default search action
Nakamasa Inoue
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j9]Nakamasa Inoue, Shinta Otake, Takumi Hirose, Masanari Ohi, Rei Kawakami:
ELP-Adapters: Parameter Efficient Adapter Tuning for Various Speech Processing Tasks. IEEE ACM Trans. Audio Speech Lang. Process. 32: 3867-3880 (2024) - [c74]Yanhao Bao, Tatsukichi Shibuya, Ikuro Sato, Rei Kawakami, Nakamasa Inoue:
Efficient Target Propagation by Deriving Analytical Solution. AAAI 2024: 11016-11023 - [c73]Mao Tomita, Ikuro Sato, Rei Kawakami, Nakamasa Inoue, Satoshi Ikehata, Masayuki Tanaka:
A Simple Finetuning Strategy Based on Bias-Variance Ratios of Layer-Wise Gradients. ACCV (8) 2024: 192-209 - [c72]Takeshi Kaneko, Rei Kawakami, Takeshi Naemura, Nakamasa Inoue:
Augmenting Pass Prediction via Imitation Learning in Soccer Simulations. CVPR Workshops 2024: 3194-3203 - [c71]Go Ohtani, Ryu Tadokoro, Ryosuke Yamada, Yuki M. Asano, Iro Laina, Christian Rupprecht, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka, Yoshimitsu Aoki:
Rethinking Image Super-Resolution from Training Data Perspectives. ECCV (17) 2024: 19-36 - [c70]Ryosuke Yamada, Kensho Hara, Hirokatsu Kataoka, Koshi Makihara, Nakamasa Inoue, Rio Yokota, Yutaka Satoh:
Formula-Supervised Visual-Geometric Pre-training. ECCV (22) 2024: 57-74 - [c69]Ryo Nakamura, Ryu Tadokoro, Ryosuke Yamada, Yuki M. Asano, Iro Laina, Christian Rupprecht, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka:
Scaling Backwards: Minimal Synthetic Pre-Training? ECCV (15) 2024: 153-171 - [c68]Ryo Nakamura, Ryu Tadokoro, Eisuke Yamagata, Yusuke Kondo, Kensho Hara, Hirokatsu Kataoka, Nakamasa Inoue:
Pseudo-Outlier Synthesis Using Q-Gaussian Distributions for Out-of-Distribution Detection. ICASSP 2024: 3120-3124 - [c67]Sota Miyamoto, Takuma Yagi, Yuto Makimoto, Mahiro Ukai, Yoshitaka Ushiku, Atsushi Hashimoto, Nakamasa Inoue:
PolarDB: Formula-Driven Dataset for Pre-Training Trajectory Encoders. ICASSP 2024: 5465-5469 - [c66]Zhibo Lou, Shinta Otake, Zhengxiao Li, Rei Kawakami, Nakamasa Inoue:
Cubic Knowledge Distillation for Speech Emotion Recognition. ICASSP 2024: 5705-5709 - [c65]Shun Iwase, Shuya Takahashi, Nakamasa Inoue, Rio Yokota, Ryo Nakamura, Hirokatsu Kataoka, Eisaku Maeda:
On the Relationship Between Double Descent of CNNs and Shape/Texture Bias Under Learning Process. ICPR (25) 2024: 95-109 - [c64]Mahiro Ukai, Shuhei Kurita, Atsushi Hashimoto, Yoshitaka Ushiku, Nakamasa Inoue:
AdaCoder: Adaptive Prompt Compression for Programmatic Visual Question Answering. ACM Multimedia 2024: 9234-9243 - [i29]Jungdae Lee, Taiki Miyanishi, Shuhei Kurita, Koya Sakamoto, Daichi Azuma, Yutaka Matsuo, Nakamasa Inoue:
CityNav: Language-Goal Aerial Navigation Dataset with Geographic Information. CoRR abs/2406.14240 (2024) - [i28]Mahiro Ukai, Shuhei Kurita, Atsushi Hashimoto, Yoshitaka Ushiku, Nakamasa Inoue:
AdaCoder: Adaptive Prompt Compression for Programmatic Visual Question Answering. CoRR abs/2407.19410 (2024) - [i27]Ruoyue Shen, Nakamasa Inoue, Koichi Shinoda:
Pyramid Coder: Hierarchical Code Generator for Compositional Visual Question Answering. CoRR abs/2407.20563 (2024) - [i26]Nakamasa Inoue, Shinta Otake, Takumi Hirose, Masanari Ohi, Rei Kawakami:
ELP-Adapters: Parameter Efficient Adapter Tuning for Various Speech Processing Tasks. CoRR abs/2407.21066 (2024) - [i25]Ryo Nakamura, Ryu Tadokoro, Ryosuke Yamada, Yuki M. Asano, Iro Laina, Christian Rupprecht, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka:
Scaling Backwards: Minimal Synthetic Pre-training? CoRR abs/2408.00677 (2024) - [i24]Go Ohtani, Ryu Tadokoro, Ryosuke Yamada, Yuki M. Asano, Iro Laina, Christian Rupprecht, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka, Yoshimitsu Aoki:
Rethinking Image Super-Resolution from Training Data Perspectives. CoRR abs/2409.00768 (2024) - [i23]Ryosuke Yamada, Kensho Hara, Hirokatsu Kataoka, Koshi Makihara, Nakamasa Inoue, Rio Yokota, Yutaka Satoh:
Formula-Supervised Visual-Geometric Pre-training. CoRR abs/2409.13535 (2024) - [i22]Yuto Nishimura, Takumi Hirose, Masanari Ohi, Hideki Nakayama, Nakamasa Inoue:
HALL-E: Hierarchical Neural Codec Language Model for Minute-Long Zero-Shot Text-to-Speech Synthesis. CoRR abs/2410.04380 (2024) - [i21]Masanari Ohi, Masahiro Kaneko, Naoaki Okazaki, Nakamasa Inoue:
HarmonicEval: Multi-modal, Multi-task, Multi-criteria Automatic Evaluation Using a Vision Language Model. CoRR abs/2412.14613 (2024) - [i20]Kanoko Goto, Takumi Karasawa, Takumi Hirose, Rei Kawakami, Nakamasa Inoue:
Multi-Point Positional Insertion Tuning for Small Object Detection. CoRR abs/2412.18090 (2024) - 2023
- [c63]Tatsukichi Shibuya, Nakamasa Inoue, Rei Kawakami, Ikuro Sato:
Fixed-Weight Difference Target Propagation. AAAI 2023: 9811-9819 - [c62]Toshihiro Ota, Ikuro Sato, Rei Kawakami, Masayuki Tanaka, Nakamasa Inoue:
Learning with Partial Forgetting in Modern Hopfield Networks. AISTATS 2023: 6661-6673 - [c61]Sora Takashima, Ryo Hayamizu, Nakamasa Inoue, Hirokatsu Kataoka, Rio Yokota:
Visual Atoms: Pre-Training Vision Transformers with Sinusoidal Waves. CVPR 2023: 18579-18588 - [c60]Keita Goto, Shinta Otake, Rei Kawakami, Nakamasa Inoue:
Step restriction for improving adversarial attacks. ICASSP 2023: 1-5 - [c59]Shinta Otake, Rei Kawakami, Nakamasa Inoue:
Parameter Efficient Transfer Learning for Various Speech Processing Tasks. ICASSP 2023: 1-5 - [c58]Risa Shinoda, Ryo Hayamizu, Kodai Nakashima, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka:
SegRCDB: Semantic Segmentation via Formula-Driven Supervised Learning. ICCV 2023: 19997-20006 - [c57]Ryo Nakamura, Hirokatsu Kataoka, Sora Takashima, Edgar Josafat Martinez-Noriega, Rio Yokota, Nakamasa Inoue:
Pre-training Vision Transformers with Very Limited Synthesized Images. ICCV 2023: 20303-20312 - [c56]Lei Xu, Rei Kawakami, Nakamasa Inoue:
Scale-space Tokenization for Improving the Robustness of Vision Transformers. ACM Multimedia 2023: 2684-2693 - [c55]Taiki Miyanishi, Fumiya Kitamori, Shuhei Kurita, Jungdae Lee, Motoaki Kawanabe, Nakamasa Inoue:
CityRefer: Geography-aware 3D Visual Grounding Dataset on City-scale Point Cloud Data. NeurIPS 2023 - [c54]Ruoyue Shen, Nakamasa Inoue, Koichi Shinoda:
Text-Guided Object Detector for Multi-modal Video Question Answering. WACV 2023: 1032-1042 - [i19]Sora Takashima, Ryo Hayamizu, Nakamasa Inoue, Hirokatsu Kataoka, Rio Yokota:
Visual Atoms: Pre-training Vision Transformers with Sinusoidal Waves. CoRR abs/2303.01112 (2023) - [i18]Ryo Nakamura, Hirokatsu Kataoka, Sora Takashima, Edgar Josafat Martinez-Noriega, Rio Yokota, Nakamasa Inoue:
Pre-training Vision Transformers with Very Limited Synthesized Images. CoRR abs/2307.14710 (2023) - [i17]Risa Shinoda, Ryo Hayamizu, Kodai Nakashima, Nakamasa Inoue, Rio Yokota, Hirokatsu Kataoka:
SegRCDB: Semantic Segmentation via Formula-Driven Supervised Learning. CoRR abs/2309.17083 (2023) - [i16]Taiki Miyanishi, Fumiya Kitamori, Shuhei Kurita, Jungdae Lee, Motoaki Kawanabe, Nakamasa Inoue:
CityRefer: Geography-aware 3D Visual Grounding Dataset on City-scale Point Cloud Data. CoRR abs/2310.18773 (2023) - 2022
- [j8]Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto, Eisuke Yamagata, Ryosuke Yamada, Nakamasa Inoue, Akio Nakamura, Yutaka Satoh:
Pre-Training Without Natural Images. Int. J. Comput. Vis. 130(4): 990-1007 (2022) - [c53]Kodai Nakashima, Hirokatsu Kataoka, Asato Matsumoto, Kenji Iwata, Nakamasa Inoue, Yutaka Satoh:
Can Vision Transformers Learn without Natural Images? AAAI 2022: 1990-1998 - [c52]Hirokatsu Kataoka, Ryo Hayamizu, Ryosuke Yamada, Kodai Nakashima, Sora Takashima, Xinyu Zhang, Edgar Josafat Martinez-Noriega, Nakamasa Inoue, Rio Yokota:
Replacing Labeled Real-image Datasets with Auto-generated Contours. CVPR 2022: 21200-21209 - [c51]Tomohiro Hayase, Suguru Yasutomi, Nakamasa Inoue:
Downstream Augmentation Generation For Contrastive Learning. ICASSP 2022: 2115-2119 - [c50]Ikuro Sato, Ryota Yamada, Masayuki Tanaka, Nakamasa Inoue, Rei Kawakami:
PoF: Post-Training of Feature Extractor for Improving Generalization. ICML 2022: 19221-19230 - [c49]Hirokatsu Kataoka, Kensho Hara, Ryusuke Hayashi, Eisuke Yamagata, Nakamasa Inoue:
Spatiotemporal Initialization for 3D CNNs with Generated Motion Patterns. WACV 2022: 737-746 - [i15]Hirokatsu Kataoka, Ryo Hayamizu, Ryosuke Yamada, Kodai Nakashima, Sora Takashima, Xinyu Zhang, Edgar Josafat Martinez-Noriega, Nakamasa Inoue, Rio Yokota:
Replacing Labeled Real-image Datasets with Auto-generated Contours. CoRR abs/2206.09132 (2022) - [i14]Ikuro Sato, Ryota Yamada, Masayuki Tanaka, Nakamasa Inoue, Rei Kawakami:
PoF: Post-Training of Feature Extractor for Improving Generalization. CoRR abs/2207.01847 (2022) - [i13]Shinta Otake, Rei Kawakami, Nakamasa Inoue:
Parameter Efficient Transfer Learning for Various Speech Processing Tasks. CoRR abs/2212.02780 (2022) - [i12]Tatsukichi Shibuya, Nakamasa Inoue, Rei Kawakami, Ikuro Sato:
Fixed-Weight Difference Target Propagation. CoRR abs/2212.10352 (2022) - 2021
- [j7]Mariana Rodrigues Makiuchi, Tifani Warnita, Nakamasa Inoue, Koichi Shinoda, Michitaka Yoshimura, Momoko Kitazawa, Kei Funaki, Yoko Eguchi, Taishiro Kishimoto:
Speech Paralinguistic Approach for Detecting Dementia Using Gated Convolutional Neural Network. IEICE Trans. Inf. Syst. 104-D(11): 1930-1940 (2021) - [c48]Nakamasa Inoue, Tsubasa Maruyama, Keita Goto:
Augmentation-Agnostic Regularization for Unsupervised Contrastive Learning with Its Application to Speaker Verification. APSIPA ASC 2021: 1993-1998 - [c47]Nakamasa Inoue:
Teacher-Assisted Mini-Batch Sampling for Blind Distillation Using Metric Learning. ICASSP 2021: 4160-4164 - [c46]Hirokatsu Kataoka, Asato Matsumoto, Ryosuke Yamada, Yutaka Satoh, Eisuke Yamagata, Nakamasa Inoue:
Formula-driven Supervised Learning with Recursive Tiling Patterns. ICCVW 2021: 4081-4088 - [c45]Nakamasa Inoue, Ryota Yamada, Rei Kawakami, Ikuro Sato:
Disentangling Latent Groups Of Factors. ICIP 2021: 2548-2552 - [c44]Keita Goto, Nakamasa Inoue:
Learning VAE with Categorical Labels for Generating Conditional Handwritten Characters. MVA 2021: 1-5 - [i11]Nakamasa Inoue, Eisuke Yamagata, Hirokatsu Kataoka:
Initialization Using Perlin Noise for Training Networks with a Limited Amount of Data. CoRR abs/2101.07406 (2021) - [i10]Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto, Eisuke Yamagata, Ryosuke Yamada, Nakamasa Inoue, Akio Nakamura, Yutaka Satoh:
Pre-training without Natural Images. CoRR abs/2101.08515 (2021) - [i9]Kodai Nakashima, Hirokatsu Kataoka, Asato Matsumoto, Kenji Iwata, Nakamasa Inoue:
Can Vision Transformers Learn without Natural Images? CoRR abs/2103.13023 (2021) - 2020
- [c43]Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto, Eisuke Yamagata, Ryosuke Yamada, Nakamasa Inoue, Akio Nakamura, Yutaka Satoh:
Pre-training Without Natural Images. ACCV (6) 2020: 583-600 - [c42]Keita Goto, Nakamasa Inoue:
Quasi-Newton Adversarial Attacks on Speaker Verification Systems. APSIPA 2020: 527-531 - [c41]Nakamasa Inoue, Keita Goto:
Optimizing Speaker Embeddings using Meta-Training Sets. APSIPA 2020: 600-604 - [c40]Nakamasa Inoue, Keita Goto:
Semi-Supervised Contrastive Learning with Generalized Contrastive Loss and Its Application to Speaker Recognition. APSIPA 2020: 1641-1646 - [c39]Nakamasa Inoue, Keita Goto:
Closed-Form Pre-Training for Small-Sample Environmental Sound Recognition. APSIPA 2020: 1693-1697 - [c38]Yang Lu, Asri Rizki Yuliani, Keisuke Ishikawa, Ronaldo Prata Amorim, Roland Hartanto, Nakamasa Inoue, Kuniaki Uto, Koichi Shinoda:
Deep Video Understanding of Character Relationships in Movies. ICMI Companion 2020: 120-129 - [c37]Takehiko Ohkawa, Naoto Inoue, Hirokatsu Kataoka, Nakamasa Inoue:
Augmented Cyclic Consistency Regularization for Unpaired Image-to-Image Translation. ICPR 2020: 362-369 - [c36]Nakamasa Inoue, Eisuke Yamagata, Hirokatsu Kataoka:
Initialization Using Perlin Noise for Training Networks with a Limited Amount of Data. ICPR 2020: 1023-1028 - [c35]Ronaldo Prata Amorim, Nakamasa Inoue, Koichi Shinoda:
Tokyo Tech at TRECVID 2020: Relation Modeling for Video Action Detection. TRECVID 2020 - [c34]Nakamasa Inoue:
Graph Grouping Loss for Metric Learning of Face Image Representations. VCIP 2020: 152-155 - [i8]Takehiko Ohkawa, Naoto Inoue, Hirokatsu Kataoka, Nakamasa Inoue:
Augmented Cyclic Consistency Regularization for Unpaired Image-to-Image Translation. CoRR abs/2003.00187 (2020) - [i7]Tifani Warnita, Mariana Rodrigues Makiuchi, Nakamasa Inoue, Koichi Shinoda, Michitaka Yoshimura, Momoko Kitazawa, Kei Funaki, Yoko Eguchi, Taishiro Kishimoto:
Speech Paralinguistic Approach for Detecting Dementia Using Gated Convolutional Neural Network. CoRR abs/2004.07992 (2020) - [i6]Nakamasa Inoue, Keita Goto:
Semi-Supervised Contrastive Learning with Generalized Contrastive Loss and Its Application to Speaker Recognition. CoRR abs/2006.04326 (2020)
2010 – 2019
- 2019
- [c33]Raden Mu'az Mun'im, Nakamasa Inoue, Koichi Shinoda:
Sequence-level Knowledge Distillation for Model Compression of Attention-based Sequence-to-sequence Speech Recognition. ICASSP 2019: 6151-6155 - 2018
- [c32]Thao Le Minh, Nakamasa Inoue, Koichi Shinoda:
A Fine-to-Coarse Convolutional Neural Network for 3D Human Action Recognition. BMVC 2018: 227 - [c31]Haoyi Zhang, Conggui Liu, Nakamasa Inoue, Koichi Shinoda:
Multi-Task Autoencoder for Noise-Robust Speech Recognition. ICASSP 2018: 5599-5603 - [c30]Tifani Warnita, Nakamasa Inoue, Koichi Shinoda:
Detecting Alzheimer's Disease Using Gated Convolutional Neural Network from Audio Data. INTERSPEECH 2018: 1706-1710 - [c29]Jiacen Zhang, Nakamasa Inoue, Koichi Shinoda:
I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification. INTERSPEECH 2018: 3613-3617 - [c28]Nakamasa Inoue, Koichi Shinoda:
Few-Shot Adaptation for Multimedia Semantic Indexing. ACM Multimedia 2018: 1110-1118 - [c27]Nakamasa Inoue, Chihiro Shiraishi, Aleksandr Drozd, Koichi Shinoda, Shi-wook Lee, Alex ChiChung Kot:
VANT at TRECVID 2018. TRECVID 2018 - [i5]Tifani Warnita, Nakamasa Inoue, Koichi Shinoda:
Detecting Alzheimer's Disease Using Gated Convolutional Neural Network from Audio Data. CoRR abs/1803.11344 (2018) - [i4]Jiacen Zhang, Nakamasa Inoue, Koichi Shinoda:
I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification. CoRR abs/1804.00290 (2018) - [i3]Thao Le Minh, Nakamasa Inoue, Koichi Shinoda:
A Fine-to-Coarse Convolutional Neural Network for 3D Human Action Recognition. CoRR abs/1805.11790 (2018) - [i2]Nakamasa Inoue, Koichi Shinoda:
Few-Shot Adaptation for Multimedia Semantic Indexing. CoRR abs/1807.07203 (2018) - [i1]Raden Mu'az Mun'im, Nakamasa Inoue, Koichi Shinoda:
Sequence-Level Knowledge Distillation for Model Compression of Attention-based Sequence-to-Sequence Speech Recognition. CoRR abs/1811.04531 (2018) - 2017
- [j6]Tommi Kerola, Nakamasa Inoue, Koichi Shinoda:
Cross-view human action recognition from depth maps using spectral graph sequences. Comput. Vis. Image Underst. 154: 108-126 (2017) - [c26]Yuki Yasui, Nakamasa Inoue, Koji Iwano, Koichi Shinoda:
Multimodal speech recognition using mouth images from depth camera. APSIPA 2017: 1233-1236 - [c25]Conggui Liu, Nakamasa Inoue, Koichi Shinoda:
A unified network for multi-speaker speech recognition with multi-channel recordings. APSIPA 2017: 1304-1307 - [c24]Shinya Matsui, Nakamasa Inoue, Yuko Akagi, Goshu Nagino, Koichi Shinoda:
User adaptation of convolutional neural network for human activity recognition. EUSIPCO 2017: 753-757 - [c23]Mengxi Lin, Nakamasa Inoue, Koichi Shinoda:
CTC Network with Statistical Language Modeling for Action Sequence Recognition in Videos. ACM Multimedia (Thematic Workshops) 2017: 393-401 - [c22]Nakamasa Inoue, Ryosuke Yamamoto, Na Rong, Satoshi Kanai, Junsuke Masada, Chihiro Shiraishi, Shi-wook Lee, Koichi Shinoda:
TokyoTech-AIST at TRECVID 2017: Multimedia Event Detection Using Deep CNNs and Zero-Shot Classiers. TRECVID 2017 - 2016
- [j5]Nakamasa Inoue, Koichi Shinoda:
Fast Coding of Feature Vectors Using Neighbor-to-Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 38(6): 1170-1184 (2016) - [c21]Tommi Kerola, Nakamasa Inoue, Koichi Shinoda:
Graph regularized implicit pose for 3D human action recognition. APSIPA 2016: 1-4 - [c20]Fumito Nishi, Nakamasa Inoue, Koji Iwano, Koichi Shinoda:
Tokyo Tech at MediaEval 2016 Multimodal Person Discovery in Broadcast TV task. MediaEval 2016 - [c19]Nakamasa Inoue, Koichi Shinoda:
Adaptation of Word Vectors using Tree Structure for Visual Semantics. ACM Multimedia 2016: 277-281 - [c18]Nakamasa Inoue, Ryosuke Yamamoto, Na Rong, Koichi Shinoda:
TokyoTech at TRECVID 2016. TRECVID 2016 - 2015
- [c17]Fumito Nishi, Nakamasa Inoue, Koichi Shinoda:
Combining Audio Features and Visual I-Vector @ MediaEval 2015 Multimodal Person Discovery in Broadcast TV. MediaEval 2015 - [c16]Nakamasa Inoue, Koichi Shinoda:
Vocabulary Expansion Using Word Vectors for Video Semantic Indexing. ACM Multimedia 2015: 851-854 - [c15]Nakamasa Inoue, Hai Dang Tran, Ryosuke Yamamoto, Koichi Shinoda:
TokyoTech at TRECVID 2015. TRECVID 2015 - 2014
- [c14]Tommi Kerola, Nakamasa Inoue, Koichi Shinoda:
Spectral Graph Skeletons for 3D Action Recognition. ACCV (4) 2014: 417-432 - [c13]Nakamasa Inoue, Koichi Shinoda:
n-gram Models for Video Semantic Indexing. ACM Multimedia 2014: 777-780 - [c12]Zhuolin Liang, Nakamasa Inoue, Koichi Shinoda:
Event Detection by Velocity Pyramid. MMM (1) 2014: 353-364 - [c11]Nakamasa Inoue, Zhuolin Liang, Mengxi Lin, Hai Dang Tran, Koichi Shinoda, Xuefeng Zhang, Kazuya Ueki:
TokyoTech-Waseda at TRECVID 2014. TRECVID 2014 - 2013
- [j4]Yusuke Kamishima, Nakamasa Inoue, Koichi Shinoda:
Event detection in consumer videos using GMM supervectors and SVMs. EURASIP J. Image Video Process. 2013: 51 (2013) - [j3]Nakamasa Inoue, Koichi Shinoda:
q-Gaussian mixture models for image and video semantic indexing. J. Vis. Commun. Image Represent. 24(8): 1450-1457 (2013) - [j2]Koichi Shinoda, Nakamasa Inoue:
Reusing Speech Techniques for Video Semantic Indexing [Applications Corner]. IEEE Signal Process. Mag. 30(2): 118-122 (2013) - [c10]Nakamasa Inoue, Koichi Shinoda:
Neighbor-to-Neighbor Search for Fast Coding of Feature Vectors. ICCV 2013: 1233-1240 - [c9]Nakamasa Inoue, Kotaro Mori, Zhuolin Liang, Mengxi Lin, Koichi Shinoda, Shunsuke Sato:
TokyoTechCanon at TRECVID 2013. TRECVID 2013 - 2012
- [j1]Nakamasa Inoue, Koichi Shinoda:
A Fast and Accurate Video Semantic-Indexing System Using Fast MAP Adaptation and GMM Supervectors. IEEE Trans. Multim. 14(4): 1196-1205 (2012) - [c8]Nakamasa Inoue, Koichi Shinoda:
q-Gaussian Mixture Models Based on Non-extensive Statistics for Image and Video Semantic Indexing. ACCV (2) 2012: 499-510 - [c7]Yusuke Kamishima, Nakamasa Inoue, Koichi Shinoda, Shunsuke Sato:
Multimedia event detection using GMM supervectors and SVMS. ICIP 2012: 3089-3092 - [c6]Nakamasa Inoue, Yusuke Kamishima, Kotaro Mori, Koichi Shinoda:
TokyoTechCanon at TRECVID 2012. TRECVID 2012 - 2011
- [c5]Nakamasa Inoue, Koichi Shinoda:
A fast MAP adaptation technique for gmm-supervector-based video semantic indexing systems. ACM Multimedia 2011: 1357-1360 - [c4]Nakamasa Inoue, Toshiya Wada, Yusuke Kamishima, Koichi Shinoda, Shunsuke Sato:
TokyoTech+Canon at TRECVID 2011. TRECVID 2011 - 2010
- [c3]Nakamasa Inoue, Tatsuhiko Saito, Koichi Shinoda, Sadaoki Furui:
High-Level Feature Extraction Using SIFT GMMs and Audio Models. ICPR 2010: 3220-3223 - [c2]Nakamasa Inoue, Toshiya Wada, Yusuke Kamishima, Koichi Shinoda, Ilseo Kim, Byungki Byun, Chin-Hui Lee:
TT+GT at TRECVID 2010 Workshop. TRECVID 2010
2000 – 2009
- 2009
- [c1]Nakamasa Inoue, Shanshan Hao, Tatsuhiko Saito, Koichi Shinoda, Ilseo Kim, Chin-Hui Lee:
TITGT at TRECVID 2009 Workshop. TRECVID 2009
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-26 23:43 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint