動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
シミュレーションで実物を扱わなくても仕事ができる環境を目指す。つまり家に引きこもって外に出なくてもOKな世界。
KEIさんが 参加中のテーマはありません。
テーマは同じ趣味や興味を持つブロガーが共通のテーマに集まることで繋がりができるメンバー参加型のコミュニティーです。
テーマ一覧から参加したいテーマを選び、記事を投稿していただくことでテーマに参加できます。
「ブログリーダー」を活用して、KEIさんをフォローしませんか?
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
VOICEVOXとAivisSpeechを使った音声生成の方法や調整について解説使用するツールやプリセットの設定、調整が難しい単語や文章についての具体例を紹介リップシンク用のlabファイルの生成方法について説明
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
複素フーリエ周期2LをScilabで確認。実数フーリエの時と同じ結果が得られた。
シナリオやセリフ回しは起承転結を重視。動画はバックグラウンド、本編、全編に分かれた階層構造にしている。チャプタータイミングやYoutube向けテロップなど、直接動画作成に関係しない部分もやっている。
複素フーリエ周期2LをPythonで確認。実数フーリエの時と同じ結果が得られた。
複素フーリエ周期2LをMATLABで確認。実数フーリエの時と同じ結果が得られた。
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させこのアプローチは実数フーリエの時と同じ。
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
複素フーリエを周期2πから周期2Lへ。変換の流れは実数フーリエの時と全く同じ。
はじめに以前、AivisSpeechのAnneliの立ち絵を作成した。デフォルメ版(2~3頭身くらい)もあると使い勝手が良いのでは?と思い作ってみた次第。通常頭身版通常頭身版はこちら動画該当立ち絵を使用した動画はこちら。AivisSpeec...
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させる。このアプローチは実数フーリエの時と同じ。
AivisSpeechというむっちゃ優秀な音声合成ソフトウェアが存在します。動画作成に使用したいのだが、現状立ち絵があまり存在しない・・・。というわけで作った!!
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をJuliaで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をScilabで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をPythonで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をMATLABで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をJuliaで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をScilabで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
活性化関数をシグモイド関数にした形式ニューロンをMATLABで実現。 結果はカスタムヘヴィサイドの時と一緒。
活性化関数をシグモイド関数にした形式ニューロンをJuliaで実現。 結果はカスタムヘヴィサイドの時と一緒。
活性化関数をシグモイド関数にした形式ニューロンをScilabで実現。 結果はカスタムヘヴィサイドの時と一緒。
活性化関数をシグモイド関数にした形式ニューロンをPython(NumPy)で実現。 結果はカスタムヘヴィサイドの時と一緒。
活性化関数をシグモイド関数にした形式ニューロンをMATLABで実現。 結果はカスタムヘヴィサイドの時と一緒。
決定境界直線の一般的な安定化方法がある。 シグモイド関数を使用する方法。 シグモイド関数の定義について説明。 カスタムヘヴィサイドとシグモイドの比較。 総当たり法では効能の差は出ないが、誤差逆伝播法を使い始めるとシグモイドじゃないと都合が悪い。
シグモイド関数の定義について説明。 特に理屈はなく、そういうものが存在するって程度。 カスタムヘヴィサイドとシグモイドの比較。 総当たり法では効能の差は出ないが、誤差逆伝播法を使い始めるとシグモイドじゃないと都合が悪い。
決定境界直線の一般的な安定化方法がある。 シグモイド関数を使用する方法。 ヘヴィサイド関数のように0,1を表現することを目的とした関数だが、シグモイド関数は全域で勾配がある。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをJuliaで作成。 例に漏れずMATLABコードのコピペがベース。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをScilabで作成。 おおよそMATLABと同じコード。 毎度おなじみのグラフ表示部分に差が出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをPython(NumPy)で作成。 おおよそMATLABと同じ結果に。 毎度おなじみの表示上の誤差は出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをMATLABで作成。 狙い通りの位置に決定境界直線が移動。 コードはヘヴィサイド関数をカスタムヘヴィサイド関数に変えただけ。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをJuliaで作成。 例に漏れずMATLABコードのコピペがベース。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをScilabで作成。 おおよそMATLABと同じコード。 毎度おなじみのグラフ表示部分に差が出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをPython(NumPy)で作成。 おおよそMATLABと同じ結果に。 毎度おなじみの表示上の誤差は出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをMATLABで作成。 狙い通りの位置に決定境界直線が移動。 コードはヘヴィサイド関数をカスタムヘヴィサイド関数に変えただけ。
形式ニューロンのプログラムでは決定境界直線がギリギリのラインに来ていたで、どうあるべきか。について説明。 決定境界直線をいい感じのところに持っていくにはヘヴィサイド関数を差し替える必要がある。 ヘヴィサイド関数の原点近辺に傾斜を付けたカスタムヘヴィサイド関数(造語)が良さげ。
決定境界直線をいい感じのところに持っていくにはヘヴィサイド関数を差し替える必要がある。 ヘヴィサイド関数の原点近辺に傾斜を付けたカスタムヘヴィサイド関数(造語)が良さげ。
決定境界直線がギリギリなる理由。 ヘヴィサイド関数の性質に原因がある。 ヘヴィサイド関数の性質は入力0を境に出力0,1が切り替わるのみで勾配が無い。 これにより程度の表現ができず、境界直線も適正位置が探せない。
形式ニューロンのプログラムでは決定境界直線がギリギリのラインに来ていた。 上記を解消するため、どうあるべきか。について説明。 この後に、なぜこうなったか、どうすればかいしょうできるかの話が続く予定。