math.CO], 2002.
A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
John Riordan and Paul R. Stein, Proof of a conjecture on Genocchi numbers, Discrete Math. 5 (1973), 381-388. MR0316372 (47 #4919).
H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 66-67.
H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 64-67. [Annotated scanned copy]
Hans J. H. Tuenter, Walking into an absolute sum, arXiv:math/0606080 [math.NT], 2006. Published version on Walking into an absolute sum, The Fibonacci Quarterly, 40(2):175-180, May 2002.
G. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Séminaire de théorie des nombres, 1980/1981, Exp. No. 11, p. 41, Univ. Bordeaux I, Talence, 1982.
Eric Weisstein's World of Mathematics, Genocchi Number.
J. Worpitsky, Studien ueber die Bernoullischen und Eulerschen Zahlen, Journal für die reine undangewandte Mathematik (Crelle), 94 (1883), 203-232. See page 232. [Annotated scanned copy]
FORMULA
a(n) = 2*(1-4^n)*B_{2n} (B = Bernoulli numbers).
x*tan(x/2) = Sum_{n>=1} x^(2*n)*abs(a(n))/(2*n)! = x^2/2 + x^4/24 + x^6/240 + 17*x^8/40320 + 31*x^10/725760 + O(x^11).
E.g.f.: 2*x/(1 + exp(x)) = x + Sum_{n>=1} a(2*n)*x^(2*n)/(2*n)! = -x^2/2! + x^4/4! - 3 x^6/6! + 17 x^8/8! + ...
O.g.f.: Sum_{n>=0} n!^2*(-x)^(n+1) / Product_{k=1..n} (1-k^2*x). - Paul D. Hanna, Jul 21 2011
a(n) = Sum_{k=0..2n-1} 2^k*B(k)*binomial(2*n,k) where B(k) is the k-th Bernoulli number. - Benoit Cloitre, May 31 2003
abs(a(n)) = Sum_{k=0..2n} (-1)^(n-k+1)*Stirling2(2n, k)*A059371(k). - Vladeta Jovovic, Feb 07 2004
G.f.: -x/(1+x/(1+2x/(1+4x/(1+6x/(1+9x/(1+12x/(1+16x/(1+20x/(1+25x/(1+...(continued fraction). - Philippe Deléham, Nov 22 2011
E.g.f.: E(x) = 2*x/(exp(x)+1) = x*(1-(x^3+2*x^2)/(2*G(0)-x^3-2*x^2)); G(k) = 8*k^3 + (12+4*x)*k^2 + (4+6*x+2*x^2)*k + x^3 + 2*x^2 + 2*x - 2*(x^2)*(k+1)*(2*k+1)*(x+2*k)*(x+2*k+4)/G(k+1); (continued fraction, Euler's kind, 1-step). - Sergei N. Gladkovskii, Jan 18 2012
a(n) = (-1)^n*(2*n)!*Pi^(-2*n)*4*(1-4^(-n))*Li{2*n}(1). - Peter Luschny, Jun 29 2012
Asymptotic: abs(a(n)) ~ 8*Pi*(2^(2*n)-1)*(n/(Pi*exp(1)))^(2*n+1/2)*exp(1/2+(1/24)/n-(1/2880)/n^3+(1/40320)/n^5+...). - Peter Luschny, Jul 24 2013
G.f.: x/(T(0)-x) -1, where T(k) = 2*x*k^2 + 4*x*k + 2*x - 1 - x*(-1+x+2*x*k+x*k^2)*(k+2)^2/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2013
G.f.: -1 + x/(T(0)+x), where T(k) = 1 + (k+1)*(k+2)*x/(1+x*(k+2)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2013
a(n) = 4*n*PolyLog(1 - 2*n, -1). - Peter Luschny, Aug 17 2021
MAPLE
A001469 := proc(n::integer) (2*n)!*coeftayl( 2*x/(exp(x)+1), x=0, 2*n) end proc:
for n from 1 to 20 do print(A001469(n)) od : # R. J. Mathar, Jun 22 2006
MATHEMATICA
a[n_] := 2*(1-4^n)*BernoulliB[2n]; Table[a[n], {n, 17}] (* Jean-François Alcover, Nov 24 2011 *)
a[n_] := 2*n*EulerE[2*n-1, 0]; Table[a[n], {n, 17}] (* Jean-François Alcover, Jul 02 2013 *)
Table[4 n PolyLog[1 - 2 n, -1], {n, 1, 19}] (* Peter Luschny, Aug 17 2021 *)
PROG
(PARI) a(n)=if(n<1, 0, n*=2; 2*(1-2^n)*bernfrac(n))
(PARI) {a(n)=polcoeff(sum(m=0, n, m!^2*(-x)^(m+1)/prod(k=1, m, 1-k^2*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 21 2011 */
(Sage) # Algorithm of L. Seidel (1877)
# n -> [a(1), ..., a(n)] for n >= 1.
def A001469_list(n) :
D = [0]*(n+2); D[1] = -1
R = []; b = False
for i in(0..2*n-1) :
h = i//2 + 1
if b :
for k in range(h-1, 0, -1) : D[k] -= D[k+1]
else :
for k in range(1, h+1, 1) : D[k] -= D[k-1]
b = not b
if not b : R.append(D[h])
return R
A001469_list(17) # Peter Luschny, Jun 29 2012
(Magma) [2*(1 - 4^n) * Bernoulli(2*n): n in [1..25]]; // Vincenzo Librandi, Oct 15 2018
(Python)
from sympy import bernoulli
def A001469(n): return (2-(2<<(m:=n<<1)))*bernoulli(m) # Chai Wah Wu, Apr 14 2023
CROSSREFS
a(n) = -A065547(n, 1) and A065547(n+1, 2) for n >= 1.
Sequence in context: A135751 A368444 A168441 * A110501 A274539 A356639
KEYWORD
sign,easy,nice
STATUS
approved