The affect infusion model (AIM) is a prominent theory of when current emotional state is expected... more The affect infusion model (AIM) is a prominent theory of when current emotional state is expected to influence the interpretation of a social stimulus (situation). We discuss the assumptions in AIM and conclude that its current specification predicts that both deliberation time and situational complexity should lead to affect infusion. The aim of this research was to clarify the relative importance of these factors in determining affect infusion and hence promote the development of AIM. We present an experimental design in which situational complexity and deliberation time can be manipulated orthogonally as independent factors. Our results show that the latter factor, but not the former, can influence the degree of affect infusion.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2000
While the transporters that accumulate classical neurotransmitters in synaptic vesicles have been... more While the transporters that accumulate classical neurotransmitters in synaptic vesicles have been identified, little is known about how their expression regulates synaptic transmission. We have used adenoviral-mediated transfection to increase expression of the brain vesicular monoamine transporter VMAT2 and presynaptic amperometric recordings to characterize the effects on quantal release. In presynaptic axonal varicosities of ventral midbrain neurons in postnatal culture, VMAT2 overexpression in small synaptic vesicles increased both quantal size and frequency, consistent with the recruitment of synaptic vesicles that do not normally release dopamine. This was confirmed using noncatecholaminergic AtT-20 cells, in which VMAT2 expression induced the quantal release of dopamine. The ability to increase quantal size in vesicles that were already competent for dopamine release was shown in PC12 cells, in which VMAT2 expression increased the quantal size but not the number of release ev...
The Quarterly Journal of Experimental Psychology, 2014
Several researchers have reported that learning a particular categorization leads to compatible c... more Several researchers have reported that learning a particular categorization leads to compatible changes in the similarity structure of the categorized stimuli. The purpose of this study is to examine whether different category structures may lead to greater or less corresponding similarity change. We created six category structures and examined changes in similarity within categories or between categories, as a result of categorization, in between-participant conditions. The best supported hypothesis was that the ease of learning a categorization affects change in within-categories similarity, so that greater (within-categories) similarity change was observed for category structures that were harder to learn.
We address the problem of predicting how people will spontaneously divide into groups a set of no... more We address the problem of predicting how people will spontaneously divide into groups a set of novel items. This is a process akin to perceptual organization. We therefore employ the simplicity principle from perceptual organization to propose a simplicity model of unconstrained spontaneous grouping. The simplicity model predicts that people would prefer the categories for a set of novel items that provide the simplest encoding of these items. Classification predictions are derived from the model without information either about the number of categories sought or information about the distributional properties of the objects to be classified. These features of the simplicity model distinguish it from other models in unsupervised categorization (where, for example, the number of categories sought is determined via a free parameter), and we discuss how these computational differences are related to differences in modeling objectives. The predictions of the simplicity model are validated in four experiments. We also discuss the significance of simplicity in cognitive modeling more generally.
Decisions can sometimes have a constructive role, so that the act of, for example, choosing one o... more Decisions can sometimes have a constructive role, so that the act of, for example, choosing one option over another creates a preference for that option (e.g.
The conjunction fallacy refers to situations when a person judges a conjunction to be more likely... more The conjunction fallacy refers to situations when a person judges a conjunction to be more likely than one of the individual conjuncts, which is a violation of a key property of classical probability theory. Recently, quantum probability (QP) theory has been proposed as a coherent account of these and many other findings on probability judgment "errors" that violate classical probability rules, including the conjunction fallacy. Tentori, Crupi, and Russo (2013) presented an alternative account of the conjunction fallacy based on the concept of inductive confirmation. They presented new empirical findings consistent with their account, and they also claimed that these results were inconsistent with the QP theory account. This comment proved that our QP model for the conjunction fallacy is completely consistent with the main empirical results from Tentori et al. (2013). Furthermore, we discuss experimental tests that can distinguish the 2 alternative accounts. (PsycINFO Data...
Trapping of weak bases was utilized to evaluate stimulus-induced changes in the internal pH of th... more Trapping of weak bases was utilized to evaluate stimulus-induced changes in the internal pH of the secretory vesicles of chromaffin cells and enteric neurons. The internal acidity of chromaffin vesicles was increased by the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP; in vivo and in vitro) and by high K+ (in vitro); and in enteric nerve terminals by exposure to veratridine or a plasmalemmal [Ca2+]o receptor agonist (Gd3+). Stimulation-induced acidification of chromaffin vesicles was [Ca2+]o-dependent and blocked by agents that inhibit the vacuolar proton pump (vH+-ATPase) or flux through Cl- channels. Stimulation also increased the average volume of chromaffin vesicles and the proportion that displayed a clear halo around their dense cores (called active vesicles). Stimulation-induced increases in internal acidity and size were greatest in active vesicles. Stimulation of chromaffin cells in the presence of a plasma membrane marker revealed that membrane was int...
In this study of the project DyAdd, implicit learning was investigated through two paradigms in a... more In this study of the project DyAdd, implicit learning was investigated through two paradigms in adults (18-55 years) with dyslexia (n = 36) or with attention deficit/hyperactivity disorder (ADHD, n = 22) and in controls (n = 35). In the serial reaction time (SRT) task, there were no group differences in learning. However, those with ADHD exhibited faster RTs compared to other groups. In the artificial grammar learning (AGL) task, the groups did not differ from each other in their learning (i.e., grammaticality accuracy or similarity choices). Further, all three groups were sensitive to fragment overlap between learning and test-phase items (i.e., similarity choices were above chance). Grammaticality performance of control participants was above chance, but that of participants with dyslexia and participants with ADHD failed to differ from chance, indicating impaired grammaticality learning in these groups. While the main indices of AGL performance, grammaticality accuracy and similarity choices did not correlate with the neuropsychological variables that reflected dyslexia-related (phonological processing, reading, spelling, arithmetic) or ADHD-related characteristics (executive functions, attention), or intelligence, the explicit knowledge for the AGL grammar (i.e., ability to freely generate grammatical strings) correlated positively with the variables of phonological processing and reading. Further, SRT reaction times correlated positively with full scale intelligence quotient (FIQ). We conclude that, in AGL, learning difficulties of the underlying rule structure (as measured by grammaticality) are associated with dyslexia and ADHD. However, learning in AGL is not related to the defining neuropsychological features of dyslexia or ADHD. Instead, the resulting explicit knowledge relates to characteristics of dyslexia.
Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiri... more Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability theory and a concrete example is provided to illustrate how a quantum cognitive model can be developed to explain paradoxical empirical findings in psychological literature.
Critical (necessary or sufficient) features in categorisation have a long history, but the empiri... more Critical (necessary or sufficient) features in categorisation have a long history, but the empirical evidence makes their existence questionable. Nevertheless, there are some cases that suggest critical feature effects. The purpose of the present work is to offer some insight into why classification decisions might misleadingly appear as if they involve critical features. Utilising Tversky's (1977) contrast model of similarity,
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food int... more Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food intake regulation through central mechanisms. However, the neural circuits underlying their anorexigenic effects remain largely unknown. We showed previously that selective BDNF depletion in the ventromedial hypothalamus (VMH) of mice resulted in hyperphagic behavior and obesity. Here, we sought to ascertain whether its regulatory effects involved the mesolimbic dopamine system, which mediates motivated and reward-seeking behaviors including consumption of palatable food. We found that expression of BDNF and TrkB mRNA in the ventral tegmental area (VTA) of wild type mice was influenced by consumption of palatable, high-fat food (HFF). Moreover, amperometric recordings in brain slices of mice depleted of central BDNF uncovered marked deficits in evoked release of dopamine in the nucleus accumbens (NAc) shell and dorsal striatum but normal secretion in the NAc core. Mutant mice also exhibited dramatic increases in HFF consumption, which were exacerbated when access to HFF was restricted. However, mutants displayed enhanced responses to D1 receptor agonist administration, which normalized their intake of HFF in a 4-hour food intake test. Finally, in contrast to deletion of Bdnf in the VMH of mice, which resulted in increased intake of standard chow, BDNF depletion in the VTA elicited excessive intake of HFF but not of standard chow and increased body weights under HFF conditions. Our findings indicate that the effects of BDNF on eating behavior are neural substrate-dependent and that BDNF influences hedonic feeding via positive modulation of the mesolimbic dopamine system.
The association between dietary obesity and mesolimbic systems that regulate hedonic aspects of f... more The association between dietary obesity and mesolimbic systems that regulate hedonic aspects of feeding is currently unresolved. In the present study, we examined differences in baseline and stimulated central dopamine levels in obesity-prone (OP) and obesity-resistant (OR) rats. OP rats were hyperphagic and showed a 20% weight gain over OR rats at wk 15 of age, when fed a standard chow diet. This phenotype was associated with a 50% reduction in basal extracellular dopamine, as measured by a microdialysis probe in the nucleus accumbens, a projection site of the mesolimbic dopamine system that has been implicated in food reward. Similar defects were also observed in younger animals (4 wk old). In electrophysiology studies, electrically evoked dopamine release in slice preparations was significantly attenuated in OP rats, not only in the nucleus accumbens but also in additional terminal sites of dopamine neurons such as the accumbens shell, dorsal striatum, and medial prefrontal cortex, suggesting that there may be a widespread dysfunction in mechanisms regulating dopamine release in this obesity model. Moreover, dopamine impairment in OP rats was apparent at birth and associated with changes in expression of several factors regulating dopamine synthesis and release: vesicular monoamine transporter-2, tyrosine hydroxylase, dopamine transporter, and dopamine receptor-2 short-form. Taken together, these results suggest that an attenuated central dopamine system would reduce the hedonic response associated with feeding and induce compensatory hyperphagia, leading to obesity.-Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J. 22, 2740 -2746 (2008)
The Quarterly Journal of Experimental Psychology, 2012
T. T. Rogers and K. Patterson (2007), in their article &a... more T. T. Rogers and K. Patterson (2007), in their article "Object Categorization: Reversals and Explanations of the Basic-Level Advantage" (Journal of Experimental Psychology: General, 136, 451-469), reported an impressive set of results demonstrating a reversal of the highly robust basic-level advantage both in patients with semantic dementia and in healthy individuals engaged in a speeded categorization task. To explain their results, as well as the usual basic-level advantage seen in healthy individuals, the authors employed a parallel distributed processing theory of conceptual knowledge. In this paper, we introduce an alternative way of explaining the results of Rogers and Patterson, which is premised on a more restricted set of assumptions born from standard categorization theory. Specifically, we provide evidence that their results can be accounted for based on the predictions of the simplicity model of unsupervised categorization.
A quantum probability model is introduced and used to explain human probability judgment errors i... more A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector spaces defined by features, and similarities between vectors to determine probability judgments. On the other hand, quantum probability theory is a generalization of Bayesian probability theory because it is based on a set of (von Neumann) axioms that relax some of the classic (Kolmogorov) axioms. The quantum model is compared and contrasted with other competing explanations for these judgment errors including the anchoring and adjustment model for probability judgments. The quantum model introduces a new fundamental concept to cognition --the compatibility versus incompatibility of questions and the effect this can have on the sequential order of judgments.
Categorization is one of the fundamental building blocks of cognition, and the study of categoriz... more Categorization is one of the fundamental building blocks of cognition, and the study of categorization is notable for the extent to which formal modeling has been a central and influential component of research. However, the field has seen a proliferation of noncomplementary models with little consensus on the relative adequacy of these accounts. Progress in assessing the relative adequacy of formal categorization models has, to date, been limited because (a) formal model comparisons are narrow in the number of models and phenomena considered and (b) models do not often clearly define their explanatory scope. Progress is further hampered by the practice of fitting models with arbitrarily variable parameters to each data set independently. Reviewing examples of good practice in the literature, we conclude that model comparisons are most fruitful when relative adequacy is assessed by comparing well-defined models on the basis of the number and proportion of irreversible, ordinal, penetrable successes (principles of minimal flexibility, breadth, good-enough precision, maximal simplicity, and psychological focus).
The affect infusion model (AIM) is a prominent theory of when current emotional state is expected... more The affect infusion model (AIM) is a prominent theory of when current emotional state is expected to influence the interpretation of a social stimulus (situation). We discuss the assumptions in AIM and conclude that its current specification predicts that both deliberation time and situational complexity should lead to affect infusion. The aim of this research was to clarify the relative importance of these factors in determining affect infusion and hence promote the development of AIM. We present an experimental design in which situational complexity and deliberation time can be manipulated orthogonally as independent factors. Our results show that the latter factor, but not the former, can influence the degree of affect infusion.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2000
While the transporters that accumulate classical neurotransmitters in synaptic vesicles have been... more While the transporters that accumulate classical neurotransmitters in synaptic vesicles have been identified, little is known about how their expression regulates synaptic transmission. We have used adenoviral-mediated transfection to increase expression of the brain vesicular monoamine transporter VMAT2 and presynaptic amperometric recordings to characterize the effects on quantal release. In presynaptic axonal varicosities of ventral midbrain neurons in postnatal culture, VMAT2 overexpression in small synaptic vesicles increased both quantal size and frequency, consistent with the recruitment of synaptic vesicles that do not normally release dopamine. This was confirmed using noncatecholaminergic AtT-20 cells, in which VMAT2 expression induced the quantal release of dopamine. The ability to increase quantal size in vesicles that were already competent for dopamine release was shown in PC12 cells, in which VMAT2 expression increased the quantal size but not the number of release ev...
The Quarterly Journal of Experimental Psychology, 2014
Several researchers have reported that learning a particular categorization leads to compatible c... more Several researchers have reported that learning a particular categorization leads to compatible changes in the similarity structure of the categorized stimuli. The purpose of this study is to examine whether different category structures may lead to greater or less corresponding similarity change. We created six category structures and examined changes in similarity within categories or between categories, as a result of categorization, in between-participant conditions. The best supported hypothesis was that the ease of learning a categorization affects change in within-categories similarity, so that greater (within-categories) similarity change was observed for category structures that were harder to learn.
We address the problem of predicting how people will spontaneously divide into groups a set of no... more We address the problem of predicting how people will spontaneously divide into groups a set of novel items. This is a process akin to perceptual organization. We therefore employ the simplicity principle from perceptual organization to propose a simplicity model of unconstrained spontaneous grouping. The simplicity model predicts that people would prefer the categories for a set of novel items that provide the simplest encoding of these items. Classification predictions are derived from the model without information either about the number of categories sought or information about the distributional properties of the objects to be classified. These features of the simplicity model distinguish it from other models in unsupervised categorization (where, for example, the number of categories sought is determined via a free parameter), and we discuss how these computational differences are related to differences in modeling objectives. The predictions of the simplicity model are validated in four experiments. We also discuss the significance of simplicity in cognitive modeling more generally.
Decisions can sometimes have a constructive role, so that the act of, for example, choosing one o... more Decisions can sometimes have a constructive role, so that the act of, for example, choosing one option over another creates a preference for that option (e.g.
The conjunction fallacy refers to situations when a person judges a conjunction to be more likely... more The conjunction fallacy refers to situations when a person judges a conjunction to be more likely than one of the individual conjuncts, which is a violation of a key property of classical probability theory. Recently, quantum probability (QP) theory has been proposed as a coherent account of these and many other findings on probability judgment "errors" that violate classical probability rules, including the conjunction fallacy. Tentori, Crupi, and Russo (2013) presented an alternative account of the conjunction fallacy based on the concept of inductive confirmation. They presented new empirical findings consistent with their account, and they also claimed that these results were inconsistent with the QP theory account. This comment proved that our QP model for the conjunction fallacy is completely consistent with the main empirical results from Tentori et al. (2013). Furthermore, we discuss experimental tests that can distinguish the 2 alternative accounts. (PsycINFO Data...
Trapping of weak bases was utilized to evaluate stimulus-induced changes in the internal pH of th... more Trapping of weak bases was utilized to evaluate stimulus-induced changes in the internal pH of the secretory vesicles of chromaffin cells and enteric neurons. The internal acidity of chromaffin vesicles was increased by the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP; in vivo and in vitro) and by high K+ (in vitro); and in enteric nerve terminals by exposure to veratridine or a plasmalemmal [Ca2+]o receptor agonist (Gd3+). Stimulation-induced acidification of chromaffin vesicles was [Ca2+]o-dependent and blocked by agents that inhibit the vacuolar proton pump (vH+-ATPase) or flux through Cl- channels. Stimulation also increased the average volume of chromaffin vesicles and the proportion that displayed a clear halo around their dense cores (called active vesicles). Stimulation-induced increases in internal acidity and size were greatest in active vesicles. Stimulation of chromaffin cells in the presence of a plasma membrane marker revealed that membrane was int...
In this study of the project DyAdd, implicit learning was investigated through two paradigms in a... more In this study of the project DyAdd, implicit learning was investigated through two paradigms in adults (18-55 years) with dyslexia (n = 36) or with attention deficit/hyperactivity disorder (ADHD, n = 22) and in controls (n = 35). In the serial reaction time (SRT) task, there were no group differences in learning. However, those with ADHD exhibited faster RTs compared to other groups. In the artificial grammar learning (AGL) task, the groups did not differ from each other in their learning (i.e., grammaticality accuracy or similarity choices). Further, all three groups were sensitive to fragment overlap between learning and test-phase items (i.e., similarity choices were above chance). Grammaticality performance of control participants was above chance, but that of participants with dyslexia and participants with ADHD failed to differ from chance, indicating impaired grammaticality learning in these groups. While the main indices of AGL performance, grammaticality accuracy and similarity choices did not correlate with the neuropsychological variables that reflected dyslexia-related (phonological processing, reading, spelling, arithmetic) or ADHD-related characteristics (executive functions, attention), or intelligence, the explicit knowledge for the AGL grammar (i.e., ability to freely generate grammatical strings) correlated positively with the variables of phonological processing and reading. Further, SRT reaction times correlated positively with full scale intelligence quotient (FIQ). We conclude that, in AGL, learning difficulties of the underlying rule structure (as measured by grammaticality) are associated with dyslexia and ADHD. However, learning in AGL is not related to the defining neuropsychological features of dyslexia or ADHD. Instead, the resulting explicit knowledge relates to characteristics of dyslexia.
Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiri... more Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability theory and a concrete example is provided to illustrate how a quantum cognitive model can be developed to explain paradoxical empirical findings in psychological literature.
Critical (necessary or sufficient) features in categorisation have a long history, but the empiri... more Critical (necessary or sufficient) features in categorisation have a long history, but the empirical evidence makes their existence questionable. Nevertheless, there are some cases that suggest critical feature effects. The purpose of the present work is to offer some insight into why classification decisions might misleadingly appear as if they involve critical features. Utilising Tversky's (1977) contrast model of similarity,
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food int... more Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food intake regulation through central mechanisms. However, the neural circuits underlying their anorexigenic effects remain largely unknown. We showed previously that selective BDNF depletion in the ventromedial hypothalamus (VMH) of mice resulted in hyperphagic behavior and obesity. Here, we sought to ascertain whether its regulatory effects involved the mesolimbic dopamine system, which mediates motivated and reward-seeking behaviors including consumption of palatable food. We found that expression of BDNF and TrkB mRNA in the ventral tegmental area (VTA) of wild type mice was influenced by consumption of palatable, high-fat food (HFF). Moreover, amperometric recordings in brain slices of mice depleted of central BDNF uncovered marked deficits in evoked release of dopamine in the nucleus accumbens (NAc) shell and dorsal striatum but normal secretion in the NAc core. Mutant mice also exhibited dramatic increases in HFF consumption, which were exacerbated when access to HFF was restricted. However, mutants displayed enhanced responses to D1 receptor agonist administration, which normalized their intake of HFF in a 4-hour food intake test. Finally, in contrast to deletion of Bdnf in the VMH of mice, which resulted in increased intake of standard chow, BDNF depletion in the VTA elicited excessive intake of HFF but not of standard chow and increased body weights under HFF conditions. Our findings indicate that the effects of BDNF on eating behavior are neural substrate-dependent and that BDNF influences hedonic feeding via positive modulation of the mesolimbic dopamine system.
The association between dietary obesity and mesolimbic systems that regulate hedonic aspects of f... more The association between dietary obesity and mesolimbic systems that regulate hedonic aspects of feeding is currently unresolved. In the present study, we examined differences in baseline and stimulated central dopamine levels in obesity-prone (OP) and obesity-resistant (OR) rats. OP rats were hyperphagic and showed a 20% weight gain over OR rats at wk 15 of age, when fed a standard chow diet. This phenotype was associated with a 50% reduction in basal extracellular dopamine, as measured by a microdialysis probe in the nucleus accumbens, a projection site of the mesolimbic dopamine system that has been implicated in food reward. Similar defects were also observed in younger animals (4 wk old). In electrophysiology studies, electrically evoked dopamine release in slice preparations was significantly attenuated in OP rats, not only in the nucleus accumbens but also in additional terminal sites of dopamine neurons such as the accumbens shell, dorsal striatum, and medial prefrontal cortex, suggesting that there may be a widespread dysfunction in mechanisms regulating dopamine release in this obesity model. Moreover, dopamine impairment in OP rats was apparent at birth and associated with changes in expression of several factors regulating dopamine synthesis and release: vesicular monoamine transporter-2, tyrosine hydroxylase, dopamine transporter, and dopamine receptor-2 short-form. Taken together, these results suggest that an attenuated central dopamine system would reduce the hedonic response associated with feeding and induce compensatory hyperphagia, leading to obesity.-Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J. 22, 2740 -2746 (2008)
The Quarterly Journal of Experimental Psychology, 2012
T. T. Rogers and K. Patterson (2007), in their article &a... more T. T. Rogers and K. Patterson (2007), in their article "Object Categorization: Reversals and Explanations of the Basic-Level Advantage" (Journal of Experimental Psychology: General, 136, 451-469), reported an impressive set of results demonstrating a reversal of the highly robust basic-level advantage both in patients with semantic dementia and in healthy individuals engaged in a speeded categorization task. To explain their results, as well as the usual basic-level advantage seen in healthy individuals, the authors employed a parallel distributed processing theory of conceptual knowledge. In this paper, we introduce an alternative way of explaining the results of Rogers and Patterson, which is premised on a more restricted set of assumptions born from standard categorization theory. Specifically, we provide evidence that their results can be accounted for based on the predictions of the simplicity model of unsupervised categorization.
A quantum probability model is introduced and used to explain human probability judgment errors i... more A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector spaces defined by features, and similarities between vectors to determine probability judgments. On the other hand, quantum probability theory is a generalization of Bayesian probability theory because it is based on a set of (von Neumann) axioms that relax some of the classic (Kolmogorov) axioms. The quantum model is compared and contrasted with other competing explanations for these judgment errors including the anchoring and adjustment model for probability judgments. The quantum model introduces a new fundamental concept to cognition --the compatibility versus incompatibility of questions and the effect this can have on the sequential order of judgments.
Categorization is one of the fundamental building blocks of cognition, and the study of categoriz... more Categorization is one of the fundamental building blocks of cognition, and the study of categorization is notable for the extent to which formal modeling has been a central and influential component of research. However, the field has seen a proliferation of noncomplementary models with little consensus on the relative adequacy of these accounts. Progress in assessing the relative adequacy of formal categorization models has, to date, been limited because (a) formal model comparisons are narrow in the number of models and phenomena considered and (b) models do not often clearly define their explanatory scope. Progress is further hampered by the practice of fitting models with arbitrarily variable parameters to each data set independently. Reviewing examples of good practice in the literature, we conclude that model comparisons are most fruitful when relative adequacy is assessed by comparing well-defined models on the basis of the number and proportion of irreversible, ordinal, penetrable successes (principles of minimal flexibility, breadth, good-enough precision, maximal simplicity, and psychological focus).
Uploads
Papers by Emmanuel Pothos