MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
シミュレーションで実物を扱わなくても仕事ができる環境を目指す。つまり家に引きこもって外に出なくてもOKな世界。
MATLAB,Python,Scilab,Julia比較 第5章【バックナンバー】
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
MATLAB,Python,Scilab,Julia比較 第5章 その97【複素フーリエ係数(周期2L)⑥】
複素フーリエ周期2LをScilabで確認。実数フーリエの時と同じ結果が得られた。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバー(立ち絵やら動画やらアイキャッチ画像やら)
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成#1(概要編)
シナリオやセリフ回しは起承転結を重視。動画はバックグラウンド、本編、全編に分かれた階層構造にしている。チャプタータイミングやYoutube向けテロップなど、直接動画作成に関係しない部分もやっている。
MATLAB,Python,Scilab,Julia比較 第5章 その96【複素フーリエ係数(周期2L)⑤】
複素フーリエ周期2LをPythonで確認。実数フーリエの時と同じ結果が得られた。
MATLAB,Python,Scilab,Julia比較 第5章 その95【複素フーリエ係数(周期2L)④】
複素フーリエ周期2LをMATLABで確認。実数フーリエの時と同じ結果が得られた。
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させこのアプローチは実数フーリエの時と同じ。
MATLAB,Python,Scilab,Julia比較 第5章 その94【複素フーリエ係数(周期2L)③】
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
MATLAB,Python,Scilab,Julia比較 第5章 その93【複素フーリエ係数(周期2L)②】
複素フーリエを周期2πから周期2Lへ。変換の流れは実数フーリエの時と全く同じ。
AivisSpeech Anneliの立ち絵を作ってみた(2.5頭身版)(psdファイル)
はじめに以前、AivisSpeechのAnneliの立ち絵を作成した。デフォルメ版(2~3頭身くらい)もあると使い勝手が良いのでは?と思い作ってみた次第。通常頭身版通常頭身版はこちら動画該当立ち絵を使用した動画はこちら。AivisSpeec...
MATLAB,Python,Scilab,Julia比較 第5章 その92【複素フーリエ係数(周期2L)①】
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させる。このアプローチは実数フーリエの時と同じ。
AivisSpeech Anneliの立ち絵を作成してみた(psdファイル)
AivisSpeechというむっちゃ優秀な音声合成ソフトウェアが存在します。動画作成に使用したいのだが、現状立ち絵があまり存在しない・・・。というわけで作った!!
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をJuliaで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をScilabで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をPythonで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をMATLABで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
MATLAB,Python,Scilab,Julia比較 第5章 その91【複素フーリエ係数⑯】
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をJuliaで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
MATLAB,Python,Scilab,Julia比較 第5章 その90【複素フーリエ係数⑮】
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をScilabで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
MATLAB,Python,Scilab,Julia比較 第5章 その89【複素フーリエ係数⑭】
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をPythonで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
MATLAB,Python,Scilab,Julia比較 第5章 その88【複素フーリエ係数⑬】
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をMATLABで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
【地味に時間かかる】JDLA Generative AI Test まとめ【多肢選択式のヤバさ】
JDLA Generative AI Testの受験記。JDLAからの制約事項の都合、開示できる情報には限りがある。テキスト、問題集は無いので、生成AIパスポート試験のもので代替。その後にシラバスを元に語彙力アップ。自作問題作ってパワーアップ。(自作問題集は公開してます。)用語ベースのカンペを作って対応できる感じではない。
フーリエ係数のC0について言及。結果としてC0は関数f(x)の平均値を示す。離散関数の平均と連続関数の平均の関係性。結局C0は三角関数では表現できない関数のオフセット成分となる。
複素フーリエ級数の数式を導出。「複素フーリエ係数」を解析したい数式と見なし、「複素指数関数の直交性」を利用して、直交している部分を0に、直交していない部分だけを抽出する。
MATLAB,Python,Scilab,Julia比較 第5章 その87【複素フーリエ係数⑫】
複素フーリエのプログラムフローを提示。実数フーリエの時と一緒。複素フーリエの存在意義。フーリエ変換への繋ぎとだけ考えても良いが、位相情報の保持
MATLAB,Python,Scilab,Julia比較 第5章 その86【複素フーリエ係数⑪】
C0の式を図で見た場合。離散関数の平均と連続関数の平均の関係性。結局C0は三角関数では表現できない関数のオフセット成分となる。
MATLAB,Python,Scilab,Julia比較 第5章 その85【複素フーリエ係数⑩】
フーリエ係数のC0について言及。普通にC0についてフーリエ係数を求める。結果としてC0は関数f(x)の平均値を示す。
MATLAB,Python,Scilab,Julia比較 第5章 その84【複素フーリエ係数⑨】
複素フーリエ級数の数式を導出。「複素フーリエ係数」を解析したい数式と見なし、「複素指数関数の直交性」を利用して、直交している部分を0に、直交していない部分だけを抽出する。
複素指数関数の直交性をJuliaで確認した。おおよそ狙い通りの挙動ではあるが、三角関数由来の誤差は入る。虚数単位がimになることに注意。
MATLAB、Python、Scilab、Julia比較ページはこちらはじめにの、MATLAB,Python,Scilab,Julia比較 第5章 その82【複素フーリエ係数⑦】を書き直したもの。複素フーリエ係数のシリーズ。今回は、複素指数...
複素指数関数の直交性をMATLABで確認した。おおよそ狙い通りの挙動ではあるが、三角関数由来の誤差は入る。
MATLAB,Python,Scilab,Julia比較 第5章 その83【複素フーリエ係数⑧】
複素指数関数の直交性をJuliaで確認した。おおよそ狙い通りの挙動ではあるが、三角関数由来の誤差は入る。虚数単位がimになることに注意。
MATLAB,Python,Scilab,Julia比較 第5章 その82【複素フーリエ係数⑦】
複素指数関数の直交性をScilabで確認した。おおよそ狙い通りの挙動ではあるが、三角関数由来の誤差は入る。虚数単位が%iになることに注意。
MATLAB,Python,Scilab,Julia比較 第5章 その81【複素フーリエ係数⑥】
複素指数関数の直交性をPythonで確認した。おおよそ狙い通りの挙動ではあるが、三角関数由来の誤差は入る。
MATLAB,Python,Scilab,Julia比較 第5章 その80【複素フーリエ係数⑤】
複素指数関数の直交性をMATLABで確認した。おおよそ狙い通りの挙動ではあるが、三角関数由来の誤差は入る。
複素指数関数の直交性を評価できる式を確認。直交性をアニメーションgifで見てみた。この直交性を各ツール、各言語で確認してみる。
複素指数関数同士の積の積分の式を提示。複素指数関数でn=mの時は直交しない。結論としてはn≠mの時に直交する。これらはオイラーの公式と三角関数の性格から特定ができる。
複素フーリエ係数の話に突入。複素フーリエ係数に至る道を提示。複素指数関数の積を確認。
MATLAB,Python,Scilab,Julia比較 第5章 その79【複素フーリエ係数④】
複素指数関数の直交性を評価できる式を確認。直交性をアニメーションgifで見てみた。この直交性を各ツール、各言語で確認してみる。
MATLAB,Python,Scilab,Julia比較 第5章 その78【複素フーリエ係数③】
複素指数関数の積で直交するパターンを確認。結論としてはn≠mの時に直交する。オイラーの公式と三角関数の性格から特定ができる。
MATLAB,Python,Scilab,Julia比較 第5章 その77【複素フーリエ係数②】
複素指数関数同士の積の積分の式を提示。n=mの時の解を確認。複素指数関数でn=mの時は直交しない。
MATLAB,Python,Scilab,Julia比較 第5章 その76【複素フーリエ係数①】
複素フーリエ係数の話に突入。複素フーリエ係数に至る道を提示。複素指数関数の積を確認。
複素フーリエ級数を導出した。最終的にはシンブルな式に。実際に利用しようと思うと、複素フーリエ係数とセットなので、しばらく待ち。
実数フーリエ級数にsin,cosを福祉指数関数で表現する公式を代入。ここでも「虚数で割ることが負の虚数を掛けることが同一」って理屈を使う。変数の極性を入れ替えた上で、Σの極性を入れかえれば同じものとなる。フーリエ係数であることを前提とした場合、極性の特性を定められる。
前回のcos,sinを複素指数関数で表現する式をMATLABの逆行列で検算。なぜか異なるような結果になった。「虚数で割ることと負の虚数を掛けることが同一」である。これは、複素フーリエ級数を導出するときにも使用するから覚えておいた方が良い。
実数フーリエ級数を複素フーリエ級数にするためにオイラーの公式を利用する。 具体的にはcos関数、sin関数を複素指数関数で表現する。 オイラーの公式とそれの変形の式を元にcos関数、sin関数を複素指数関数で表現するため、連立方程式を解いた。
MATLAB,Python,Scilab,Julia比較 第5章 その75【複素フーリエ級数⑦】
複素フーリエ級数を導出した。 最終的にはシンブルな式に。 実際に利用しようと思うと、複素フーリエ係数とセットなので、しばらく待ち。
MATLAB,Python,Scilab,Julia比較 第5章 その74【複素フーリエ級数⑥】
前回のフーリエ級数を複素指数関数で表現した式を変形。 変数の極性を入れ替えた上で、Σの極性を入れかえれば同じものとなる。 フーリエ係数であることを前提とした場合、極性の特性を定められる。
MATLAB,Python,Scilab,Julia比較 第5章 その73【複素フーリエ級数⑤】
実数フーリエ級数にsin,cosを福祉指数関数で表現する公式を代入。 ここでも「虚数で割ることが負の虚数を掛けることが同一」って理屈を使う。 複素フーリエ級数導出までもう一歩。
MATLAB,Python,Scilab,Julia比較 第5章 その72【複素フーリエ級数④】
「虚数で割ることと負の虚数を掛けることが同一」である。 上記を証明。 これは、複素フーリエ級数を導出するときにも使用するから覚えておいた方が良い。
MATLAB,Python,Scilab,Julia比較 第5章 その71【複素フーリエ級数③】
前回のcos,sinを複素指数関数で表現する式をMATLABの逆行列で検算。 なぜか異なるような結果になった。 が、実は・・・。
MATLAB,Python,Scilab,Julia比較 第5章 その70【複素フーリエ級数②】
オイラーの公式とそれの変形の式を元にcos関数、sin関数を複素指数関数で表現するため、連立方程式を解いた。 連立方程式は行列を使うと一撃。
MATLAB,Python,Scilab,Julia比較 第5章 その69【複素フーリエ級数①】
実数フーリエ級数を複素フーリエ級数にするためにオイラーの公式を利用する。 具体的にはcos関数、sin関数を複素指数関数で表現する。 上記を実数フーリエ級数に代入すれば複素フーリエ級数になるというのが大雑把な流れ。
オイラーの公式の話に突入。 各種マクローリン展開を再掲。 指数関数のマクローリン展開に複素数を入れてみる。 複素指数関数のマクローリン展開を変形。 オイラーの公式の変形。
MATLAB,Python,Scilab,Julia比較 第5章 その68【オイラーの公式③】
複素指数関数のマクローリン展開を変形。 cos関数とsin関数のマクローリン展開の式が出てくる。 実数部をcos、虚数部をsinとするとオイラーの公式になる。 オイラーの公式の変形。 入力に負の符号をつけたもの。 今後いろいろ活躍してくれる公式になる。
MATLAB,Python,Scilab,Julia比較 第5章 その67【オイラーの公式②】
各種マクローリン展開を再掲。 指数関数、cos関数、sin関数。 指数関数のマクロー xをixにするだけ。
MATLAB,Python,Scilab,Julia比較 第5章 その66【オイラーの公式①】
オイラーの公式の話に突入。 オイラーの公式の証明に必要な情報はある程度揃ってる。 前回までにやった各種マクローリン展開が必要な情報。
sin関数のマクローリン展開の演算とプロットをJuliaで実施。 nが増えればsin関数に近似していく。
sin関数のマクローリン展開の演算とプロットをScilabで実施。 nが増えればsin関数に近似していく。
sin関数のマクローリン展開の演算とプロットをPythonで実施。 nが増えればsin関数に近似していく。
sin関数のマクローリン展開の演算とプロットをMATLABで実施。 nが増えればsin関数に近似していく。
MATLAB,Python,Scilab,Julia比較 第5章 その65【マクローリン展開⑪】
sin関数のマクローリン展開の演算とプロットをJuliaで実施。 nが増えればsin関数に近似していく。
MATLAB,Python,Scilab,Julia比較 第5章 その64【マクローリン展開⑩】
sin関数のマクローリン展開の演算とプロットをScilabで実施。 nが増えればsin関数に近似していく。
MATLAB,Python,Scilab,Julia比較 第5章 その63【マクローリン展開⑨】
sin関数のマクローリン展開の演算とプロットをPythonで実施。 nが増えればsin関数に近似していく。
MATLAB,Python,Scilab,Julia比較 第5章 その62【マクローリン展開⑧】
sin関数のマクローリン展開の演算とプロットをMATLABで実施。 nが増えればsin関数に近似していく。
sinのマクローリン級数をプログラムで記載してみる予定。 プログラムフローを提示。 基本はfor文でぶん回すだけ。
cos関数をマクローリン展開。 cos関数をマクローリン展開したプロットも出してみた。 sin関数をマクローリン展開。 sin関数をマクローリン展開したプロットも出してみた。
cos関数をマクローリン展開。 cos関数をマクローリン展開したプロットも出してみた。 sin関数をマクローリン展開。 sin関数をマクローリン展開したプロットも出してみた。
マクローリン展開について説明。 指数関数をマクローリン展開してみた。 さらにマクローリン展開したものをグラフ化。 nが増えれば近似度合いも上がる。
いままでやってきたのは実数フーリエ。 複素フーリエに至る道を記載。 テイラー級数について説明。 テイラー級数とマクローリン級数を比較。
MATLAB,Python,Scilab,Julia比較 第5章 その61【マクローリン展開⑦】
sinのマクローリン級数をプログラムで記載してみる予定。 プログラムフローを提示。 基本はfor文でぶん回すだけ。
GUGA 生成AIパスポート試験 2023年版、2025年版シラバスを比較してみた
生成AIパスポート試験の2023年版シラバスと2025年版シラバスを比較してみた。 時代に合わせて新しい機能、モデルが追加。 AI事業者ガイドライン(第1.0版)発表に伴い、ガイドライン関連が整理され、ガバナンス、主体についても言及されるように。
MATLAB,Python,Scilab,Julia比較 第5章 その60【マクローリン展開⑥】
sin関数をマクローリン展開。 とりあえず微分しまくると4階微分の周期が見える。 これを元にマクローリン展開。 sin関数をマクローリン展開したプロットも出してみた。
MATLAB,Python,Scilab,Julia比較 第5章 その59【マクローリン展開⑤】
cos関数をマクローリン展開。 とりあえず微分しまくると4階微分の周期が見える。 これを元にマクローリン展開。 cos関数をマクローリン展開したプロットも出してみた。
MATLAB,Python,Scilab,Julia比較 第5章 その58【マクローリン展開④】
マクローリン展開について説明。 指数関数をマクローリン展開してみた。 さらにマクローリン展開したものをグラフ化。 nが増えれば近似度合いも上がる。
MATLAB,Python,Scilab,Julia比較 第5章 その57【マクローリン展開③】
テイラー級数とマクローリン級数を比較。 任意の点x0が原点になったものがマクローリン級数。 よって、テイラー級数の拡張というよりも制限版であり、シンプルになったものと思った方が妥当。
MATLAB,Python,Scilab,Julia比較 第5章 その56【マクローリン展開②】
テイラー級数について説明。 数式も書き出し。 過去に何度か扱っているものなので実際の効果については確認しない。 代わりにマクローリン級数の時に実施予定。
MATLAB,Python,Scilab,Julia比較 第5章 その55【マクローリン展開①】
いままでやってきたのは実数フーリエ。 ということは複素フーリエが・・・。 複素フーリエに至る道を記載。
フーリエ級数、フーリエ係数の任意周期版のプログラムをJuliaで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
フーリエ級数、フーリエ係数の任意周期版のプログラムをScilabで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
フーリエ級数、フーリエ係数の任意周期版のプログラムをPythonで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
フーリエ級数、フーリエ係数の任意周期版のプログラムをMATLABで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その54【フーリエ級数(周期2L)⑦】
フーリエ級数、フーリエ係数の任意周期版のプログラムをJuliaで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その53【フーリエ級数(周期2L)⑥】
フーリエ級数、フーリエ係数の任意周期版のプログラムをScilabで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その52【フーリエ級数(周期2L)⑤】
フーリエ級数、フーリエ係数の任意周期版のプログラムをPythonで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その51【フーリエ級数(周期2L)④】
フーリエ級数、フーリエ係数の任意周期版のプログラムをMATLABで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
任意周期のフーリエ級数、フーリエ係数のプログラム化検討。 基本的には以前の使い回し。 波形データの解釈や、数式が変わるのみ。の予定。
前回までのフーリエ級数、ふーりけ係数には周期2πという制約がある。 三角関数の直交性を得るための制約。 フーリエ級数を伸縮するための検討。 xがπと認識するように係数を掛けてあげればOK。 フーリエ係数も、πがLになるように式を変更すればOK。
MATLAB,Python,Scilab,Julia比較 第5章 その50【フーリエ級数(周期2L)③】
任意周期のフーリエ級数、フーリエ係数のプログラム化検討。 基本的には以前の使い回し。 波形データの解釈や、数式が変わるのみ。の予定。
MATLAB,Python,Scilab,Julia比較 第5章 その49【フーリエ級数(周期2L)②】
フーリエ級数を伸縮するための検討。 xがπと認識するように係数を掛けてあげればOK。 フーリエ係数も、πがLになるように式を変更すればOK。
MATLAB,Python,Scilab,Julia比較 第5章 その48【フーリエ級数(周期2L)①】
前回までのフーリエ級数、ふーりけ係数には周期2πという制約がある。 三角関数の直交性を得るための制約。 周期を変えるには、周期の伸縮を考えると解決できるかも?
フーリエ係数を求めるプログラムをJuliaで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
フーリエ係数を求めるプログラムをScilabで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
フーリエ係数を求めるプログラムをPythonで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
フーリエ係数を求めるプログラムをMATLABで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その47【フーリエ係数⑪】
フーリエ係数を求めるプログラムをJuliaで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その46【フーリエ係数⑩】
フーリエ係数を求めるプログラムをJuliaで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その45【フーリエ係数⑨】
フーリエ係数を求めるプログラムをPythonで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その44【フーリエ係数⑧】
フーリエ係数を求めるプログラムをMATLABで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
「ブログリーダー」を活用して、KEIさんをフォローしませんか?
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
複素フーリエ周期2LをScilabで確認。実数フーリエの時と同じ結果が得られた。
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
シナリオやセリフ回しは起承転結を重視。動画はバックグラウンド、本編、全編に分かれた階層構造にしている。チャプタータイミングやYoutube向けテロップなど、直接動画作成に関係しない部分もやっている。
複素フーリエ周期2LをPythonで確認。実数フーリエの時と同じ結果が得られた。
複素フーリエ周期2LをMATLABで確認。実数フーリエの時と同じ結果が得られた。
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させこのアプローチは実数フーリエの時と同じ。
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
複素フーリエを周期2πから周期2Lへ。変換の流れは実数フーリエの時と全く同じ。
はじめに以前、AivisSpeechのAnneliの立ち絵を作成した。デフォルメ版(2~3頭身くらい)もあると使い勝手が良いのでは?と思い作ってみた次第。通常頭身版通常頭身版はこちら動画該当立ち絵を使用した動画はこちら。AivisSpeec...
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させる。このアプローチは実数フーリエの時と同じ。
AivisSpeechというむっちゃ優秀な音声合成ソフトウェアが存在します。動画作成に使用したいのだが、現状立ち絵があまり存在しない・・・。というわけで作った!!
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をJuliaで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をScilabで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をPythonで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をMATLABで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をJuliaで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をScilabで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をPythonで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
活性化関数をシグモイド関数にした形式ニューロンをJuliaで実現。 結果はカスタムヘヴィサイドの時と一緒。
活性化関数をシグモイド関数にした形式ニューロンをScilabで実現。 結果はカスタムヘヴィサイドの時と一緒。
活性化関数をシグモイド関数にした形式ニューロンをPython(NumPy)で実現。 結果はカスタムヘヴィサイドの時と一緒。
活性化関数をシグモイド関数にした形式ニューロンをMATLABで実現。 結果はカスタムヘヴィサイドの時と一緒。
決定境界直線の一般的な安定化方法がある。 シグモイド関数を使用する方法。 シグモイド関数の定義について説明。 カスタムヘヴィサイドとシグモイドの比較。 総当たり法では効能の差は出ないが、誤差逆伝播法を使い始めるとシグモイドじゃないと都合が悪い。
シグモイド関数の定義について説明。 特に理屈はなく、そういうものが存在するって程度。 カスタムヘヴィサイドとシグモイドの比較。 総当たり法では効能の差は出ないが、誤差逆伝播法を使い始めるとシグモイドじゃないと都合が悪い。
決定境界直線の一般的な安定化方法がある。 シグモイド関数を使用する方法。 ヘヴィサイド関数のように0,1を表現することを目的とした関数だが、シグモイド関数は全域で勾配がある。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをJuliaで作成。 例に漏れずMATLABコードのコピペがベース。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをScilabで作成。 おおよそMATLABと同じコード。 毎度おなじみのグラフ表示部分に差が出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをPython(NumPy)で作成。 おおよそMATLABと同じ結果に。 毎度おなじみの表示上の誤差は出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをMATLABで作成。 狙い通りの位置に決定境界直線が移動。 コードはヘヴィサイド関数をカスタムヘヴィサイド関数に変えただけ。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをJuliaで作成。 例に漏れずMATLABコードのコピペがベース。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをScilabで作成。 おおよそMATLABと同じコード。 毎度おなじみのグラフ表示部分に差が出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをPython(NumPy)で作成。 おおよそMATLABと同じ結果に。 毎度おなじみの表示上の誤差は出る。
形式ニューロンの活性化関数をカスタムヘヴィサイド(造語)関数にしたものをMATLABで作成。 狙い通りの位置に決定境界直線が移動。 コードはヘヴィサイド関数をカスタムヘヴィサイド関数に変えただけ。
形式ニューロンのプログラムでは決定境界直線がギリギリのラインに来ていたで、どうあるべきか。について説明。 決定境界直線をいい感じのところに持っていくにはヘヴィサイド関数を差し替える必要がある。 ヘヴィサイド関数の原点近辺に傾斜を付けたカスタムヘヴィサイド関数(造語)が良さげ。
決定境界直線をいい感じのところに持っていくにはヘヴィサイド関数を差し替える必要がある。 ヘヴィサイド関数の原点近辺に傾斜を付けたカスタムヘヴィサイド関数(造語)が良さげ。
決定境界直線がギリギリなる理由。 ヘヴィサイド関数の性質に原因がある。 ヘヴィサイド関数の性質は入力0を境に出力0,1が切り替わるのみで勾配が無い。 これにより程度の表現ができず、境界直線も適正位置が探せない。
形式ニューロンのプログラムでは決定境界直線がギリギリのラインに来ていた。 上記を解消するため、どうあるべきか。について説明。 この後に、なぜこうなったか、どうすればかいしょうできるかの話が続く予定。
形式ニューロンをJuliaで実現。 ANDの真理値表と同じ結果が得らえれた。 コードレベルでMATLABと近似。