default search action
Sijia Liu 0001
Person information
- affiliation: Michigan State University, Department of Computer Science and Engineering, East Lansing, USA
- affiliation (2018 - 2020): IBM Research, MIT-IBM Watson AI Lab, Cambridge, MA, USA
- affiliation (2016 - 2017): University of Michigan, Ann Arbor, MI, USA
- affiliation (PhD 2016): Syracuse University, NY, USA
Other persons with the same name
- Sijia Liu — disambiguation page
- Sijia Liu 0002 — Mayo Clinic, Rochester, MN, USA (and 1 more)
- Sijia Liu 0003 — Beijing Jiaotong University, School of Electrical Engineering, China
- Sijia Liu 0004 — Zhengzhou Information Science and Technology Institute, Zhengzhou, China
- Sijia Liu 0005 — BYD Lithium Battery Company, Ltd., Shenzhen, China (and 1 more)
- Sijia Liu 0006 — City University of Hong Kong, Hong Kong, SAR, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j25]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu:
Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization. Comput. Optim. Appl. 87(1): 117-147 (2024) - [j24]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu:
Correction to: Stochastic inexact augmented Lagrangian method for nonconvex expectation constrained optimization. Comput. Optim. Appl. 89(2): 575-578 (2024) - [j23]Yuguang Yao, Xiao Guo, Vishal Asnani, Yifan Gong, Jiancheng Liu, Xue Lin, Xiaoming Liu, Sijia Liu:
Reverse Engineering of Deceptions on Machine- and Human-Centric Attacks. Found. Trends Priv. Secur. 6(2): 53-152 (2024) - [j22]Yihua Zhang, Prashant Khanduri, Ioannis C. Tsaknakis, Yuguang Yao, Mingyi Hong, Sijia Liu:
An Introduction to Bilevel Optimization: Foundations and applications in signal processing and machine learning. IEEE Signal Process. Mag. 41(1): 38-59 (2024) - [c146]Chongyu Fan, Jiancheng Liu, Alfred Olivier Hero, Sijia Liu:
Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning. ECCV (21) 2024: 278-297 - [c145]Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, Sijia Liu:
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy to Generate Unsafe Images ... For Now. ECCV (57) 2024: 385-403 - [c144]Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, Sijia Liu:
SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning. EMNLP 2024: 4276-4292 - [c143]Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, Nanyun Peng:
LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints. EMNLP (Findings) 2024: 7773-7812 - [c142]Brian Zhang, Yuguang Yao, Sijia Liu:
Elevating Visual Prompting in Transfer Learning Via Pruned Model Ensembles: No Retrain, No Pain. ICASSP 2024: 6000-6004 - [c141]Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng Liu, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, Sijia Liu:
DeepZero: Scaling Up Zeroth-Order Optimization for Deep Model Training. ICLR 2024 - [c140]Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, Sijia Liu:
SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation. ICLR 2024 - [c139]Soumyadeep Pal, Yuguang Yao, Ren Wang, Bingquan Shen, Sijia Liu:
Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency. ICLR 2024 - [c138]Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, Zaixi Zhang, Pin-Yu Chen:
What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding. ICML 2024 - [c137]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. ICML 2024 - [c136]Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, Pin-Yu Chen:
Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis. SAM 2024: 1-5 - [c135]Jiabao Ji, Bairu Hou, Zhen Zhang, Guanhua Zhang, Wenqi Fan, Qing Li, Yang Zhang, Gaowen Liu, Sijia Liu, Shiyu Chang:
Advancing the Robustness of Large Language Models through Self-Denoised Smoothing. NAACL (Short Papers) 2024: 246-257 - [c134]Bingsheng Yao, Guiming Chen, Ruishi Zou, Yuxuan Lu, Jiachen Li, Shao Zhang, Yisi Sang, Sijia Liu, James A. Hendler, Dakuo Wang:
More Samples or More Prompts? Exploring Effective Few-Shot In-Context Learning for LLMs with In-Context Sampling. NAACL-HLT (Findings) 2024: 1772-1790 - [c133]Quanfu Fan, Yilai Li, Yuguang Yao, John Cohn, Sijia Liu, Ziping Xu, Seychelle M. Vos, Michael A. Cianfrocco:
CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection. WACV 2024: 7877-7887 - [i155]Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun Xu, Yuguang Yao, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, Yang Liu:
Rethinking Machine Unlearning for Large Language Models. CoRR abs/2402.08787 (2024) - [i154]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. CoRR abs/2402.11592 (2024) - [i153]Yihua Zhang, Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jiancheng Liu, Xiaoming Liu, Sijia Liu:
UnlearnCanvas: A Stylized Image Dataset to Benchmark Machine Unlearning for Diffusion Models. CoRR abs/2402.11846 (2024) - [i152]Hongkang Li, Shuai Zhang, Yihua Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen:
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance. CoRR abs/2403.07310 (2024) - [i151]Chongyu Fan, Jiancheng Liu, Alfred O. Hero III, Sijia Liu:
Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning. CoRR abs/2403.07362 (2024) - [i150]Soumyadeep Pal, Yuguang Yao, Ren Wang, Bingquan Shen, Sijia Liu:
Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency. CoRR abs/2403.10717 (2024) - [i149]Jiabao Ji, Bairu Hou, Zhen Zhang, Guanhua Zhang, Wenqi Fan, Qing Li, Yang Zhang, Gaowen Liu, Sijia Liu, Shiyu Chang:
Advancing the Robustness of Large Language Models through Self-Denoised Smoothing. CoRR abs/2404.12274 (2024) - [i148]Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, Sijia Liu:
SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning. CoRR abs/2404.18239 (2024) - [i147]Yuguang Yao, Steven A. Grosz, Sijia Liu, Anil K. Jain:
Hide and Seek: How Does Watermarking Impact Face Recognition? CoRR abs/2404.18890 (2024) - [i146]Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong, Ke Ding, Sijia Liu:
Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models. CoRR abs/2405.15234 (2024) - [i145]Hongkang Li, Meng Wang, Tengfei Ma, Sijia Liu, Zaixi Zhang, Pin-Yu Chen:
What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding. CoRR abs/2406.01977 (2024) - [i144]Wei Li, Pin-Yu Chen, Sijia Liu, Ren Wang:
PSBD: Prediction Shift Uncertainty Unlocks Backdoor Detection. CoRR abs/2406.05826 (2024) - [i143]Zonglin Di, Zhaowei Zhu, Jinghan Jia, Jiancheng Liu, Zafar Takhirov, Bo Jiang, Yuanshun Yao, Sijia Liu, Yang Liu:
Label Smoothing Improves Machine Unlearning. CoRR abs/2406.07698 (2024) - [i142]Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, Shiyu Chang:
Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference. CoRR abs/2406.08607 (2024) - [i141]Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, Pin-Yu Chen:
Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis. CoRR abs/2406.17167 (2024) - [i140]Yuguang Yao, Anil K. Jain, Sijia Liu:
Adversarial Watermarking for Face Recognition. CoRR abs/2409.16056 (2024) - [i139]Thomas Palmeira Ferraz, Kartik Mehta, Yu-Hsiang Lin, Haw-Shiuan Chang, Shereen Oraby, Sijia Liu, Vivek Subramanian, Tagyoung Chung, Mohit Bansal, Nanyun Peng:
LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints. CoRR abs/2410.06458 (2024) - [i138]Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, Sijia Liu:
Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning. CoRR abs/2410.07163 (2024) - [i137]Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, Sijia Liu:
WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models. CoRR abs/2410.17509 (2024) - 2023
- [j21]Tong Steven Sun, Yuyang Gao, Shubham Khaladkar, Sijia Liu, Liang Zhao, Young-Ho Kim, Sungsoo Ray Hong:
Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations. Proc. ACM Hum. Comput. Interact. 7(CSCW2): 1-32 (2023) - [c132]Sijia Liu, Patrick Lange, Behnam Hedayatnia, Alexandros Papangelis, Di Jin, Andrew Wirth, Yang Liu, Dilek Hakkani-Tur:
Towards Credible Human Evaluation of Open-Domain Dialog Systems Using Interactive Setup. AAAI 2023: 13264-13272 - [c131]Pin-Yu Chen, Sijia Liu:
Holistic Adversarial Robustness of Deep Learning Models. AAAI 2023: 15411-15420 - [c130]Sijia Liu:
AAAI New Faculty Highlights: General and Scalable Optimization for Robust AI. AAAI 2023: 15447 - [c129]Soumyadeep Pal, Ren Wang, Yuguang Yao, Sijia Liu:
Towards Understanding How Self-training Tolerates Data Backdoor Poisoning. SafeAI@AAAI 2023 - [c128]Yimeng Zhang, Akshay Karkal Kamath, Qiucheng Wu, Zhiwen Fan, Wuyang Chen, Zhangyang Wang, Shiyu Chang, Sijia Liu, Cong Hao:
Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge Devices. ASP-DAC 2023: 745-750 - [c127]Sijia Liu, Jiahao Liu, Hansu Gu, Dongsheng Li, Tun Lu, Peng Zhang, Ning Gu:
AutoSeqRec: Autoencoder for Efficient Sequential Recommendation. CIKM 2023: 1493-1502 - [c126]Ren Wang, Yuxuan Li, Sijia Liu:
Exploring Diversified Adversarial Robustness in Neural Networks via Robust Mode Connectivity. CVPR Workshops 2023: 2346-2352 - [c125]Haomin Zhuang, Yihua Zhang, Sijia Liu:
A Pilot Study of Query-Free Adversarial Attack against Stable Diffusion. CVPR Workshops 2023: 2385-2392 - [c124]Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding:
Text-Visual Prompting for Efficient 2D Temporal Video Grounding. CVPR 2023: 14794-14804 - [c123]Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, Sijia Liu:
Understanding and Improving Visual Prompting: A Label-Mapping Perspective. CVPR 2023: 19133-19143 - [c122]Prakhar Gupta, Yang Liu, Di Jin, Behnam Hedayatnia, Spandana Gella, Sijia Liu, Patrick Lange, Julia Hirschberg, Dilek Hakkani-Tur:
DialGuide: Aligning Dialogue Model Behavior with Developer Guidelines. EMNLP (Findings) 2023: 14031-14047 - [c121]Aochuan Chen, Peter Lorenz, Yuguang Yao, Pin-Yu Chen, Sijia Liu:
Visual Prompting for Adversarial Robustness. ICASSP 2023: 1-5 - [c120]Jinghan Jia, Yihua Zhang, Dogyoon Song, Sijia Liu, Alfred O. Hero III:
Robustness-Preserving Lifelong Learning Via Dataset Condensation. ICASSP 2023: 1-5 - [c119]Hui Li, Jinghan Jia, Shijun Liang, Yuguang Yao, Saiprasad Ravishankar, Sijia Liu:
SMUG: Towards Robust Mri Reconstruction by Smoothed Unrolling. ICASSP 2023: 1-5 - [c118]Yihua Zhang, Ruisi Cai, Tianlong Chen, Guanhua Zhang, Huan Zhang, Pin-Yu Chen, Shiyu Chang, Zhangyang Wang, Sijia Liu:
Robust Mixture-of-Expert Training for Convolutional Neural Networks. ICCV 2023: 90-101 - [c117]Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, Miao Liu:
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks. ICLR 2023 - [c116]Bairu Hou, Jinghan Jia, Yihua Zhang, Guanhua Zhang, Yang Zhang, Sijia Liu, Shiyu Chang:
TextGrad: Advancing Robustness Evaluation in NLP by Gradient-Driven Optimization. ICLR 2023 - [c115]Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen:
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity. ICLR 2023 - [c114]Yihua Zhang, Pranay Sharma, Parikshit Ram, Mingyi Hong, Kush R. Varshney, Sijia Liu:
What Is Missing in IRM Training and Evaluation? Challenges and Solutions. ICLR 2023 - [c113]Mohammed Nowaz Rabbani Chowdhury, Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen:
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks. ICML 2023: 6074-6114 - [c112]Prashant Khanduri, Ioannis C. Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, Mingyi Hong:
Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach. ICML 2023: 16291-16325 - [c111]Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, Sijia Liu:
Model Sparsity Can Simplify Machine Unlearning. NeurIPS 2023 - [c110]Shuai Zhang, Hongkang Li, Meng Wang, Miao Liu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Keerthiram Murugesan, Subhajit Chaudhury:
On the Convergence and Sample Complexity Analysis of Deep Q-Networks with ε-Greedy Exploration. NeurIPS 2023 - [c109]Yihua Zhang, Yimeng Zhang, Aochuan Chen, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Mingyi Hong, Shiyu Chang, Sijia Liu:
Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning. NeurIPS 2023 - [c108]Sarik Ghazarian, Behnam Hedayatnia, Di Jin, Sijia Liu, Nanyun Peng, Yang Liu, Dilek Hakkani-Tur:
MERCY: Multiple Response Ranking Concurrently in Realistic Open-Domain Conversational Systems. SIGDIAL 2023: 615-631 - [c107]Jinghan Jia, Shashank Srikant, Tamara Mitrovska, Chuang Gan, Shiyu Chang, Sijia Liu, Una-May O'Reilly:
ClawSAT: Towards Both Robust and Accurate Code Models. SANER 2023: 212-223 - [i136]Soumyadeep Pal, Ren Wang, Yuguang Yao, Sijia Liu:
Towards Understanding How Self-training Tolerates Data Backdoor Poisoning. CoRR abs/2301.08751 (2023) - [i135]Alex Gu, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Certified Interpretability Robustness for Class Activation Mapping. CoRR abs/2301.11324 (2023) - [i134]Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, Miao Liu:
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks. CoRR abs/2302.02922 (2023) - [i133]Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen:
A Theoretical Understanding of shallow Vision Transformers: Learning, Generalization, and Sample Complexity. CoRR abs/2302.06015 (2023) - [i132]Yihua Zhang, Pranay Sharma, Parikshit Ram, Mingyi Hong, Kush R. Varshney, Sijia Liu:
What Is Missing in IRM Training and Evaluation? Challenges and Solutions. CoRR abs/2303.02343 (2023) - [i131]Jinghan Jia, Yihua Zhang, Dogyoon Song, Sijia Liu, Alfred O. Hero III:
Robustness-preserving Lifelong Learning via Dataset Condensation. CoRR abs/2303.04183 (2023) - [i130]Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding:
Text-Visual Prompting for Efficient 2D Temporal Video Grounding. CoRR abs/2303.04995 (2023) - [i129]Yuguang Yao, Jiancheng Liu, Yifan Gong, Xiaoming Liu, Yanzhi Wang, Xue Lin, Sijia Liu:
Can Adversarial Examples Be Parsed to Reveal Victim Model Information? CoRR abs/2303.07474 (2023) - [i128]Ren Wang, Yuxuan Li, Sijia Liu:
Robust Mode Connectivity-Oriented Adversarial Defense: Enhancing Neural Network Robustness Against Diversified 𝓁p Attacks. CoRR abs/2303.10225 (2023) - [i127]Jiaheng Wei, Zhaowei Zhu, Gang Niu, Tongliang Liu, Sijia Liu, Masashi Sugiyama, Yang Liu:
Fairness Improves Learning from Noisily Labeled Long-Tailed Data. CoRR abs/2303.12291 (2023) - [i126]Hui Li, Jinghan Jia, Shijun Liang, Yuguang Yao, Saiprasad Ravishankar, Sijia Liu:
SMUG: Towards robust MRI reconstruction by smoothed unrolling. CoRR abs/2303.12735 (2023) - [i125]Haomin Zhuang, Yihua Zhang, Sijia Liu:
A Pilot Study of Query-Free Adversarial Attack against Stable Diffusion. CoRR abs/2303.16378 (2023) - [i124]Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, Sijia Liu:
Model Sparsification Can Simplify Machine Unlearning. CoRR abs/2304.04934 (2023) - [i123]Mohammed Nowaz Rabbani Chowdhury, Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen:
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks. CoRR abs/2306.04073 (2023) - [i122]Tong Steven Sun, Yuyang Gao, Shubham Khaladkar, Sijia Liu, Liang Zhao, Young-Ho Kim, Sungsoo Ray Hong:
Designing a Direct Feedback Loop between Humans and Convolutional Neural Networks through Local Explanations. CoRR abs/2307.04036 (2023) - [i121]Zhen Zhang, Guanhua Zhang, Bairu Hou, Wenqi Fan, Qing Li, Sijia Liu, Yang Zhang, Shiyu Chang:
Certified Robustness for Large Language Models with Self-Denoising. CoRR abs/2307.07171 (2023) - [i120]Yihua Zhang, Prashant Khanduri, Ioannis C. Tsaknakis, Yuguang Yao, Mingyi Hong, Sijia Liu:
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning. CoRR abs/2308.00788 (2023) - [i119]Sijia Liu, Jiahao Liu, Hansu Gu, Dongsheng Li, Tun Lu, Peng Zhang, Ning Gu:
AutoSeqRec: Autoencoder for Efficient Sequential Recommendation. CoRR abs/2308.06878 (2023) - [i118]Yequan Zhao, Xinling Yu, Zhixiong Chen, Ziyue Liu, Sijia Liu, Zheng Zhang:
Tensor-Compressed Back-Propagation-Free Training for (Physics-Informed) Neural Networks. CoRR abs/2308.09858 (2023) - [i117]Yihua Zhang, Ruisi Cai, Tianlong Chen, Guanhua Zhang, Huan Zhang, Pin-Yu Chen, Shiyu Chang, Zhangyang Wang, Sijia Liu:
Robust Mixture-of-Expert Training for Convolutional Neural Networks. CoRR abs/2308.10110 (2023) - [i116]Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, Sijia Liu:
DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training. CoRR abs/2310.02025 (2023) - [i115]Hsi-Ai Tsao, Lei Hsiung, Pin-Yu Chen, Sijia Liu, Tsung-Yi Ho:
AutoVP: An Automated Visual Prompting Framework and Benchmark. CoRR abs/2310.08381 (2023) - [i114]Yihua Zhang, Yimeng Zhang, Aochuan Chen, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Mingyi Hong, Shiyu Chang, Sijia Liu:
Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning. CoRR abs/2310.08782 (2023) - [i113]Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, Sijia Liu:
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now. CoRR abs/2310.11868 (2023) - [i112]Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, Sijia Liu:
SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation. CoRR abs/2310.12508 (2023) - [i111]Shuai Zhang, Hongkang Li, Meng Wang, Miao Liu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Keerthiram Murugesan, Subhajit Chaudhury:
On the Convergence and Sample Complexity Analysis of Deep Q-Networks with ε-Greedy Exploration. CoRR abs/2310.16173 (2023) - [i110]Zhuoshi Pan, Yuguang Yao, Gaowen Liu, Bingquan Shen, H. Vicky Zhao, Ramana Rao Kompella, Sijia Liu:
From Trojan Horses to Castle Walls: Unveiling Bilateral Backdoor Effects in Diffusion Models. CoRR abs/2311.02373 (2023) - [i109]Bingsheng Yao, Guiming Chen, Ruishi Zou, Yuxuan Lu, Jiachen Li, Shao Zhang, Sijia Liu, James A. Hendler, Dakuo Wang:
More Samples or More Prompt Inputs? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering. CoRR abs/2311.09782 (2023) - [i108]Can Jin, Tianjin Huang, Yihua Zhang, Mykola Pechenizkiy, Sijia Liu, Shiwei Liu, Tianlong Chen:
Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective. CoRR abs/2312.01397 (2023) - [i107]Xiao Guo, Vishal Asnani, Sijia Liu, Xiaoming Liu:
Tracing Hyperparameter Dependencies for Model Parsing via Learnable Graph Pooling Network. CoRR abs/2312.02224 (2023) - [i106]Shijun Liang, Van Hoang Minh Nguyen, Jinghan Jia, Ismail Alkhouri, Sijia Liu, Saiprasad Ravishankar:
Robust MRI Reconstruction by Smoothed Unrolling (SMUG). CoRR abs/2312.07784 (2023) - 2022
- [j20]Ren Wang, Tianqi Chen, Philip Yao, Sijia Liu, Indika Rajapakse, Alfred O. Hero III:
ASK: Adversarial Soft k-Nearest Neighbor Attack and Defense. IEEE Access 10: 103074-103088 (2022) - [j19]Ao Liu, Xiaoyu Chen, Sijia Liu, Lirong Xia, Chuang Gan:
Certifiably robust interpretation via Rényi differential privacy. Artif. Intell. 313: 103787 (2022) - [j18]Tianlong Chen, Sijia Liu, Shiyu Chang, Lisa Amini, Zhangyang Wang:
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning. Trans. Mach. Learn. Res. 2022 (2022) - [j17]Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang:
Can You Win Everything with A Lottery Ticket? Trans. Mach. Learn. Res. 2022 (2022) - [j16]Tianyun Zhang, Shaokai Ye, Xiaoyu Feng, Xiaolong Ma, Kaiqi Zhang, Zhengang Li, Jian Tang, Sijia Liu, Xue Lin, Yongpan Liu, Makan Fardad, Yanzhi Wang:
StructADMM: Achieving Ultrahigh Efficiency in Structured Pruning for DNNs. IEEE Trans. Neural Networks Learn. Syst. 33(5): 2259-2273 (2022) - [j15]Yifan Gong, Geng Yuan, Zheng Zhan, Wei Niu, Zhengang Li, Pu Zhao, Yuxuan Cai, Sijia Liu, Bin Ren, Xue Lin, Xulong Tang, Yanzhi Wang:
Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time Mobile Acceleration. ACM Trans. Design Autom. Electr. Syst. 27(5): 47:1-47:26 (2022) - [c106]Chia-Yi Hsu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Chia-Mu Yu:
Adversarial Examples Can Be Effective Data Augmentation for Unsupervised Machine Learning. AAAI 2022: 6926-6934 - [c105]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu:
Zeroth-Order Optimization for Composite Problems with Functional Constraints. AAAI 2022: 7453-7461 - [c104]Tianlong Chen, Zhenyu Zhang, Yihua Zhang, Shiyu Chang, Sijia Liu, Zhangyang Wang:
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free. CVPR 2022: 588-599 - [c103]Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, Xiaoming Liu:
Proactive Image Manipulation Detection. CVPR 2022: 15365-15374 - [c102]Vardaan Taneja, Pin-Yu Chen, Yuguang Yao, Sijia Liu:
When Does Backdoor Attack Succeed in Image Reconstruction? A Study of Heuristics vs. Bi-Level Solution. ICASSP 2022: 4398-4402 - [c101]Yifan Gong, Yuguang Yao, Yize Li, Yimeng Zhang, Xiaoming Liu, Xue Lin, Sijia Liu:
Reverse Engineering of Imperceptible Adversarial Image Perturbations. ICLR 2022 - [c100]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
How unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis. ICLR 2022 - [c99]Tianshu Huang, Tianlong Chen, Sijia Liu, Shiyu Chang, Lisa Amini, Zhangyang Wang:
Optimizer Amalgamation. ICLR 2022 - [c98]Prashant Khanduri, Haibo Yang, Mingyi Hong, Jia Liu, Hoi-To Wai, Sijia Liu:
Decentralized Learning for Overparameterized Problems: A Multi-Agent Kernel Approximation Approach. ICLR 2022 - [c97]Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, Sijia Liu:
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective. ICLR 2022 - [c96]Tianlong Chen, Zhenyu Zhang, Sijia Liu, Yang Zhang, Shiyu Chang, Zhangyang Wang:
Data-Efficient Double-Win Lottery Tickets from Robust Pre-training. ICML 2022: 3747-3759 - [c95]Tianlong Chen, Huan Zhang, Zhenyu Zhang, Shiyu Chang, Sijia Liu, Pin-Yu Chen, Zhangyang Wang:
Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness. ICML 2022: 3760-3772 - [c94]Ching-Yun Ko, Jeet Mohapatra, Sijia Liu, Pin-Yu Chen, Luca Daniel, Lily Weng:
Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework. ICML 2022: 11387-11412 - [c93]Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling. ICML 2022: 13014-13051 - [c92]Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, Sijia Liu:
Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization. ICML 2022: 26693-26712 - [c91]Pu Zhao, Parikshit Ram, Songtao Lu, Yuguang Yao, Djallel Bouneffouf, Xue Lin, Sijia Liu:
Learning to Generate Image Source-Agnostic Universal Adversarial Perturbations. IJCAI 2022: 1714-1720 - [c90]Pin-Yu Chen, Cho-Jui Hsieh, Bo Li, Sijia Liu:
The Fourth Workshop on Adversarial Learning Methods for Machine Learning and Data Mining (AdvML 2022). KDD 2022: 4858-4859 - [c89]Yong Xie, Dakuo Wang, Pin-Yu Chen, Jinjun Xiong, Sijia Liu, Oluwasanmi Koyejo:
A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Prediction. NAACL-HLT 2022: 587-599 - [c88]Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang, Sijia Liu:
Advancing Model Pruning via Bi-level Optimization. NeurIPS 2022 - [c87]Guanhua Zhang, Yihua Zhang, Yang Zhang, Wenqi Fan, Qing Li, Sijia Liu, Shiyu Chang:
Fairness Reprogramming. NeurIPS 2022 - [c86]Di Jin, Sijia Liu, Yang Liu, Dilek Hakkani-Tur:
Improving Bot Response Contradiction Detection via Utterance Rewriting. SIGDIAL 2022: 605-614 - [c85]Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh, Mingyi Hong, Sijia Liu:
Distributed adversarial training to robustify deep neural networks at scale. UAI 2022: 2353-2363 - [i105]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
How does unlabeled data improve generalization in self-training? A one-hidden-layer theoretical analysis. CoRR abs/2201.08514 (2022) - [i104]Pin-Yu Chen, Sijia Liu:
Holistic Adversarial Robustness of Deep Learning Models. CoRR abs/2202.07201 (2022) - [i103]Tianshu Huang, Tianlong Chen, Sijia Liu, Shiyu Chang, Lisa Amini, Zhangyang Wang:
Optimizer Amalgamation. CoRR abs/2203.06474 (2022) - [i102]Yifan Gong, Yuguang Yao, Yize Li, Yimeng Zhang, Xiaoming Liu, Xue Lin, Sijia Liu:
Reverse Engineering of Imperceptible Adversarial Image Perturbations. CoRR abs/2203.14145 (2022) - [i101]Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, Sijia Liu:
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective. CoRR abs/2203.14195 (2022) - [i100]Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, Xiaoming Liu:
Proactive Image Manipulation Detection. CoRR abs/2203.15880 (2022) - [i99]Quanfu Fan, Yilai Li, Yuguang Yao, John Cohn, Sijia Liu, Seychelle M. Vos, Michael A. Cianfrocco:
CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection. CoRR abs/2204.07543 (2022) - [i98]Yong Xie, Dakuo Wang, Pin-Yu Chen, Jinjun Xiong, Sijia Liu, Sanmi Koyejo:
A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools Stock Prediction. CoRR abs/2205.01094 (2022) - [i97]Tianlong Chen, Zhenyu Zhang, Yihua Zhang, Shiyu Chang, Sijia Liu, Zhangyang Wang:
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free. CoRR abs/2205.11819 (2022) - [i96]Ioannis C. Tsaknakis, Bhavya Kailkhura, Sijia Liu, Donald Loveland, James Diffenderfer, Anna Maria Hiszpanski, Mingyi Hong:
Zeroth-Order SciML: Non-intrusive Integration of Scientific Software with Deep Learning. CoRR abs/2206.02785 (2022) - [i95]Tianlong Chen, Zhenyu Zhang, Sijia Liu, Yang Zhang, Shiyu Chang, Zhangyang Wang:
Data-Efficient Double-Win Lottery Tickets from Robust Pre-training. CoRR abs/2206.04762 (2022) - [i94]Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh, Mingyi Hong, Sijia Liu:
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale. CoRR abs/2206.06257 (2022) - [i93]Tianlong Chen, Huan Zhang, Zhenyu Zhang, Shiyu Chang, Sijia Liu, Pin-Yu Chen, Zhangyang Wang:
Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness. CoRR abs/2206.07839 (2022) - [i92]Tianlong Chen, Sijia Liu, Shiyu Chang, Lisa Amini, Zhangyang Wang:
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning. CoRR abs/2206.07842 (2022) - [i91]Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling. CoRR abs/2207.03584 (2022) - [i90]Di Jin, Sijia Liu, Yang Liu, Dilek Hakkani-Tur:
Improving Bot Response Contradiction Detection via Utterance Rewriting. CoRR abs/2207.11862 (2022) - [i89]Guanhua Zhang, Yihua Zhang, Yang Zhang, Wenqi Fan, Qing Li, Sijia Liu, Shiyu Chang:
Fairness Reprogramming. CoRR abs/2209.10222 (2022) - [i88]Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang, Sijia Liu:
Advancing Model Pruning via Bi-level Optimization. CoRR abs/2210.04092 (2022) - [i87]Aochuan Chen, Peter Lorenz, Yuguang Yao, Pin-Yu Chen, Sijia Liu:
Visual Prompting for Adversarial Robustness. CoRR abs/2210.06284 (2022) - [i86]Yimeng Zhang, Akshay Karkal Kamath, Qiucheng Wu, Zhiwen Fan, Wuyang Chen, Zhangyang Wang, Shiyu Chang, Sijia Liu, Cong Hao:
Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge Devices. CoRR abs/2210.08578 (2022) - [i85]Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, Sijia Liu:
Understanding and Improving Visual Prompting: A Label-Mapping Perspective. CoRR abs/2211.11635 (2022) - [i84]Jinghan Jia, Shashank Srikant, Tamara Mitrovska, Chuang Gan, Shiyu Chang, Sijia Liu, Una-May O'Reilly:
CLAWSAT: Towards Both Robust and Accurate Code Models. CoRR abs/2211.11711 (2022) - [i83]Bairu Hou, Jinghan Jia, Yihua Zhang, Guanhua Zhang, Yang Zhang, Sijia Liu, Shiyu Chang:
TextGrad: Advancing Robustness Evaluation in NLP by Gradient-Driven Optimization. CoRR abs/2212.09254 (2022) - [i82]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu:
Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation Constrained Optimization. CoRR abs/2212.09513 (2022) - [i81]Prakhar Gupta, Yang Liu, Di Jin, Behnam Hedayatnia, Spandana Gella, Sijia Liu, Patrick Lange, Julia Hirschberg, Dilek Hakkani-Tur:
DialGuide: Aligning Dialogue Model Behavior with Developer Guidelines. CoRR abs/2212.10557 (2022) - 2021
- [j14]Shuai Zhang, Meng Wang, Jinjun Xiong, Sijia Liu, Pin-Yu Chen:
Improved Linear Convergence of Training CNNs With Generalizability Guarantees: A One-Hidden-Layer Case. IEEE Trans. Neural Networks Learn. Syst. 32(6): 2622-2635 (2021) - [c84]Akhilan Boopathy, Lily Weng, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, Luca Daniel:
Fast Training of Provably Robust Neural Networks by SingleProp. AAAI 2021: 6803-6811 - [c83]Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das:
Self-Progressing Robust Training. AAAI 2021: 7107-7115 - [c82]Wei Niu, Mengshu Sun, Zhengang Li, Jou-An Chen, Jiexiong Guan, Xipeng Shen, Yanzhi Wang, Sijia Liu, Xue Lin, Bin Ren:
RT3D: Achieving Real-Time Execution of 3D Convolutional Neural Networks on Mobile Devices. AAAI 2021: 9179-9187 - [c81]Chi Zhang, Jinghan Jia, Burhaneddin Yaman, Steen Moeller, Sijia Liu, Mingyi Hong, Mehmet Akçakaya:
Instabilities in Conventional Multi-Coil MRI Reconstruction with Small Adversarial Perturbations. ACSCC 2021: 895-899 - [c80]Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, Yangyang Xu:
Rate-improved inexact augmented Lagrangian method for constrained nonconvex optimization. AISTATS 2021: 2170-2178 - [c79]Jeet Mohapatra, Ching-Yun Ko, Lily Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Hidden Cost of Randomized Smoothing. AISTATS 2021: 4033-4041 - [c78]Zhengang Li, Geng Yuan, Wei Niu, Pu Zhao, Yanyu Li, Yuxuan Cai, Xuan Shen, Zheng Zhan, Zhenglun Kong, Qing Jin, Zhiyu Chen, Sijia Liu, Kaiyuan Yang, Bin Ren, Yanzhi Wang, Xue Lin:
NPAS: A Compiler-Aware Framework of Unified Network Pruning and Architecture Search for Beyond Real-Time Mobile Acceleration. CVPR 2021: 14255-14266 - [c77]Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang:
The Lottery Tickets Hypothesis for Supervised and Self-Supervised Pre-Training in Computer Vision Models. CVPR 2021: 16306-16316 - [c76]Sung-En Chang, Yanyu Li, Mengshu Sun, Weiwen Jiang, Sijia Liu, Yanzhi Wang, Xue Lin:
RMSMP: A Novel Deep Neural Network Quantization Framework with Row-wise Mixed Schemes and Multiple Precisions. ICCV 2021: 5231-5240 - [c75]Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, Meng Wang:
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning. ICLR 2021 - [c74]Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, Zhangyang Wang:
Robust Overfitting may be mitigated by properly learned smoothening. ICLR 2021 - [c73]Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, Zhangyang Wang:
Long Live the Lottery: The Existence of Winning Tickets in Lifelong Learning. ICLR 2021 - [c72]Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan Zhang, Una-May O'Reilly:
Generating Adversarial Computer Programs using Optimized Obfuscations. ICLR 2021 - [c71]Ning Liu, Geng Yuan, Zhengping Che, Xuan Shen, Xiaolong Ma, Qing Jin, Jian Ren, Jian Tang, Sijia Liu, Yanzhi Wang:
Lottery Ticket Preserves Weight Correlation: Is It Desirable or Not? ICML 2021: 7011-7020 - [c70]Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, Yanzhi Wang:
A Compression-Compilation Framework for On-mobile Real-time BERT Applications. IJCAI 2021: 5000-5003 - [c69]Pin-Yu Chen, Cho-Jui Hsieh, Bo Li, Sijia Liu:
Third Workshop on Adversarial Learning Methods for Machine Learning and Data Mining (AdvML 2021). KDD 2021: 4112-4113 - [c68]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Sparse Neural Networks. NeurIPS 2021: 2707-2720 - [c67]Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu, Minghai Qin, Sijia Liu, Zhangyang Wang, Yanzhi Wang:
Sanity Checks for Lottery Tickets: Does Your Winning Ticket Really Win the Jackpot? NeurIPS 2021: 12749-12760 - [c66]Jingkang Wang, Tianyun Zhang, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad, Bo Li:
Adversarial Attack Generation Empowered by Min-Max Optimization. NeurIPS 2021: 16020-16033 - [c65]Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng Zhan, Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia Liu, Xue Lin:
MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge. NeurIPS 2021: 20838-20850 - [c64]Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, Chuang Gan:
When does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? NeurIPS 2021: 21480-21492 - [c63]Pu Zhao, Wei Niu, Geng Yuan, Yuxuan Cai, Hsin-Hsuan Sung, Shaoshan Liu, Sijia Liu, Xipeng Shen, Bin Ren, Yanzhi Wang, Xue Lin:
Brief Industry Paper: Towards Real-Time 3D Object Detection for Autonomous Vehicles with Pruning Search. RTAS 2021: 425-428 - [c62]Bingqing Song, Haoran Sun, Wenqiang Pu, Sijia Liu, Mingyi Hong:
To Supervise or Not to Supervise: How to Effectively Learn Wireless Interference Management Models? SPAWC 2021: 211-215 - [i80]Akhilan Boopathy, Tsui-Wei Weng, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, Luca Daniel:
Fast Training of Provably Robust Neural Networks by SingleProp. CoRR abs/2102.01208 (2021) - [i79]Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, Meng Wang:
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning. CoRR abs/2102.10454 (2021) - [i78]Ning Liu, Geng Yuan, Zhengping Che, Xuan Shen, Xiaolong Ma, Qing Jin, Jian Ren, Jian Tang, Sijia Liu, Yanzhi Wang:
Lottery Ticket Implies Accuracy Degradation, Is It a Desirable Phenomenon? CoRR abs/2102.11068 (2021) - [i77]Chi Zhang, Jinghan Jia, Burhaneddin Yaman, Steen Moeller, Sijia Liu, Mingyi Hong, Mehmet Akçakaya:
On Instabilities of Conventional Multi-Coil MRI Reconstruction to Small Adverserial Perturbations. CoRR abs/2102.13066 (2021) - [i76]Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan Zhang, Una-May O'Reilly:
Generating Adversarial Computer Programs using Optimized Obfuscations. CoRR abs/2103.11882 (2021) - [i75]Yi Sun, Abel N. Valente, Sijia Liu, Dakuo Wang:
Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation. CoRR abs/2103.13944 (2021) - [i74]Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, Yanzhi Wang:
A Compression-Compilation Framework for On-mobile Real-time BERT Applications. CoRR abs/2106.00526 (2021) - [i73]Ren Wang, Tianqi Chen, Philip Yao, Sijia Liu, Indika Rajapakse, Alfred O. Hero III:
ASK: Adversarial Soft k-Nearest Neighbor Attack and Defense. CoRR abs/2106.14300 (2021) - [i72]Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu, Minghai Qin, Sijia Liu, Zhangyang Wang, Yanzhi Wang:
Sanity Checks for Lottery Tickets: Does Your Winning Ticket Really Win the Jackpot? CoRR abs/2107.00166 (2021) - [i71]Ao Liu, Xiaoyu Chen, Sijia Liu, Lirong Xia, Chuang Gan:
Certifiably Robust Interpretation via Renyi Differential Privacy. CoRR abs/2107.01561 (2021) - [i70]Chen Fan, Parikshit Ram, Sijia Liu:
Sign-MAML: Efficient Model-Agnostic Meta-Learning by SignSGD. CoRR abs/2109.07497 (2021) - [i69]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks. CoRR abs/2110.05667 (2021) - [i68]Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng Zhan, Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia Liu, Xue Lin:
MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge. CoRR abs/2110.14032 (2021) - [i67]Sung-En Chang, Yanyu Li, Mengshu Sun, Weiwen Jiang, Sijia Liu, Yanzhi Wang, Xue Lin:
RMSMP: A Novel Deep Neural Network Quantization Framework with Row-wise Mixed Schemes and Multiple Precisions. CoRR abs/2111.00153 (2021) - [i66]Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, Chuang Gan:
When Does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? CoRR abs/2111.01124 (2021) - [i65]Yifan Gong, Geng Yuan, Zheng Zhan, Wei Niu, Zhengang Li, Pu Zhao, Yuxuan Cai, Sijia Liu, Bin Ren, Xue Lin, Xulong Tang, Yanzhi Wang:
Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time Mobile Acceleration. CoRR abs/2111.11581 (2021) - [i64]Ching-Yun Ko, Jeet Mohapatra, Sijia Liu, Pin-Yu Chen, Luca Daniel, Lily Weng:
Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework. CoRR abs/2112.04468 (2021) - [i63]Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, Sijia Liu:
Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization. CoRR abs/2112.12376 (2021) - [i62]Bingqing Song, Haoran Sun, Wenqiang Pu, Sijia Liu, Mingyi Hong:
To Supervise or Not: How to Effectively Learn Wireless Interference Management Models? CoRR abs/2112.14011 (2021) - 2020
- [j13]Kai Yang, Libin Jiang, Steven H. Low, Sijia Liu:
Privacy-Preserving Energy Scheduling for Smart Grid With Renewables. IEEE Access 8: 132320-132329 (2020) - [j12]Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O. Hero III, Pramod K. Varshney:
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning: Principals, Recent Advances, and Applications. IEEE Signal Process. Mag. 37(5): 43-54 (2020) - [c61]Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, Alexander G. Gray:
An ADMM Based Framework for AutoML Pipeline Configuration. AAAI 2020: 4892-4899 - [c60]Tsui-Wei Weng, Pu Zhao, Sijia Liu, Pin-Yu Chen, Xue Lin, Luca Daniel:
Towards Certificated Model Robustness Against Weight Perturbations. AAAI 2020: 6356-6363 - [c59]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
Guaranteed Convergence of Training Convolutional Neural Networks via Accelerated Gradient Descent. CISS 2020: 1-6 - [c58]Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Towards Verifying Robustness of Neural Networks Against A Family of Semantic Perturbations. CVPR 2020: 241-249 - [c57]Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, Zhangyang Wang:
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning. CVPR 2020: 696-705 - [c56]Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, Meng Wang:
Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases. ECCV (23) 2020: 222-238 - [c55]Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Sheng Lin, Hongjia Li, Wujie Wen, Xiang Chen, Jian Tang, Kaisheng Ma, Bin Ren, Yanzhi Wang:
An Image Enhancing Pattern-Based Sparsity for Real-Time Inference on Mobile Devices. ECCV (13) 2020: 629-645 - [c54]Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, Xue Lin:
Adversarial T-Shirt! Evading Person Detectors in a Physical World. ECCV (5) 2020: 665-681 - [c53]Ioannis C. Tsaknakis, Mingyi Hong, Sijia Liu:
Decentralized Min-Max Optimization: Formulations, Algorithms and Applications in Network Poisoning Attack. ICASSP 2020: 5755-5759 - [c52]Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, Xue Lin:
Towards an Efficient and General Framework of Robust Training for Graph Neural Networks. ICASSP 2020: 8479-8483 - [c51]Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, Cho-Jui Hsieh:
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack. ICLR 2020 - [c50]Akhilan Boopathy, Sijia Liu, Gaoyuan Zhang, Cynthia Liu, Pin-Yu Chen, Shiyu Chang, Luca Daniel:
Proper Network Interpretability Helps Adversarial Robustness in Classification. ICML 2020: 1014-1023 - [c49]Sanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu, Kush R. Varshney:
Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing. ICML 2020: 2803-2813 - [c48]Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, Una-May O'Reilly:
Min-Max Optimization without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning Attacks. ICML 2020: 6282-6293 - [c47]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case. ICML 2020: 11268-11277 - [c46]Djallel Bouneffouf, Charu C. Aggarwal, Thanh Hoang, Udayan Khurana, Horst Samulowitz, Beat Buesser, Sijia Liu, Tejaswini Pedapati, Parikshit Ram, Ambrish Rawat, Martin Wistuba, Alexander G. Gray:
Survey on Automated End-to-End Data Science? IJCNN 2020: 1-9 - [c45]Dakuo Wang, Parikshit Ram, Daniel Karl I. Weidele, Sijia Liu, Michael J. Muller, Justin D. Weisz, Abel N. Valente, Arunima Chaudhary, Dustin Ramsey Torres, Horst Samulowitz, Lisa Amini:
AutoAI: Automating the End-to-End AI Lifecycle with Humans-in-the-Loop. IUI Companion 2020: 77-78 - [c44]Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, Michael Carbin:
The Lottery Ticket Hypothesis for Pre-trained BERT Networks. NeurIPS 2020 - [c43]Tianlong Chen, Weiyi Zhang, Jingyang Zhou, Shiyu Chang, Sijia Liu, Lisa Amini, Zhangyang Wang:
Training Stronger Baselines for Learning to Optimize. NeurIPS 2020 - [c42]Jeet Mohapatra, Ching-Yun Ko, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Higher-Order Certification For Randomized Smoothing. NeurIPS 2020 - [i61]Xiaolong Ma, Wei Niu, Tianyun Zhang, Sijia Liu, Fu-Ming Guo, Sheng Lin, Hongjia Li, Xiang Chen, Jian Tang, Kaisheng Ma, Bin Ren, Yanzhi Wang:
An Image Enhancing Pattern-based Sparsity for Real-time Inference on Mobile Devices. CoRR abs/2001.07710 (2020) - [i60]Zhengang Li, Yifan Gong, Xiaolong Ma, Sijia Liu, Mengshu Sun, Zheng Zhan, Zhenglun Kong, Geng Yuan, Yanzhi Wang:
SS-Auto: A Single-Shot, Automatic Structured Weight Pruning Framework of DNNs with Ultra-High Efficiency. CoRR abs/2001.08839 (2020) - [i59]Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, Xue Lin:
Towards an Efficient and General Framework of Robust Training for Graph Neural Networks. CoRR abs/2002.10947 (2020) - [i58]Hao Cheng, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Pu Zhao, Xue Lin:
Defending against Backdoor Attack on Deep Neural Networks. CoRR abs/2002.12162 (2020) - [i57]Jeet Mohapatra, Ching-Yun Ko, Tsui-Wei Weng, Sijia Liu, Pin-Yu Chen, Luca Daniel:
Rethinking Randomized Smoothing for Adversarial Robustness. CoRR abs/2003.01249 (2020) - [i56]Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, Zhangyang Wang:
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning. CoRR abs/2003.12862 (2020) - [i55]Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O. Hero III, Pramod K. Varshney:
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning. CoRR abs/2006.06224 (2020) - [i54]Parikshit Ram, Sijia Liu, Deepak Vijaykeerthy, Dakuo Wang, Djallel Bouneffouf, Gregory Bramble, Horst Samulowitz, Alexander G. Gray:
Solving Constrained CASH Problems with ADMM. CoRR abs/2006.09635 (2020) - [i53]Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong:
Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case. CoRR abs/2006.14117 (2020) - [i52]Tianlong Chen, Yi Wang, Jingyang Zhou, Sijia Liu, Shiyu Chang, Chandrajit Bajaj, Zhangyang Wang:
Can 3D Adversarial Logos Cloak Humans? CoRR abs/2006.14655 (2020) - [i51]Akhilan Boopathy, Sijia Liu, Gaoyuan Zhang, Cynthia Liu, Pin-Yu Chen, Shiyu Chang, Luca Daniel:
Proper Network Interpretability Helps Adversarial Robustness in Classification. CoRR abs/2006.14748 (2020) - [i50]Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, Michael Carbin:
The Lottery Ticket Hypothesis for Pre-trained BERT Networks. CoRR abs/2007.12223 (2020) - [i49]Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, Meng Wang:
Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases. CoRR abs/2007.15802 (2020) - [i48]Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, Yanzhi Wang:
Achieving Real-Time Execution of Transformer-based Large-scale Models on Mobile with Compiler-aware Neural Architecture Optimization. CoRR abs/2009.06823 (2020) - [i47]Pu Zhao, Sijia Liu, Parikshit Ram, Songtao Lu, Djallel Bouneffouf, Xue Lin:
Learned Fine-Tuner for Incongruous Few-Shot Learning. CoRR abs/2009.13714 (2020) - [i46]Yang Jiao, Kai Yang, Shaoyu Dou, Pan Luo, Sijia Liu, Dongjin Song:
TimeAutoML: Autonomous Representation Learning for Multivariate Irregularly Sampled Time Series. CoRR abs/2010.01596 (2020) - [i45]Jeet Mohapatra, Ching-Yun Ko, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Higher-Order Certification for Randomized Smoothing. CoRR abs/2010.06651 (2020) - [i44]Tianlong Chen, Weiyi Zhang, Jingyang Zhou, Shiyu Chang, Sijia Liu, Lisa Amini, Zhangyang Wang:
Training Stronger Baselines for Learning to Optimize. CoRR abs/2010.09089 (2020) - [i43]Zhengang Li, Geng Yuan, Wei Niu, Yanyu Li, Pu Zhao, Yuxuan Cai, Xuan Shen, Zheng Zhan, Zhenglun Kong, Qing Jin, Zhiyu Chen, Sijia Liu, Kaiyuan Yang, Bin Ren, Yanzhi Wang, Xue Lin:
6.7ms on Mobile with over 78% ImageNet Accuracy: Unified Network Pruning and Architecture Search for Beyond Real-Time Mobile Acceleration. CoRR abs/2012.00596 (2020) - [i42]Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang:
The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models. CoRR abs/2012.06908 (2020) - [i41]Pranay Sharma, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Xue Lin, Pramod K. Varshney:
Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box Optimization Framework. CoRR abs/2012.11518 (2020) - [i40]Minhao Cheng, Pin-Yu Chen, Sijia Liu, Shiyu Chang, Cho-Jui Hsieh, Payel Das:
Self-Progressing Robust Training. CoRR abs/2012.11769 (2020) - [i39]Pu Zhao, Wei Niu, Geng Yuan, Yuxuan Cai, Hsin-Hsuan Sung, Wujie Wen, Sijia Liu, Xipeng Shen, Bin Ren, Yanzhi Wang, Xue Lin:
Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device. CoRR abs/2012.13801 (2020)
2010 – 2019
- 2019
- [j11]Kai Yang, Sijia Liu, Lin Cai, Yasin Yilmaz, Pin-Yu Chen, Anwar Walid:
Guest Editorial Special Issue on AI Enabled Cognitive Communication and Networking for IoT. IEEE Internet Things J. 6(2): 1906-1910 (2019) - [c41]Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, Shin-Ming Cheng:
AutoZOOM: Autoencoder-Based Zeroth Order Optimization Method for Attacking Black-Box Neural Networks. AAAI 2019: 742-749 - [c40]Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks. AAAI 2019: 3240-3247 - [c39]Pu Zhao, Kaidi Xu, Sijia Liu, Yanzhi Wang, Xue Lin:
ADMM attack: an enhanced adversarial attack for deep neural networks with undetectable distortions. ASP-DAC 2019: 499-505 - [c38]Hafiz Tiomoko Ali, Sijia Liu, Yasin Yilmaz, Romain Couillet, Indika Rajapakse, Alfred O. Hero III:
Latent Heterogeneous Multilayer Community Detection. ICASSP 2019: 8142-8146 - [c37]Shaokai Ye, Xue Lin, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun Zhou, Kaisheng Ma, Yanzhi Wang:
Adversarial Robustness vs. Model Compression, or Both? ICCV 2019: 111-120 - [c36]Pu Zhao, Sijia Liu, Pin-Yu Chen, Nghia Hoang, Kaidi Xu, Bhavya Kailkhura, Xue Lin:
On the Design of Black-Box Adversarial Examples by Leveraging Gradient-Free Optimization and Operator Splitting Method. ICCV 2019: 121-130 - [c35]Tianyun Zhang, Sijia Liu, Yanzhi Wang, Makan Fardad:
Generation of Low Distortion Adversarial Attacks via Convex Programming. ICDM 2019: 1486-1491 - [c34]Xiangyi Chen, Sijia Liu, Ruoyu Sun, Mingyi Hong:
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization. ICLR (Poster) 2019 - [c33]Sijia Liu, Pin-Yu Chen, Xiangyi Chen, Mingyi Hong:
signSGD via Zeroth-Order Oracle. ICLR (Poster) 2019 - [c32]Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi Wang, Xue Lin:
Structured Adversarial Attack: Towards General Implementation and Better Interpretability. ICLR (Poster) 2019 - [c31]Pin-Yu Chen, Lingfei Wu, Sijia Liu, Indika Rajapakse:
Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications. ICML 2019: 1091-1101 - [c30]Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin:
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. IJCAI 2019: 3961-3967 - [c29]Pin-Yu Chen, Sijia Liu:
Recent Progress in Zeroth Order Optimization and Its Applications to Adversarial Robustness in Data Mining and Machine Learning. KDD 2019: 3233-3234 - [c28]Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David D. Cox:
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization. NeurIPS 2019: 7202-7213 - [i38]Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma, Sheng Lin, Zhengang Li, Kaidi Xu, Wujie Wen, Sijia Liu, Jian Tang, Makan Fardad, Xue Lin, Yongpan Liu, Yanzhi Wang:
Progressive DNN Compression: A Key to Achieve Ultra-High Weight Pruning and Quantization Rates using ADMM. CoRR abs/1903.09769 (2019) - [i37]Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun Zhou, Kaisheng Ma, Yanzhi Wang, Xue Lin:
Second Rethinking of Network Pruning in the Adversarial Setting. CoRR abs/1903.12561 (2019) - [i36]Kaidi Xu, Sijia Liu, Gaoyuan Zhang, Mengshu Sun, Pu Zhao, Quanfu Fan, Chuang Gan, Xue Lin:
Interpreting Adversarial Examples by Activation Promotion and Suppression. CoRR abs/1904.02057 (2019) - [i35]Sijia Liu, Parikshit Ram, Djallel Bouneffouf, Gregory Bramble, Andrew R. Conn, Horst Samulowitz, Alexander G. Gray:
Automated Machine Learning via ADMM. CoRR abs/1905.00424 (2019) - [i34]Jingkang Wang, Tianyun Zhang, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad, Bo Li:
Beyond Adversarial Training: Min-Max Optimization in Adversarial Attack and Defense. CoRR abs/1906.03563 (2019) - [i33]Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin:
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. CoRR abs/1906.04214 (2019) - [i32]Pu Zhao, Sijia Liu, Pin-Yu Chen, Nghia Hoang, Kaidi Xu, Bhavya Kailkhura, Xue Lin:
On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting Method. CoRR abs/1907.11684 (2019) - [i31]Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, Cho-Jui Hsieh:
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack. CoRR abs/1909.10773 (2019) - [i30]Fu-Ming Guo, Sijia Liu, Finlay S. Mungall, Xue Lin, Yanzhi Wang:
Reweighted Proximal Pruning for Large-Scale Language Representation. CoRR abs/1909.12486 (2019) - [i29]Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, Una-May O'Reilly:
Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML. CoRR abs/1909.13806 (2019) - [i28]Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David D. Cox:
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization. CoRR abs/1910.06513 (2019) - [i27]Sanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu, Kush R. Varshney:
An Information-Theoretic Perspective on the Relationship Between Fairness and Accuracy. CoRR abs/1910.07870 (2019) - [i26]Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, Xue Lin:
Evading Real-Time Person Detectors by Adversarial T-shirt. CoRR abs/1910.11099 (2019) - [i25]Charu C. Aggarwal, Djallel Bouneffouf, Horst Samulowitz, Beat Buesser, Thanh Hoang, Udayan Khurana, Sijia Liu, Tejaswini Pedapati, Parikshit Ram, Ambrish Rawat, Martin Wistuba, Alexander G. Gray:
How can AI Automate End-to-End Data Science? CoRR abs/1910.14436 (2019) - [i24]Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
Towards Verifying Robustness of Neural Networks Against Semantic Perturbations. CoRR abs/1912.09533 (2019) - 2018
- [j10]Sijia Liu, Pin-Yu Chen, Alfred O. Hero III:
Accelerated Distributed Dual Averaging Over Evolving Networks of Growing Connectivity. IEEE Trans. Signal Process. 66(7): 1845-1859 (2018) - [j9]Shan Zhang, Sijia Liu, Vinod Sharma, Pramod K. Varshney:
Optimal Sensor Collaboration for Parameter Tracking Using Energy Harvesting Sensors. IEEE Trans. Signal Process. 66(12): 3339-3353 (2018) - [c27]Sijia Liu, Jie Chen, Pin-Yu Chen, Alfred O. Hero III:
Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications. AISTATS 2018: 288-297 - [c26]Pin-Yu Chen, Bhanukiran Vinzamuri, Sijia Liu:
Is Ordered Weighted ℓ1 Regularized Regression Robust to Adversarial Perturbation? A Case Study on OSCAR. GlobalSIP 2018: 1174-1178 - [c25]Sijia Liu, Xingguo Li, Pin-Yu Chen, Jarvis D. Haupt, Lisa Amini:
Zeroth-Order Stochastic Projected Gradient Descent for Nonconvex Optimization. GlobalSIP 2018: 1179-1183 - [c24]Jie Chen, Sijia Liu, Pin-Yu Chen:
Zeroth-Order Diffusion Adaptation Over Networks. ICASSP 2018: 4324-4328 - [c23]Sijia Liu, Pin-Yu Chen, Indika Rajapakse, Alfred O. Hero III:
First-Order Bifurcation Detection for Dynamic Complex Networks. ICASSP 2018: 6912-6916 - [c22]Pu Zhao, Sijia Liu, Yanzhi Wang, Xue Lin:
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks. ACM Multimedia 2018: 1065-1073 - [c21]Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Pai-Shun Ting, Shiyu Chang, Lisa Amini:
Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization. NeurIPS 2018: 3731-3741 - [c20]Brandon Oselio, Sijia Liu, Alfred O. Hero III:
Multi-Layer Relevance Networks. SPAWC 2018: 1-5 - [i23]Ao Ren, Sijia Liu, Ruizhe Cai, Wujie Wen, Pramod K. Varshney, Yanzhi Wang:
Algorithm-Hardware Co-Optimization of the Memristor-Based Framework for Solving SOCP and Homogeneous QCQP Problems. CoRR abs/1802.00824 (2018) - [i22]Pu Zhao, Sijia Liu, Yanzhi Wang, Xue Lin:
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks. CoRR abs/1804.03193 (2018) - [i21]Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Pai-Shun Ting, Shiyu Chang, Lisa Amini:
Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization. CoRR abs/1805.10367 (2018) - [i20]Pin-Yu Chen, Lingfei Wu, Sijia Liu, Indika Rajapakse:
Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications. CoRR abs/1805.11769 (2018) - [i19]Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, Shin-Ming Cheng:
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks. CoRR abs/1805.11770 (2018) - [i18]Hafiz Tiomoko Ali, Sijia Liu, Yasin Yilmaz, Alfred O. Hero III, Romain Couillet, Indika Rajapakse:
Latent heterogeneous multilayer community detection. CoRR abs/1806.07963 (2018) - [i17]Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Deniz Erdogmus, Yanzhi Wang, Xue Lin:
Structured Adversarial Attack: Towards General Implementation and Better Interpretability. CoRR abs/1808.01664 (2018) - [i16]Xiangyi Chen, Sijia Liu, Ruoyu Sun, Mingyi Hong:
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization. CoRR abs/1808.02941 (2018) - [i15]Pin-Yu Chen, Bhanukiran Vinzamuri, Sijia Liu:
Is Ordered Weighted ℓ1 Regularized Regression Robust to Adversarial Perturbation? A Case Study on OSCAR. CoRR abs/1809.08706 (2018) - [i14]Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Kaidi Xu, Yunfei Yang, Fuxun Yu, Jian Tang, Makan Fardad, Sijia Liu, Xiang Chen, Xue Lin, Yanzhi Wang:
Progressive Weight Pruning of Deep Neural Networks using ADMM. CoRR abs/1810.07378 (2018) - [i13]Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Jiaming Xie, Yun Liang, Sijia Liu, Xue Lin, Yanzhi Wang:
A Unified Framework of DNN Weight Pruning and Weight Clustering/Quantization Using ADMM. CoRR abs/1811.01907 (2018) - [i12]Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, Luca Daniel:
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks. CoRR abs/1811.12395 (2018) - 2017
- [j8]Pin-Yu Chen, Sijia Liu:
Bias-Variance Tradeoff of Graph Laplacian Regularizer. IEEE Signal Process. Lett. 24(8): 1118-1122 (2017) - [c19]Ao Ren, Sijia Liu, Ruizhe Cai, Wujie Wen, Pramod K. Varshney, Yanzhi Wang:
Algorithm-hardware co-optimization of the memristor-based framework for solving SOCP and homogeneous QCQP problems. ASP-DAC 2017: 788-793 - [c18]Tianpei Xie, Sijia Liu, Alfred O. Hero III:
Semiblind subgraph reconstruction in Gaussian graphical models. GlobalSIP 2017: 628-632 - [c17]Sijia Liu, Ao Ren, Yanzhi Wang, Pramod K. Varshney:
Ultra-fast robust compressive sensing based on memristor crossbars. ICASSP 2017: 1133-1137 - [c16]Sijia Liu, Pin-Yu Chen, Alfred O. Hero III:
Distributed optimization for evolving networks of growing connectivity. ICASSP 2017: 4079-4083 - [c15]Sijia Liu, Sundeep Prabhakar Chepuri, Geert Leus, Alfred O. Hero III:
Distributed sensor selection for field estimation. ICASSP 2017: 4257-4261 - [c14]Sundeep Prabhakar Chepuri, Sijia Liu, Geert Leus, Alfred O. Hero III:
Learning sparse graphs under smoothness prior. ICASSP 2017: 6508-6512 - [i11]Pin-Yu Chen, Sijia Liu:
Bias-Variance Tradeoff of Graph Laplacian Regularizer. CoRR abs/1706.00544 (2017) - [i10]Sijia Liu, Jie Chen, Pin-Yu Chen, Alfred O. Hero III:
Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications. CoRR abs/1710.07804 (2017) - [i9]Sijia Liu, Yanzhi Wang, Makan Fardad, Pramod K. Varshney:
A Memristor-Based Optimization Framework for AI Applications. CoRR abs/1710.08882 (2017) - [i8]Tianpei Xie, Sijia Liu, Alfred O. Hero III:
Semiblind subgraph reconstruction in Gaussian graphical models. CoRR abs/1711.05391 (2017) - [i7]Farshad Harirchi, Omar A. Khalil, Sijia Liu, Paolo Elvati, Angela Violi, Alfred O. Hero III:
A Data-Driven Sparse-Learning Approach to Model Reduction in Chemical Reaction Networks. CoRR abs/1712.04493 (2017) - [i6]Omar A. Khalil, Farshad Harirchi, Doohyun Kim, Sijia Liu, Paolo Elvati, Angela Violi, Alfred O. Hero III:
Model Reduction in Chemical Reaction Networks: A Data-Driven Sparse-Learning Approach. CoRR abs/1712.06281 (2017) - 2016
- [j7]Sijia Liu, Sundeep Prabhakar Chepuri, Makan Fardad, Engin Masazade, Geert Leus, Pramod K. Varshney:
Sensor Selection for Estimation with Correlated Measurement Noise. IEEE Trans. Signal Process. 64(13): 3509-3522 (2016) - [j6]Sijia Liu, Swarnendu Kar, Makan Fardad, Pramod K. Varshney:
Optimized Sensor Collaboration for Estimation of Temporally Correlated Parameters. IEEE Trans. Signal Process. 64(24): 6613-6626 (2016) - [j5]Bhavya Kailkhura, Sijia Liu, Thakshila Wimalajeewa, Pramod K. Varshney:
Measurement Matrix Design for Compressed Detection With Secrecy Guarantees. IEEE Wirel. Commun. Lett. 5(4): 420-423 (2016) - [c13]Sijia Liu, Yanzhi Wang, Makan Fardad, Pramod K. Varshney:
Optimal energy allocation and storage control for distributed estimation with sensor collaboration. CISS 2016: 42-47 - [c12]Sijia Liu, Vinod Sharma, Pramod K. Varshney:
Towards an online energy allocation policy for distributed estimation with sensor collaboration using energy harvesting sensors. GlobalSIP 2016: 500-504 - [c11]Sijia Liu, Nianxia Cao, Pramod K. Varshney:
Sensor placement for field estimation via Poisson disk sampling. GlobalSIP 2016: 520-524 - [i5]Sijia Liu, Swarnendu Kar, Makan Fardad, Pramod K. Varshney:
Optimized Sensor Collaboration for Estimation of Temporally Correlated Parameters. CoRR abs/1603.03448 (2016) - [i4]Sundeep Prabhakar Chepuri, Sijia Liu, Geert Leus, Alfred O. Hero III:
Learning Sparse Graphs Under Smoothness Prior. CoRR abs/1609.03448 (2016) - 2015
- [j4]Sijia Liu, Swarnendu Kar, Makan Fardad, Pramod K. Varshney:
Sparsity-Aware Sensor Collaboration for Linear Coherent Estimation. IEEE Trans. Signal Process. 63(10): 2582-2596 (2015) - [c10]Sijia Liu, Swarnendu Kar, Makan Fardad, Pramod K. Varshney:
On optimal sensor collaboration for distributed estimation with individual power constraints. ACSSC 2015: 571-575 - [c9]Vipul Gupta, Bhavya Kailkhura, Thakshila Wimalajeewa, Sijia Liu, Pramod K. Varshney:
Joint sparsity pattern recovery with 1-bit compressive sensing in sensor networks. ACSSC 2015: 1472-1476 - [c8]V. Sriram Siddhardh Nadendla, Sijia Liu, Pramod K. Varshney:
Design of transmit-diversity schemes in detection networks under secrecy constraints. Allerton 2015: 794-801 - [c7]Sijia Liu, Feishe Chen, Aditya Vempaty, Makan Fardad, Lixin Shen, Pramod K. Varshney:
Sparsity-promoting sensor management for estimation: An energy balance point of view. FUSION 2015: 231-238 - [c6]Sijia Liu, Engin Masazade, Makan Fardad, Pramod K. Varshney:
Sensor selection with correlated measurements for target tracking in wireless sensor networks. ICASSP 2015: 4030-4034 - [i3]Bhavya Kailkhura, Sijia Liu, Thakshila Wimalajeewa, Pramod K. Varshney:
Measurement Matrix Design for Compressive Detection with Secrecy Guarantees. CoRR abs/1506.00238 (2015) - 2014
- [j3]Sijia Liu, Aditya Vempaty, Makan Fardad, Engin Masazade, Pramod K. Varshney:
Energy-Aware Sensor Selection in Field Reconstruction. IEEE Signal Process. Lett. 21(12): 1476-1480 (2014) - [j2]Xiaojing Shen, Sijia Liu, Pramod K. Varshney:
Sensor selection for nonlinear systems in large sensor networks. IEEE Trans. Aerosp. Electron. Syst. 50(4): 2664-2678 (2014) - [j1]Sijia Liu, Makan Fardad, Pramod K. Varshney, Engin Masazade:
Optimal Periodic Sensor Scheduling in Networks of Dynamical Systems. IEEE Trans. Signal Process. 62(12): 3055-3068 (2014) - [c5]Sijia Liu, Engin Masazade, Makan Fardad, Pramod K. Varshney:
Sparsity-aware field estimation via ordinary Kriging. ICASSP 2014: 3948-3952 - [c4]Sijia Liu, Makan Fardad, Swarnendu Kar, Pramod K. Varshney:
On optimal sensor collaboration topologies for linear coherent estimation. ISIT 2014: 2624-2628 - [i2]Sijia Liu, Swarnendu Kar, Makan Fardad, Pramod K. Varshney:
Sparsity-Aware Sensor Collaboration for Linear Coherent Estimation. CoRR abs/1408.6566 (2014) - 2013
- [c3]Sijia Liu, Engin Masazade, Xiaojing Shen, Pramod K. Varshney:
Adaptive non-myopic quantizer design for target tracking in wireless sensor networks. ACSSC 2013: 1085-1089 - [c2]Sijia Liu, Makan Fardad, Engin Masazade, Pramod K. Varshney:
On optimal periodic sensor scheduling for field estimation in wireless sensor networks. GlobalSIP 2013: 137-140 - [i1]Sijia Liu, Makan Fardad, Engin Masazade, Pramod K. Varshney:
Optimal Periodic Sensor Scheduling in Large-Scale Dynamical Networks. CoRR abs/1305.5601 (2013) - 2012
- [c1]Sijia Liu, Engin Masazade, Pramod K. Varshney:
Temporally staggered sensing for field estimation with quantized data in wireless sensor networks. SSP 2012: 512-515
Coauthor Index
aka: Alfred Olivier Hero
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-22 19:01 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint