Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Pol De Simon

    Pol De Simon

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical... more
    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the $dk$-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks---the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain---and find that many important local and global structural properties of these networks are closely reproduced by $dk$-random graphs whose degree distributions, degree correlations, and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of...
    We perform an extensive numerical study of the effects of clustering on the structural properties of complex networks. We observe that strong clustering in heterogeneous networks induces the emergence of a core-periphery organization that... more
    We perform an extensive numerical study of the effects of clustering on the structural properties of complex networks. We observe that strong clustering in heterogeneous networks induces the emergence of a core-periphery organization that has a critical effect on their percolation properties. In such situation, we observe a novel double phase transition, with an intermediate phase where only the core of the network is percolated, and a final phase where the periphery percolates regardless of the core. Interestingly, strong clustering makes simultaneously the core more robust and the periphery more fragile. These phenomena are also found in real complex networks.