default search action
Ivan V. Oseledets
Person information
- affiliation: Skolkovo Institute of Science and Technology, Moscow, Russia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j85]Nikita Pospelov, Andrei Chertkov, Maxim Beketov, Ivan V. Oseledets, Konstantin Anokhin:
Fast gradient-free activation maximization for neurons in spiking neural networks. Neurocomputing 618: 129070 (2025) - 2024
- [j84]Salman Ahmadi-Asl, Stanislav Abukhovich, Maame G. Asante-Mensah, Andrzej Cichocki, Anh Huy Phan, Tohishisa Tanaka, Ivan V. Oseledets:
Corrections to "Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD)". IEEE Access 12: 70742 (2024) - [j83]Roman Korkin, Ivan V. Oseledets, Aleksandr Katrutsa:
Multiparticle Kalman filter for object localization in symmetric environments. Expert Syst. Appl. 237(Part A): 121408 (2024) - [j82]Daria Cherniuk, Stanislav Abukhovich, Anh Huy Phan, Ivan V. Oseledets, Andrzej Cichocki, Julia Gusak:
Quantization Aware Factorization for Deep Neural Network Compression. J. Artif. Intell. Res. 81: 973-988 (2024) - [j81]Vladislav Pimanov, Oleg Iliev, Ivan V. Oseledets, Ekaterina A. Muravleva:
On the efficient preconditioning of the Stokes equations in tight geometries. Numer. Linear Algebra Appl. 31(6) (2024) - [j80]Albert Saiapin, Gleb Balitskiy, Daniel Bershatsky, Aleksandr Katrutsa, Evgeny Frolov, Alexey A. Frolov, Ivan V. Oseledets, Vitaliy Kharin:
Federated privacy-preserving collaborative filtering for on-device next app prediction. User Model. User Adapt. Interact. 34(4): 1369-1398 (2024) - [c62]Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Nikolai Gerasimenko, Ivan V. Oseledets, Denis Dimitrov, Andrey Kuznetsov:
Your Transformer is Secretly Linear. ACL (1) 2024: 5376-5384 - [c61]Danil Gusak, Gleb Mezentsev, Ivan V. Oseledets, Evgeny Frolov:
RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential Recommenders. CIKM 2024: 3772-3776 - [c60]Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Ivan V. Oseledets, Denis Dimitrov, Andrey Kuznetsov:
The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models. EACL (Findings) 2024: 868-874 - [c59]Dmitrii Korzh, Mikhail Pautov, Olga Tsymboi, Ivan V. Oseledets:
General Lipschitz: Certified Robustness Against Resolvable Semantic Transformations via Transformation-Dependent Randomized Smoothing. ECAI 2024: 1591-1598 - [c58]Viktoria Chekalina, Anna Rudenko, Gleb Mezentsev, Aleksandr Mikhalev, Alexander Panchenko, Ivan V. Oseledets:
SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers. EMNLP 2024: 14929-14939 - [c57]Alexander Rudikov, Vladimir Fanaskov, Ekaterina A. Muravleva, Yuri M. Laevsky, Ivan V. Oseledets:
Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving. ICML 2024 - [c56]Mikhail Pautov, Nikita Bogdanov, Stanislav Pyatkin, Oleg Rogov, Ivan V. Oseledets:
Probabilistically Robust Watermarking of Neural Networks. IJCAI 2024: 4778-4787 - [c55]Mikhail Goncharov, Valentin Samokhin, Eugenia Soboleva, Roman Sokolov, Boris Shirokikh, Mikhail Belyaev, Anvar Kurmukov, Ivan V. Oseledets:
Anatomical Positional Embeddings. MICCAI (10) 2024: 68-77 - [c54]Gleb Mezentsev, Danil Gusak, Ivan V. Oseledets, Evgeny Frolov:
Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs. RecSys 2024: 475-485 - [c53]Evgeny Frolov, Tatyana Matveeva, Leyla Mirvakhabova, Ivan V. Oseledets:
Self-Attentive Sequential Recommendations with Hyperbolic Representations. RecSys 2024: 981-986 - [i159]Mikhail Pautov, Nikita Bogdanov, Stanislav Pyatkin, Oleg Rogov, Ivan V. Oseledets:
Probabilistically Robust Watermarking of Neural Networks. CoRR abs/2401.08261 (2024) - [i158]Nikita Pospelov, Andrei Chertkov, Maxim Beketov, Ivan V. Oseledets, Konstantin Anokhin:
Fast gradient-free activation maximization for neurons in spiking neural networks. CoRR abs/2401.10748 (2024) - [i157]Kseniia Kuvshinova, Olga Tsymboi, Ivan V. Oseledets:
Sparse and Transferable Universal Singular Vectors Attack. CoRR abs/2401.14031 (2024) - [i156]Vadim Abronin, Aleksei Naumov, Denis Mazur, Dmitriy Bystrov, Katerina Tsarova, Artem Melnikov, Ivan V. Oseledets, Sergey Dolgov, Reuben Brasher, Michael Perelshtein:
TQCompressor: improving tensor decomposition methods in neural networks via permutations. CoRR abs/2401.16367 (2024) - [i155]Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev, Aleksandr Mikhalev, Ivan V. Oseledets:
LoTR: Low Tensor Rank Weight Adaptation. CoRR abs/2402.01376 (2024) - [i154]Gleb V. Ryzhakov, Andrei Chertkov, Artem Basharin, Ivan V. Oseledets:
Black-Box Approximation and Optimization with Hierarchical Tucker Decomposition. CoRR abs/2402.02890 (2024) - [i153]Gleb V. Ryzhakov, Svetlana Pavlova, Egor Sevriugov, Ivan V. Oseledets:
Smart Flow Matching: On The Theory of Flow Matching Algorithms with Applications. CoRR abs/2402.03232 (2024) - [i152]Vladimir Fanaskov, Alexander Rudikov, Ivan V. Oseledets:
Neural functional a posteriori error estimates. CoRR abs/2402.05585 (2024) - [i151]Alexander Rudikov, Vladimir Fanaskov, Ekaterina A. Muravleva, Yuri M. Laevsky, Ivan V. Oseledets:
Neural operators meet conjugate gradients: The FCG-NO method for efficient PDE solving. CoRR abs/2402.05598 (2024) - [i150]Elizaveta Goncharova, Anton Razzhigaev, Matvey Mikhalchuk, Maxim Kurkin, Irina Abdullaeva, Matvey Skripkin, Ivan V. Oseledets, Denis Dimitrov, Andrey Kuznetsov:
OmniFusion Technical Report. CoRR abs/2404.06212 (2024) - [i149]Daniil Merkulov, Daria Cherniuk, Alexander Rudikov, Ivan V. Oseledets, Ekaterina A. Muravleva, Aleksandr Mikhalev, Boris Kashin:
Quantization of Large Language Models with an Overdetermined Basis. CoRR abs/2404.09737 (2024) - [i148]Dmitrii Korzh, Elvir Karimov, Mikhail Pautov, Oleg Y. Rogov, Ivan V. Oseledets:
Certification of Speaker Recognition Models to Additive Perturbations. CoRR abs/2404.18791 (2024) - [i147]Andrey V. Galichin, Mikhail Pautov, Alexey Zhavoronkin, Oleg Y. Rogov, Ivan V. Oseledets:
GLiRA: Black-Box Membership Inference Attack via Knowledge Distillation. CoRR abs/2405.07562 (2024) - [i146]Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Nikolai Gerasimenko, Ivan V. Oseledets, Denis Dimitrov, Andrey Kuznetsov:
Your Transformer is Secretly Linear. CoRR abs/2405.12250 (2024) - [i145]Vladislav Trifonov, Alexander Rudikov, Oleg Iliev, Ivan V. Oseledets, Ekaterina A. Muravleva:
Learning from Linear Algebra: A Graph Neural Network Approach to Preconditioner Design for Conjugate Gradient Solvers. CoRR abs/2405.15557 (2024) - [i144]Aleksandr Katrutsa, Ivan V. Oseledets, Sergey Utyuzhnikov:
Data-driven optimal prediction with control. CoRR abs/2406.01991 (2024) - [i143]Vladimir Fanaskov, Tianchi Yu, Alexander Rudikov, Ivan V. Oseledets:
Astral: training physics-informed neural networks with error majorants. CoRR abs/2406.02645 (2024) - [i142]Vladislav Trifonov, Alexander Rudikov, Oleg Iliev, Ivan V. Oseledets, Ekaterina A. Muravleva:
ConDiff: A Challenging Dataset for Neural Solvers of Partial Differential Equations. CoRR abs/2406.04709 (2024) - [i141]Georgii S. Novikov, Ivan V. Oseledets:
Inverted Activations. CoRR abs/2407.15545 (2024) - [i140]Danil Gusak, Gleb Mezentsev, Ivan V. Oseledets, Evgeny Frolov:
RECE: Reduced Cross-Entropy Loss for Large-Catalogue Sequential Recommenders. CoRR abs/2408.02354 (2024) - [i139]Tianchi Yu, Yiming Qi, Ivan V. Oseledets, Shiyi Chen:
Fourier Spectral Physics Informed Neural Network: An Efficient and Low-Memory PINN. CoRR abs/2408.16414 (2024) - [i138]Mikhail Goncharov, Valentin Samokhin, Eugenia Soboleva, Roman Sokolov, Boris Shirokikh, Mikhail Belyaev, Anvar Kurmukov, Ivan V. Oseledets:
Anatomical Positional Embeddings. CoRR abs/2409.10291 (2024) - [i137]Gleb Mezentsev, Danil Gusak, Ivan V. Oseledets, Evgeny Frolov:
Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs. CoRR abs/2409.18721 (2024) - [i136]Tianchi Yu, Jingwei Qiu, Jiang Yang, Ivan V. Oseledets:
Sinc Kolmogorov-Arnold Network and Its Applications on Physics-informed Neural Networks. CoRR abs/2410.04096 (2024) - [i135]Georgii S. Novikov, Alexander Gneushev, Alexey Kadeishvili, Ivan V. Oseledets:
Tensor-Train Point Cloud Compression and Efficient Approximate Nearest-Neighbor Search. CoRR abs/2410.04462 (2024) - [i134]Viktoria Chekalina, Anna Rudenko, Gleb Mezentsev, Alexander Mikhalev, Alexander Panchenko, Ivan V. Oseledets:
SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers. CoRR abs/2410.07383 (2024) - [i133]Vladimir Fanaskov, Ivan V. Oseledets:
Associative memory and dead neurons. CoRR abs/2410.13866 (2024) - [i132]Artem Basharin, Andrei Chertkov, Ivan V. Oseledets:
Faster Language Models with Better Multi-Token Prediction Using Tensor Decomposition. CoRR abs/2410.17765 (2024) - [i131]Alexey Dontsov, Dmitrii Korzh, Alexey Zhavoronkin, Boris Mikheev, Denis Bobkov, Aibek Alanov, Oleg Y. Rogov, Ivan V. Oseledets, Elena Tutubalina:
CLEAR: Character Unlearning in Textual and Visual Modalities. CoRR abs/2410.18057 (2024) - [i130]Egor Sevriugov, Ivan V. Oseledets:
Integrating Geodesic Interpolation and Flow Matching for Non-Autoregressive Text Generation in Logit Space. CoRR abs/2411.16821 (2024) - 2023
- [j79]Evgeny Frolov, Ivan V. Oseledets:
Tensor-Based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations. IEEE Access 11: 6357-6371 (2023) - [j78]Sergey Nesteruk, Svetlana Illarionova, Ilya Zherebzov, Claire Traweek, Nadezhda Mikhailova, Andrey Somov, Ivan V. Oseledets:
PseudoAugment: Enabling Smart Checkout Adoption for New Classes Without Human Annotation. IEEE Access 11: 76869-76882 (2023) - [j77]Andrei Chertkov, Gleb V. Ryzhakov, Georgii S. Novikov, Ivan V. Oseledets:
Tensor Extrema Estimation Via Sampling: A New Approach for Determining Minimum/Maximum Elements. Comput. Sci. Eng. 25(5): 14-25 (2023) - [j76]Filipp Skomorokhov, Jun Wang, George V. Ovchinnikov, Evgeny Burnaev, Ivan V. Oseledets:
An event-triggered iteratively reweighted convex optimization approach to multi-period portfolio selection. Expert Syst. Appl. 216: 119427 (2023) - [j75]Aleksandr Katrutsa, Sergey Utyuzhnikov, Ivan V. Oseledets:
Extension of Dynamic Mode Decomposition for dynamic systems with incomplete information based on t-model of optimal prediction. J. Comput. Phys. 476: 111913 (2023) - [j74]Ivan V. Oseledets, Maxim V. Rakhuba, André Uschmajew:
Local convergence of alternating low-rank optimization methods with overrelaxation. Numer. Linear Algebra Appl. 30(3) (2023) - [j73]Svetlana Illarionova, Dmitrii Shadrin, Islomjon Shukhratov, Ksenia Evteeva, Georgii Popandopulo, Nazar Sotiriadi, Ivan V. Oseledets, Evgeny Burnaev:
Benchmark for Building Segmentation on Up-Scaled Sentinel-2 Imagery. Remote. Sens. 15(9): 2347 (2023) - [j72]Andrei Chertkov, Gleb V. Ryzhakov, Ivan V. Oseledets:
Black Box Approximation in the Tensor Train Format Initialized by ANOVA Decomposition. SIAM J. Sci. Comput. 45(4): 2101- (2023) - [j71]Salman Ahmadi-Asl, Maame Gyamfua Asante-Mensah, Andrzej Cichocki, Anh-Huy Phan, Ivan V. Oseledets, Jun Wang:
Fast cross tensor approximation for image and video completion. Signal Process. 213: 109121 (2023) - [c52]Olga Tsymboi, Danil Malaev, Andrei Petrovskii, Ivan V. Oseledets:
Layerwise universal adversarial attack on NLP models. ACL (Findings) 2023: 129-143 - [c51]Valentin Khrulkov, Gleb V. Ryzhakov, Andrei Chertkov, Ivan V. Oseledets:
Understanding DDPM Latent Codes Through Optimal Transport. ICLR 2023 - [c50]Gleb V. Ryzhakov, Ivan V. Oseledets:
Constructive TT-representation of the tensors given as index interaction functions with applications. ICLR 2023 - [c49]Vladimir Fanaskov, Tianchi Yu, Alexander Rudikov, Ivan V. Oseledets:
General Covariance Data Augmentation for Neural PDE Solvers. ICML 2023: 9665-9688 - [c48]Georgii Sergeevich Novikov, Daniel Bershatsky, Julia Gusak, Alex Shonenkov, Denis Valerievich Dimitrov, Ivan V. Oseledets:
Few-bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction. ICML 2023: 26363-26381 - [c47]Daria Fokina, Vasiliy V. Grigoriev, Oleg Iliev, Ivan V. Oseledets:
Machine Learning Algorithms for Parameter Identification for Reactive Flow in Porous Media. LSSC 2023: 91-98 - [c46]Daria Frolova, Aleksandr Katrutsa, Ivan V. Oseledets:
Feature-Based Pipeline for Improving Unsupervised Anomaly Segmentation on Medical Images. UNSURE@MICCAI 2023: 115-125 - [c45]Anastasia Batsheva, Andrei Chertkov, Gleb V. Ryzhakov, Ivan V. Oseledets:
PROTES: Probabilistic Optimization with Tensor Sampling. NeurIPS 2023 - [c44]Marina Munkhoeva, Ivan V. Oseledets:
Neural Harmonics: Bridging Spectral Embedding and Matrix Completion in Self-Supervised Learning. NeurIPS 2023 - [c43]Viktoria Chekalina, Georgiy Novikov, Julia Gusak, Alexander Panchenko, Ivan V. Oseledets:
Efficient GPT Model Pre-training using Tensor Train Matrix Representation. PACLIC 2023: 600-608 - [c42]Salman Ahmadi-Asl, Anh Huy Phan, Andrzej Cichocki, Ashish Jha, Anastasia Sozykina, Jun Wang, Ivan V. Oseledets:
Fast Adaptive Cross Tubal Tensor Approximation. SSP 2023: 552-556 - [i129]Yuliya Tukmacheva, Ivan V. Oseledets, Evgeny Frolov:
Mitigating Human and Computer Opinion Fraud via Contrastive Learning. CoRR abs/2301.03025 (2023) - [i128]Daria Fokina, Pavel Toktaliev, Oleg Iliev, Ivan V. Oseledets:
Machine learning methods for prediction of breakthrough curves in reactive porous media. CoRR abs/2301.04998 (2023) - [i127]Anastasia Batsheva, Andrei Chertkov, Gleb V. Ryzhakov, Ivan V. Oseledets:
PROTES: Probabilistic Optimization with Tensor Sampling. CoRR abs/2301.12162 (2023) - [i126]Vladimir Fanaskov, Tianchi Yu, Alexander Rudikov, Ivan V. Oseledets:
General Covariance Data Augmentation for Neural PDE Solvers. CoRR abs/2301.12730 (2023) - [i125]Albert Sayapin, Gleb Balitskiy, Daniel Bershatsky, Aleksandr Katrutsa, Evgeny Frolov, Alexey A. Frolov, Ivan V. Oseledets, Vitaliy Kharin:
Federated Privacy-preserving Collaborative Filtering for On-Device Next App Prediction. CoRR abs/2303.04744 (2023) - [i124]Roman Korkin, Ivan V. Oseledets, Aleksandr Katrutsa:
Multiparticle Kalman filter for object localization in symmetric environments. CoRR abs/2303.07897 (2023) - [i123]Andrei Chertkov, Olga Tsymboi, Mikhail Pautov, Ivan V. Oseledets:
Translate your gibberish: black-box adversarial attack on machine translation systems. CoRR abs/2303.10974 (2023) - [i122]Alexey I. Boyko, Anastasiia Kornilova, Rahim Tariverdizadeh, Mirfarid Musavian Ghazani, Larisa Markeeva, Ivan V. Oseledets, Gonzalo Ferrer:
TT-SDF2PC: Registration of Point Cloud and Compressed SDF Directly in the Memory-Efficient Tensor Train Domain. CoRR abs/2304.05342 (2023) - [i121]Salman Ahmadi-Asl, Anh Huy Phan, Andrzej Cichocki, Anastasia Sozykina, Zaher Al Aghbari, Jun Wang, Ivan V. Oseledets:
Adaptive Cross Tubal Tensor Approximation. CoRR abs/2305.05030 (2023) - [i120]Marina Munkhoeva, Ivan V. Oseledets:
Bridging Spectral Embedding and Matrix Completion in Self-Supervised Learning. CoRR abs/2305.19818 (2023) - [i119]Viktoria Chekalina, Georgii S. Novikov, Julia Gusak, Ivan V. Oseledets, Alexander Panchenko:
Efficient GPT Model Pre-training using Tensor Train Matrix Representation. CoRR abs/2306.02697 (2023) - [i118]Vladislav Pimanov, Oleg Iliev, Ivan V. Oseledets, Ekaterina A. Muravleva:
On the efficient preconditioning of the Stokes equations in tight geometries. CoRR abs/2307.05266 (2023) - [i117]Daria Cherniuk, Stanislav Abukhovich, Anh Huy Phan, Ivan V. Oseledets, Andrzej Cichocki, Julia Gusak:
Quantization Aware Factorization for Deep Neural Network Compression. CoRR abs/2308.04595 (2023) - [i116]Egor Sevriugov, Ivan V. Oseledets:
Robust GAN inversion. CoRR abs/2308.16510 (2023) - [i115]Egor Sevriugov, Ivan V. Oseledets:
Unsupervised evaluation of GAN sample quality: Introducing the TTJac Score. CoRR abs/2309.00107 (2023) - [i114]Vladislav Pimanov, Ekaterina A. Muravleva, Ivan V. Oseledets, Oleg Iliev:
On the structure of the Schur complement matrix for the Stokes equation. CoRR abs/2309.01255 (2023) - [i113]Dmitrii Korzh, Mikhail Pautov, Olga Tsymboi, Ivan V. Oseledets:
General Lipschitz: Certified Robustness Against Resolvable Semantic Transformations via Transformation-Dependent Randomized Smoothing. CoRR abs/2309.16710 (2023) - [i112]Roman Korkin, Ivan V. Oseledets, Aleksandr Katrutsa:
Memory-efficient particle filter recurrent neural network for object localization. CoRR abs/2310.01595 (2023) - [i111]Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Ivan V. Oseledets, Denis Dimitrov, Andrey Kuznetsov:
The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models. CoRR abs/2311.05928 (2023) - [i110]Daria Cherniuk, Aleksandr Mikhalev, Ivan V. Oseledets:
Run LoRA Run: Faster and Lighter LoRA Implementations. CoRR abs/2312.03415 (2023) - [i109]Ruituo Wu, Jiani Liu, Ce Zhu, Anh Huy Phan, Ivan V. Oseledets, Yipeng Liu:
TERM Model: Tensor Ring Mixture Model for Density Estimation. CoRR abs/2312.08075 (2023) - [i108]Albert Saiapin, Ivan V. Oseledets, Evgeny Frolov:
Dynamic Collaborative Filtering for Matrix- and Tensor-based Recommender Systems. CoRR abs/2312.10064 (2023) - [i107]Andrei Chertkov, Ivan V. Oseledets:
Tensor Train Decomposition for Adversarial Attacks on Computer Vision Models. CoRR abs/2312.12556 (2023) - 2022
- [j70]Sergey Nesteruk, Svetlana Illarionova, Timur Akhtyamov, Dmitrii Shadrin, Andrey Somov, Mariia Pukalchik, Ivan V. Oseledets:
XtremeAugment: Getting More From Your Data Through Combination of Image Collection and Image Augmentation. IEEE Access 10: 24010-24028 (2022) - [j69]Svetlana Illarionova, Dmitrii Shadrin, Vladimir Ignatiev, Sergey Shayakhmetov, Alexey Trekin, Ivan V. Oseledets:
Estimation of the Canopy Height Model From Multispectral Satellite Imagery With Convolutional Neural Networks. IEEE Access 10: 34116-34132 (2022) - [j68]Olga Tsymboi, Yermek Kapushev, Evgeny Burnaev, Ivan V. Oseledets:
Denoising Score Matching via Random Fourier Features. IEEE Access 10: 34154-34169 (2022) - [j67]Ivan V. Oseledets, Vladimir Fanaskov:
Direct optimization of BPX preconditioners. J. Comput. Appl. Math. 402: 113811 (2022) - [j66]Vladimir A. Kazeev, Ivan V. Oseledets, Maxim V. Rakhuba, Christoph Schwab:
Quantized Tensor FEM for Multiscale Problems: Diffusion Problems in Two and Three Dimensions. Multiscale Model. Simul. 20(3): 893-935 (2022) - [j65]Svetlana Illarionova, Dmitrii Shadrin, Vladimir Ignatiev, Sergey Shayakhmetov, Alexey Trekin, Ivan V. Oseledets:
Augmentation-Based Methodology for Enhancement of Trees Map Detalization on a Large Scale. Remote. Sens. 14(9): 2281 (2022) - [j64]Svetlana Illarionova, Dmitrii Shadrin, Polina Tregubova, Vladimir Ignatiev, Albert Efimov, Ivan V. Oseledets, Evgeny Burnaev:
A Survey of Computer Vision Techniques for Forest Characterization and Carbon Monitoring Tasks. Remote. Sens. 14(22): 5861 (2022) - [j63]Ivan Matvienko, Mikhail Gasanov, Anna Petrovskaia, Maxim A. Kuznetsov, Raghavendra B. Jana, Maria Pukalchik, Ivan V. Oseledets:
Bayesian Aggregation Improves Traditional Single-Image Crop Classification Approaches. Sensors 22(22): 8600 (2022) - [j62]Anna Petrovskaia, Raghavendra B. Jana, Ivan V. Oseledets:
A Single Image Deep Learning Approach to Restoration of Corrupted Landsat-7 Satellite Images. Sensors 22(23): 9273 (2022) - [j61]Alexander Novikov, Maxim V. Rakhuba, Ivan V. Oseledets:
Automatic Differentiation for Riemannian Optimization on Low-Rank Matrix and Tensor-Train Manifolds. SIAM J. Sci. Comput. 44(2): 843- (2022) - [c41]Mikhail Pautov, Nurislam Tursynbek, Marina Munkhoeva, Nikita Muravev, Aleksandr Petiushko, Ivan V. Oseledets:
CC-CERT: A Probabilistic Approach to Certify General Robustness of Neural Networks. AAAI 2022: 7975-7983 - [c40]Mikhail Usvyatsov, Rafael Ballester, Lina Bashaeva, Konrad Schindler, Gonzalo Ferrer, Ivan V. Oseledets:
T4DT: Tensorizing Time for Learning Temporal 3D Visual Data. BMVC 2022: 348 - [c39]Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, Ivan V. Oseledets:
Hyperbolic Vision Transformers: Combining Improvements in Metric Learning. CVPR 2022: 7399-7409 - [c38]Julia Gusak, Daria Cherniuk, Alena Shilova, Alexandr Katrutsa, Daniel Bershatsky, Xunyi Zhao, Lionel Eyraud-Dubois, Oleh Shliazhko, Denis Dimitrov, Ivan V. Oseledets, Olivier Beaumont:
Survey on Efficient Training of Large Neural Networks. IJCAI 2022: 5494-5501 - [c37]Mikhail Pautov, Olesya Kuznetsova, Nurislam Tursynbek, Aleksandr Petiushko, Ivan V. Oseledets:
Smoothed Embeddings for Certified Few-Shot Learning. NeurIPS 2022 - [c36]Konstantin Sozykin, Andrei Chertkov, Roman Schutski, Anh-Huy Phan, Andrzej S. Cichocki, Ivan V. Oseledets:
TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning. NeurIPS 2022 - [c35]Nurislam Tursynbek, Aleksandr Petiushko, Ivan V. Oseledets:
Geometry-Inspired Top-k Adversarial Perturbations. WACV 2022: 4059-4068 - [i106]Daniel Bershatsky, Aleksandr Mikhalev, Alexandr Katrutsa, Julia Gusak, Daniil Merkulov, Ivan V. Oseledets:
Memory-Efficient Backpropagation through Large Linear Layers. CoRR abs/2201.13195 (2022) - [i105]Georgii S. Novikov, Daniel Bershatsky, Julia Gusak, Alex Shonenkov, Denis Dimitrov, Ivan V. Oseledets:
Few-Bit Backward: Quantized Gradients of Activation Functions for Memory Footprint Reduction. CoRR abs/2202.00441 (2022) - [i104]Mikhail Pautov, Olesya Kuznetsova, Nurislam Tursynbek, Aleksandr Petiushko, Ivan V. Oseledets:
Smoothed Embeddings for Certified Few-Shot Learning. CoRR abs/2202.01186 (2022) - [i103]Valentin Khrulkov, Ivan V. Oseledets:
Understanding DDPM Latent Codes Through Optimal Transport. CoRR abs/2202.07477 (2022) - [i102]Julia Gusak, Daria Cherniuk, Alena Shilova, Alexandr Katrutsa, Daniel Bershatsky, Xunyi Zhao, Lionel Eyraud-Dubois, Oleg Shlyazhko, Denis Dimitrov, Ivan V. Oseledets, Olivier Beaumont:
Survey on Large Scale Neural Network Training. CoRR abs/2202.10435 (2022) - [i101]Alexandr Katrutsa, Sergey Utyuzhnikov, Ivan V. Oseledets:
Extension of Dynamic Mode Decomposition for dynamic systems with incomplete information based on t-model of optimal prediction. CoRR abs/2202.11432 (2022) - [i100]Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, Ivan V. Oseledets:
Hyperbolic Vision Transformers: Combining Improvements in Metric Learning. CoRR abs/2203.10833 (2022) - [i99]Daria Fokina, Oleg Iliev, Pavel Toktaliev, Ivan V. Oseledets, Felix Schindler:
On the Performance of Machine Learning Methods for Breakthrough Curve Prediction. CoRR abs/2204.11719 (2022) - [i98]Konstantin Sozykin, Andrei Chertkov, Roman Schutski, Anh Huy Phan, Andrzej Cichocki, Ivan V. Oseledets:
TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning. CoRR abs/2205.00293 (2022) - [i97]Artyom Nikitin, Andrei Chertkov, Rafael Ballester-Ripoll, Ivan V. Oseledets, Evgeny Frolov:
Are Quantum Computers Practical Yet? A Case for Feature Selection in Recommender Systems using Tensor Networks. CoRR abs/2205.04490 (2022) - [i96]Nikita Marin, Elizaveta Makhneva, Maria Lysyuk, Vladimir Chernyy, Ivan V. Oseledets, Evgeny Frolov:
Tensor-based Collaborative Filtering With Smooth Ratings Scale. CoRR abs/2205.05070 (2022) - [i95]Vladimir Fanaskov, Ivan V. Oseledets:
Direct optimization of BPX preconditioners. CoRR abs/2205.06158 (2022) - [i94]Vladimir Fanaskov, Ivan V. Oseledets:
Spectral Neural Operators. CoRR abs/2205.10573 (2022) - [i93]Gleb V. Ryzhakov, Ivan V. Oseledets:
Constructive TT-representation of the tensors given as index interaction functions with applications. CoRR abs/2206.03832 (2022) - [i92]Richik Sengupta, Soumik Adhikary, Ivan V. Oseledets, Jacob D. Biamonte:
Tensor networks in machine learning. CoRR abs/2207.02851 (2022) - [i91]Salman Ahmadi-Asl, Maame Gyamfua Asante-Mensah, Andrzej Cichocki, Anh Huy Phan, Ivan V. Oseledets, Jun Wang:
Cross Tensor Approximation for Image and Video Completion. CoRR abs/2207.06072 (2022) - [i90]Semen A. Budennyy, Vladimir D. Lazarev, Nikita Zakharenko, Alexey N. Korovin, Olga Plosskaya, Denis Dimitrov, Vladimir Arkhipkin, Ivan V. Oseledets, Ivan Barsola, Ilya Egorov, Aleksandra Kosterina, Leonid Zhukov:
Eco2AI: carbon emissions tracking of machine learning models as the first step towards sustainable AI. CoRR abs/2208.00406 (2022) - [i89]Mikhail Usvyatsov, Rafael Ballester-Ripoll, Lina Bashaeva, Konrad Schindler, Gonzalo Ferrer, Ivan V. Oseledets:
T4DT: Tensorizing Time for Learning Temporal 3D Visual Data. CoRR abs/2208.01421 (2022) - [i88]Andrei Chertkov, Gleb V. Ryzhakov, Ivan V. Oseledets:
Black box approximation in the tensor train format initialized by ANOVA decomposition. CoRR abs/2208.03380 (2022) - [i87]Shakir Showkat Sofi, Ivan V. Oseledets:
A case study of spatiotemporal forecasting techniques for weather forecasting. CoRR abs/2209.14782 (2022) - [i86]Andrei Chertkov, Gleb V. Ryzhakov, Georgii S. Novikov, Ivan V. Oseledets:
Optimization of Functions Given in the Tensor Train Format. CoRR abs/2209.14808 (2022) - [i85]Valentin Leplat, Daniil Merkulov, Aleksandr Katrutsa, Daniel Bershatsky, Ivan V. Oseledets:
NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizers. CoRR abs/2209.14937 (2022) - [i84]Evgeny Frolov, Ivan V. Oseledets:
Tensor-based Sequential Learning via Hankel Matrix Representation for Next Item Recommendations. CoRR abs/2212.05720 (2022) - [i83]Daria A. Sushnikova, Pavel Kharyuk, Ivan V. Oseledets:
FMM-Net: neural network architecture based on the Fast Multipole Method. CoRR abs/2212.12899 (2022) - 2021
- [j60]Salman Ahmadi-Asl, Stanislav Abukhovich, Maame G. Asante-Mensah, Andrzej Cichocki, Anh-Huy Phan, Toshihisa Tanaka, Ivan V. Oseledets:
Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD). IEEE Access 9: 28684-28706 (2021) - [j59]Salman Ahmadi-Asl, Cesar F. Caiafa, Andrzej Cichocki, Anh Huy Phan, Toshihisa Tanaka, Ivan V. Oseledets, Jun Wang:
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction. IEEE Access 9: 150809-150838 (2021) - [j58]Charlie Vanaret, Philipp Seufert, Jan Schwientek, Gleb Karpov, Gleb V. Ryzhakov, Ivan V. Oseledets, Norbert Asprion, Michael Bortz:
Two-phase approaches to optimal model-based design of experiments: how many experiments and which ones? Comput. Chem. Eng. 146: 107218 (2021) - [j57]Evgeny Ponomarev, Sergey A. Matveev, Ivan V. Oseledets, Valery Glukhov:
Latency Estimation Tool and Investigation of Neural Networks Inference on Mobile GPU. Comput. 10(8): 104 (2021) - [j56]Andrei Chertkov, Ivan V. Oseledets:
Solution of the Fokker-Planck Equation by Cross Approximation Method in the Tensor Train Format. Frontiers Artif. Intell. 4: 668215 (2021) - [j55]Larisa Markeeva, I. Tsybulin, Ivan V. Oseledets:
QTT-isogeometric solver in two dimensions. J. Comput. Phys. 424: 109835 (2021) - [j54]Salman Ahmadi-Asl, Andrzej Cichocki, Anh Huy Phan, Maame G. Asante-Mensah, Mirfarid Musavian Ghazani, Toshihisa Tanaka, Ivan V. Oseledets:
Randomized algorithms for fast computation of low rank tensor ring model. Mach. Learn. Sci. Technol. 2(1): 11001 (2021) - [j53]Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan V. Oseledets, Emmanuel Müller:
FREDE: Anytime Graph Embeddings. Proc. VLDB Endow. 14(6): 1102-1110 (2021) - [j52]Svetlana Illarionova, Sergey Nesteruk, Dmitrii Shadrin, Vladimir Ignatiev, Maria Pukalchik, Ivan V. Oseledets:
MixChannel: Advanced Augmentation for Multispectral Satellite Images. Remote. Sens. 13(11): 2181 (2021) - [j51]Svetlana Illarionova, Dmitrii Shadrin, Alexey Trekin, Vladimir Ignatiev, Ivan V. Oseledets:
Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks. Sensors 21(16): 5646 (2021) - [j50]Svetlana Illarionova, Alexey Trekin, Vladimir Ignatiev, Ivan V. Oseledets:
Neural-Based Hierarchical Approach for Detailed Dominant Forest Species Classification by Multispectral Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14: 1810-1820 (2021) - [c34]Nurislam Tursynbek, Ilya Vilkoviskiy, Maria Sindeeva, Ivan V. Oseledets:
Adversarial Turing Patterns from Cellular Automata. AAAI 2021: 2683-2691 - [c33]Mikhail Gasanov, Daniil Merkulov, Artyom Nikitin, Sergey A. Matveev, Nikita Stasenko, Anna Petrovskaia, Mariia Pukalchik, Ivan V. Oseledets:
A New Multi-objective Approach to Optimize Irrigation Using a Crop Simulation Model and Weather History. ICCS (4) 2021: 75-88 - [c32]Valentin Khrulkov, Leyla Mirvakhabova, Ivan V. Oseledets, Artem Babenko:
Latent Transformations via NeuralODEs for GAN-based Image Editing. ICCV 2021: 14408-14417 - [c31]Svetlana Illarionova, Sergey Nesteruk, Dmitrii Shadrin, Vladimir Ignatiev, Mariia Pukalchik, Ivan V. Oseledets:
Object-Based Augmentation for Building Semantic Segmentation: Ventura and Santa Rosa Case Study. ICCVW 2021: 1659-1668 - [c30]Valentin Khrulkov, Artem Babenko, Ivan V. Oseledets:
Functional Space Analysis of Local GAN Convergence. ICML 2021: 5432-5442 - [c29]Daria Fokina, Oleg Iliev, Ivan V. Oseledets:
Deep Neural Networks and Adaptive Quadrature for Solving Variational Problems. LSSC 2021: 369-377 - [c28]Georgii S. Novikov, Maxim E. Panov, Ivan V. Oseledets:
Tensor-train density estimation. UAI 2021: 1321-1331 - [c27]Oluwafemi Olaleke, Ivan V. Oseledets, Evgeny Frolov:
Dynamic Modeling of User Preferences for Stable Recommendations. UMAP 2021: 262-266 - [i82]Tsimboy Olga, Yermek Kapushev, Evgeny Burnaev, Ivan V. Oseledets:
Denoising Score Matching with Random Fourier Features. CoRR abs/2101.05239 (2021) - [i81]Valentin Khrulkov, Artem Babenko, Ivan V. Oseledets:
Functional Space Analysis of Local GAN Convergence. CoRR abs/2102.04448 (2021) - [i80]Valentin Khrulkov, Leyla Mirvakhabova, Ivan V. Oseledets, Artem Babenko:
Disentangled Representations from Non-Disentangled Models. CoRR abs/2102.06204 (2021) - [i79]Andrei Chertkov, Ivan V. Oseledets:
Solution of the Fokker-Planck equation by cross approximation method in the tensor train format. CoRR abs/2102.08143 (2021) - [i78]Julia Gusak, Alexandr Katrutsa, Talgat Daulbaev, Andrzej Cichocki, Ivan V. Oseledets:
Meta-Solver for Neural Ordinary Differential Equations. CoRR abs/2103.08561 (2021) - [i77]Anna Petrovskaia, Gleb V. Ryzhakov, Ivan V. Oseledets:
Optimal soil sampling design based on the maxvol algorithm. CoRR abs/2103.10337 (2021) - [i76]Alexander Novikov, Maxim V. Rakhuba, Ivan V. Oseledets:
Automatic differentiation for Riemannian optimization on low-rank matrix and tensor-train manifolds. CoRR abs/2103.14974 (2021) - [i75]Oluwafemi Olaleke, Ivan V. Oseledets, Evgeny Frolov:
Dynamic Modeling of User Preferences for Stable Recommendations. CoRR abs/2104.05047 (2021) - [i74]Svetlana Illarionova, Sergey Nesteruk, Dmitrii Shadrin, Vladimir Ignatiev, Mariia Pukalchik, Ivan V. Oseledets:
Object-Based Augmentation Improves Quality of Remote SensingSemantic Segmentation. CoRR abs/2105.05516 (2021) - [i73]Svetlana Illarionova, Dmitrii Shadrin, Alexey Trekin, Vladimir Ignatiev, Ivan V. Oseledets:
Generation of the NIR spectral Band for Satellite Images with Convolutional Neural Networks. CoRR abs/2106.07020 (2021) - [i72]Georgii S. Novikov, Maxim E. Panov, Ivan V. Oseledets:
Tensor-Train Density Estimation. CoRR abs/2108.00089 (2021) - [i71]Mikhail Pautov, Nurislam Tursynbek, Marina Munkhoeva, Nikita Muravev, Aleksandr Petiushko, Ivan V. Oseledets:
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks. CoRR abs/2109.10696 (2021) - [i70]Ivan V. Oseledets, Maxim V. Rakhuba, André Uschmajew:
Local convergence of alternating low-rank optimization methods with overrelaxation. CoRR abs/2111.14758 (2021) - [i69]Valentin Khrulkov, Leyla Mirvakhabova, Ivan V. Oseledets, Artem Babenko:
Latent Transformations via NeuralODEs for GAN-based Image Editing. CoRR abs/2111.14825 (2021) - 2020
- [j49]Daria A. Sushnikova, Ivan V. Oseledets:
Simple non-extensive sparsification of the hierarchical matrices. Adv. Comput. Math. 46(3): 52 (2020) - [j48]Alexandr Katrutsa, Talgat Daulbaev, Ivan V. Oseledets:
Black-box learning of multigrid parameters. J. Comput. Appl. Math. 368 (2020) - [j47]Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Figurnov, Ivan V. Oseledets:
Tensor Train Decomposition on TensorFlow (T3F). J. Mach. Learn. Res. 21: 30:1-30:7 (2020) - [j46]Yermek Kapushev, Ivan V. Oseledets, Evgeny Burnaev:
Tensor Completion via Gaussian Process-Based Initialization. SIAM J. Sci. Comput. 42(6): A3812-A3824 (2020) - [j45]Chunfeng Cui, Kaiqi Zhang, Talgat Daulbaev, Julia Gusak, Ivan V. Oseledets, Zheng Zhang:
Active Subspace of Neural Networks: Structural Analysis and Universal Attacks. SIAM J. Math. Data Sci. 2(4): 1096-1122 (2020) - [j44]Anh-Huy Phan, Andrzej Cichocki, Ivan V. Oseledets, Giuseppe Giovanni Calvi, Salman Ahmadi-Asl, Danilo P. Mandic:
Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition. IEEE Trans. Neural Networks Learn. Syst. 31(6): 2174-2188 (2020) - [c26]Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan V. Oseledets, Victor S. Lempitsky:
Hyperbolic Image Embeddings. CVPR 2020: 6417-6427 - [c25]Anh Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr Tichavský, Valeriy Glukhov, Ivan V. Oseledets, Andrzej Cichocki:
Stable Low-Rank Tensor Decomposition for Compression of Convolutional Neural Network. ECCV (29) 2020: 522-539 - [c24]Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, Ivan V. Oseledets:
Tensorized Embedding Layers. EMNLP (Findings) 2020: 4847-4860 - [c23]Mikhail Gasanov, Anna Petrovskaia, Artyom Nikitin, Sergey A. Matveev, Polina Tregubova, Maria Pukalchik, Ivan V. Oseledets:
Sensitivity Analysis of Soil Parameters in Crop Model Supported with High-Throughput Computing. ICCS (7) 2020: 731-741 - [c22]Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alexander M. Bronstein, Ivan V. Oseledets, Emmanuel Müller:
The Shape of Data: Intrinsic Distance for Data Distributions. ICLR 2020 - [c21]Alexey I. Boyko, Mikhail P. Matrosov, Ivan V. Oseledets, Dzmitry Tsetserukou, Gonzalo Ferrer:
TT-TSDF: Memory-Efficient TSDF with Low-Rank Tensor Train Decomposition. IROS 2020: 10116-10121 - [c20]Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Cichocki, Ivan V. Oseledets:
Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs. NeurIPS 2020 - [c19]Leyla Mirvakhabova, Evgeny Frolov, Valentin Khrulkov, Ivan V. Oseledets, Alexander Tuzhilin:
Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks. RecSys 2020: 527-532 - [i68]Salman Ahmadi-Asl, Andrzej Cichocki, Anh Huy Phan, Ivan V. Oseledets, Stanislav Abukhovich, Toshihisa Tanaka:
Randomized Algorithms for Computation of Tucker decomposition and Higher Order SVD (HOSVD). CoRR abs/2001.07124 (2020) - [i67]Anna Shalova, Ivan V. Oseledets:
Deep Representation Learning for Dynamical Systems Modeling. CoRR abs/2002.05111 (2020) - [i66]Evgeny Ponomarev, Ivan V. Oseledets, Andrzej Cichocki:
Using Reinforcement Learning in the Algorithmic Trading Problem. CoRR abs/2002.11523 (2020) - [i65]Talgat Daulbaev, Alexandr Katrutsa, Larisa Markeeva, Julia Gusak, Andrzej Cichocki, Ivan V. Oseledets:
Interpolated Adjoint Method for Neural ODEs. CoRR abs/2003.05271 (2020) - [i64]Ivan Matvienko, Mikhail Gasanov, Anna Petrovskaia, Raghavendra Belur Jana, Maria Pukalchik, Ivan V. Oseledets:
Bayesian aggregation improves traditional single image crop classification approaches. CoRR abs/2004.03468 (2020) - [i63]Anna Petrovskaia, Raghavendra B. Jana, Ivan V. Oseledets:
A single image deep learning approach to restoration of corrupted remote sensing products. CoRR abs/2004.04209 (2020) - [i62]Daniil Merkulov, Ivan V. Oseledets:
Stochastic gradient algorithms from ODE splitting perspective. CoRR abs/2004.08981 (2020) - [i61]Julia Gusak, Larisa Markeeva, Talgat Daulbaev, Alexandr Katrutsa, Andrzej Cichocki, Ivan V. Oseledets:
Towards Understanding Normalization in Neural ODEs. CoRR abs/2004.09222 (2020) - [i60]Roman Schutski, Dmitry Kolmakov, Taras Khakhulin, Ivan V. Oseledets:
Simple heuristics for efficient parallel tensor contraction and quantum circuit simulation. CoRR abs/2004.10892 (2020) - [i59]Vladimir A. Kazeev, Ivan V. Oseledets, Maksim Rakhuba, Christoph Schwab:
Quantized tensor FEM for multiscale problems: diffusion problems in two and three dimensions. CoRR abs/2006.01455 (2020) - [i58]Anna Shalova, Ivan V. Oseledets:
Tensorized Transformer for Dynamical Systems Modeling. CoRR abs/2006.03445 (2020) - [i57]Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan V. Oseledets, Emmanuel Müller:
FREDE: Linear-Space Anytime Graph Embeddings. CoRR abs/2006.04746 (2020) - [i56]Nurislam Tursynbek, Aleksandr Petiushko, Ivan V. Oseledets:
Geometry-Inspired Top-k Adversarial Perturbations. CoRR abs/2006.15669 (2020) - [i55]Alexandr Katrutsa, Daniil Merkulov, Nurislam Tursynbek, Ivan V. Oseledets:
Follow the bisector: a simple method for multi-objective optimization. CoRR abs/2007.06937 (2020) - [i54]Anh Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr Tichavský, Valeriy Glukhov, Ivan V. Oseledets, Andrzej Cichocki:
Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network. CoRR abs/2008.05441 (2020) - [i53]Leyla Mirvakhabova, Evgeny Frolov, Valentin Khrulkov, Ivan V. Oseledets, Alexander Tuzhilin:
Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks. CoRR abs/2008.06716 (2020) - [i52]Nurislam Tursynbek, Ilya Vilkoviskiy, Maria Sindeeva, Ivan V. Oseledets:
Adversarial Turing Patterns from Cellular Automata. CoRR abs/2011.09393 (2020) - [i51]Nurislam Tursynbek, Aleksandr Petiushko, Ivan V. Oseledets:
Robustness Threats of Differential Privacy. CoRR abs/2012.07828 (2020)
2010 – 2019
- 2019
- [j43]Maxim A. Kuznetsov, Ivan V. Oseledets:
Tensor Train Spectral Method for Learning of Hidden Markov Models (HMM). Comput. Methods Appl. Math. 19(1): 93-99 (2019) - [j42]Ekaterina A. Muravleva, Ivan V. Oseledets:
Approximate Solution of Linear Systems with Laplace-like Operators via Cross Approximation in the Frequency Domain. Comput. Methods Appl. Math. 19(1): 137-145 (2019) - [j41]Maxim V. Rakhuba, Alexander Novikov, Ivan V. Oseledets:
Low-rank Riemannian eigensolver for high-dimensional Hamiltonians. J. Comput. Phys. 396: 718-737 (2019) - [c18]Julia Gusak, Maksym Kholyavchenko, Evgeny Ponomarev, Larisa Markeeva, Philip Blagoveschensky, Andrzej Cichocki, Ivan V. Oseledets:
Automated Multi-Stage Compression of Neural Networks. ICCV Workshops 2019: 2501-2508 - [c17]Valentin Khrulkov, Oleksii Hrinchuk, Ivan V. Oseledets:
Generalized Tensor Models for Recurrent Neural Networks. ICLR (Poster) 2019 - [c16]Lily Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Akhilan Boopathy, Ivan V. Oseledets, Luca Daniel:
PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach. ICML 2019: 6727-6736 - [c15]Artem L. Pavlov, Pavel A. Karpyshev, George V. Ovchinnikov, Ivan V. Oseledets, Dzmitry Tsetserukou:
IceVisionSet: lossless video dataset collected on Russian winter roads with traffic sign annotations. ICRA 2019: 9597-9602 - [c14]Evgeny Frolov, Ivan V. Oseledets:
HybridSVD: when collaborative information is not enough. RecSys 2019: 331-339 - [i50]Pavel Temirchev, Maxim Simonov, Ruslan Kostoev, Evgeny Burnaev, Ivan V. Oseledets, Alexey Akhmetov, Andrey Margarit, Alexander Sitnikov, Dmitry A. Koroteev:
Deep Neural Networks Predicting Oil Movement in a Development Unit. CoRR abs/1901.02549 (2019) - [i49]Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, Ivan V. Oseledets:
Tensorized Embedding Layers for Efficient Model Compression. CoRR abs/1901.10787 (2019) - [i48]Valentin Khrulkov, Oleksii Hrinchuk, Ivan V. Oseledets:
Generalized Tensor Models for Recurrent Neural Networks. CoRR abs/1901.10801 (2019) - [i47]Alexandr Katrutsa, Ivan V. Oseledets:
Preconditioning Kaczmarz method by sketching. CoRR abs/1903.01806 (2019) - [i46]Julia Gusak, Maksym Kholyavchenko, Evgeny Ponomarev, Larisa Markeeva, Ivan V. Oseledets, Andrzej Cichocki:
One time is not enough: iterative tensor decomposition for neural network compression. CoRR abs/1903.09973 (2019) - [i45]Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan V. Oseledets, Victor S. Lempitsky:
Hyperbolic Image Embeddings. CoRR abs/1904.02239 (2019) - [i44]Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alexander M. Bronstein, Ivan V. Oseledets, Emmanuel Müller:
Intrinsic Multi-scale Evaluation of Generative Models. CoRR abs/1905.11141 (2019) - [i43]Valentin Khrulkov, Ivan V. Oseledets:
Universality Theorems for Generative Models. CoRR abs/1905.11520 (2019) - [i42]Daniil Merkulov, Ivan V. Oseledets:
Empirical study of extreme overfitting points of neural networks. CoRR abs/1906.06295 (2019) - [i41]Daria Fokina, Ekaterina A. Muravleva, George V. Ovchinnikov, Ivan V. Oseledets:
Microstructure synthesis using style-based generative adversarial network. CoRR abs/1909.07042 (2019) - [i40]Artem L. Pavlov, Azat Davletshin, Alexey Kharlamov, Maksim S. Koriukin, Artem Vasenin, Pavel Solovev, Pavel Ostyakov, Pavel A. Karpyshev, George V. Ovchinnikov, Ivan V. Oseledets, Dzmitry Tsetserukou:
Recognition of Russian traffic signs in winter conditions. Solutions of the "Ice Vision" competition winners. CoRR abs/1909.07311 (2019) - [i39]Alexandr Katrutsa, Mike A. Botchev, Ivan V. Oseledets:
Practical shift choice in the shift-and-invert Krylov subspace evaluations of the matrix exponential. CoRR abs/1909.13059 (2019) - [i38]Artem V. Chashchin, Mikhail A. Botchev, Ivan V. Oseledets, Grigory V. Ovchinnikov:
Predicting dynamical system evolution with residual neural networks. CoRR abs/1910.05233 (2019) - [i37]Talgat Daulbaev, Julia Gusak, Evgeny Ponomarev, Andrzej Cichocki, Ivan V. Oseledets:
Reduced-Order Modeling of Deep Neural Networks. CoRR abs/1910.06995 (2019) - [i36]Taras Khakhulin, Roman Schutski, Ivan V. Oseledets:
Graph Convolutional Policy for Solving Tree Decomposition via Reinforcement Learning Heuristics. CoRR abs/1910.08371 (2019) - [i35]Daria Fokina, Ivan V. Oseledets:
Growing axons: greedy learning of neural networks with application to function approximation. CoRR abs/1910.12686 (2019) - [i34]Chunfeng Cui, Kaiqi Zhang, Talgat Daulbaev, Julia Gusak, Ivan V. Oseledets, Zheng Zhang:
Active Subspace of Neural Networks: Structural Analysis and Universal Attacks. CoRR abs/1910.13025 (2019) - [i33]Roman Schutski, Danil Lykov, Ivan V. Oseledets:
An adaptive algorithm for quantum circuit simulation. CoRR abs/1911.12242 (2019) - [i32]Yermek Kapushev, Ivan V. Oseledets, Evgeny Burnaev:
Tensor Completion via Gaussian Process Based Initialization. CoRR abs/1912.05179 (2019) - 2018
- [j40]D. A. Kolesnikov, Ivan V. Oseledets:
Convergence analysis of projected fixed-point iteration on a low-rank matrix manifold. Numer. Linear Algebra Appl. 25(5) (2018) - [j39]Andrey Somov, Dmitrii G. Shadrin, Ilia Fastovets, Artyom Nikitin, Sergey A. Matveev, Ivan V. Oseledets, Oleksii Hrinchuk:
Pervasive Agriculture: IoT-Enabled Greenhouse for Plant Growth Control. IEEE Pervasive Comput. 17(4): 65-75 (2018) - [j38]Valentin Khrulkov, Ivan V. Oseledets:
Desingularization of Bounded-Rank Matrix Sets. SIAM J. Matrix Anal. Appl. 39(1): 451-471 (2018) - [j37]Ivan V. Oseledets, Maxim V. Rakhuba, André Uschmajew:
Alternating Least Squares as Moving Subspace Correction. SIAM J. Numer. Anal. 56(6): 3459-3479 (2018) - [j36]M. V. Rakhuba, Ivan V. Oseledets:
Jacobi-Davidson Method on Low-Rank Matrix Manifolds. SIAM J. Sci. Comput. 40(2) (2018) - [j35]Daria A. Sushnikova, Ivan V. Oseledets:
"Compress and Eliminate" Solver for Symmetric Positive Definite Sparse Matrices. SIAM J. Sci. Comput. 40(3) (2018) - [c13]Valentin Khrulkov, Ivan V. Oseledets:
Art of Singular Vectors and Universal Adversarial Perturbations. CVPR 2018: 8562-8570 - [c12]Valentin Khrulkov, Alexander Novikov, Ivan V. Oseledets:
Expressive power of recurrent neural networks. ICLR (Poster) 2018 - [c11]Valentin Khrulkov, Ivan V. Oseledets:
Geometry Score: A Method For Comparing Generative Adversarial Networks. ICML 2018: 2626-2634 - [c10]Artem L. Pavlov, Grigory V. Ovchinnikov, Dmitry Yu. Derbyshev, Dzmitry Tsetserukou, Ivan V. Oseledets:
AA-ICP: Iterative Closest Point with Anderson Acceleration. ICRA 2018: 1-6 - [c9]Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, Ivan V. Oseledets:
Quadrature-based features for kernel approximation. NeurIPS 2018: 9165-9174 - [p1]Evgeny Frolov, Ivan V. Oseledets:
Matrix Factorization for Collaborative Recommendations. Collaborative Recommendations 2018: 35-78 - [i31]Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Figurnov, Ivan V. Oseledets:
Tensor Train decomposition on TensorFlow (T3F). CoRR abs/1801.01928 (2018) - [i30]Valentin Khrulkov, Ivan V. Oseledets:
Geometry Score: A Method For Comparing Generative Adversarial Networks. CoRR abs/1802.02664 (2018) - [i29]Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, Ivan V. Oseledets:
Quadrature-based features for kernel approximation. CoRR abs/1802.03832 (2018) - [i28]Evgeny Frolov, Ivan V. Oseledets:
HybridSVD: When Collaborative Information is Not Enough. CoRR abs/1802.06398 (2018) - [i27]Vitaly P. Zankin, Gleb V. Ryzhakov, Ivan V. Oseledets:
Gradient Descent-based D-optimal Design for the Least-Squares Polynomial Approximation. CoRR abs/1806.06631 (2018) - [i26]Pavel Kharyuk, Dmitry Nazarenko, Ivan V. Oseledets:
Comparative study of Discrete Wavelet Transforms and Wavelet Tensor Train decomposition to feature extraction of FTIR data of medicinal plants. CoRR abs/1807.07099 (2018) - [i25]Evgeny Frolov, Ivan V. Oseledets:
Revealing the Unobserved by Linking Collaborative Behavior and Side Knowledge. CoRR abs/1807.10634 (2018) - [i24]Pavel Kharyuk, Ivan V. Oseledets:
Modelling hidden structure of signals in group data analysis with modified (Lr, 1) and block-term decompositions. CoRR abs/1808.02316 (2018) - [i23]Anh Huy Phan, Andrzej Cichocki, Ivan V. Oseledets, Salman Ahmadi-Asl, Giuseppe Giovanni Calvi, Danilo P. Mandic:
Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition. CoRR abs/1809.00535 (2018) - [i22]Sergei Divakov, Ivan V. Oseledets:
Adversarial point set registration. CoRR abs/1811.08139 (2018) - [i21]Tsui-Wei Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Ivan V. Oseledets, Luca Daniel:
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach. CoRR abs/1812.08329 (2018) - 2017
- [j34]Vladimir A. Kazeev, Ivan V. Oseledets, Maksim Rakhuba, Christoph Schwab:
QTT-finite-element approximation for multiscale problems I: model problems in one dimension. Adv. Comput. Math. 43(2): 411-442 (2017) - [j33]Ivan V. Oseledets, G. V. Ovchinnikov, Alexandr M. Katrutsa:
Fast, memory-efficient low-rank approximation of SimRank. J. Complex Networks 5(1): 111-126 (2017) - [j32]Andrzej Cichocki, Anh Huy Phan, Qibin Zhao, Namgil Lee, Ivan V. Oseledets, Masashi Sugiyama, Danilo P. Mandic:
Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives. Found. Trends Mach. Learn. 9(6): 431-673 (2017) - [j31]Grigoriy M. Drozdov, Igor A. Ostanin, Ivan V. Oseledets:
Time- and memory-efficient representation of complex mesoscale potentials. J. Comput. Phys. 343: 110-114 (2017) - [j30]Evgeny Frolov, Ivan V. Oseledets:
Tensor methods and recommender systems. WIREs Data Mining Knowl. Discov. 7(3) (2017) - [c8]Alexander Fonarev, Oleksii Hrinchuk, Gleb Gusev, Pavel Serdyukov, Ivan V. Oseledets:
Riemannian Optimization for Skip-Gram Negative Sampling. ACL (1) 2017: 2028-2036 - [c7]Alexander Novikov, Mikhail Trofimov, Ivan V. Oseledets:
Exponential Machines. ICLR (Workshop) 2017 - [i20]Valentin Khrulkov, M. V. Rakhuba, Ivan V. Oseledets:
Vico-Greengard-Ferrando quadratures in the tensor solver for integral equations. CoRR abs/1704.01669 (2017) - [i19]Alexander Fonarev, Oleksii Hrinchuk, Gleb Gusev, Pavel Serdyukov, Ivan V. Oseledets:
Riemannian Optimization for Skip-Gram Negative Sampling. CoRR abs/1704.08059 (2017) - [i18]Andrzej Cichocki, Anh Huy Phan, Qibin Zhao, Namgil Lee, Ivan V. Oseledets, Masashi Sugiyama, Danilo P. Mandic:
Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives. CoRR abs/1708.09165 (2017) - [i17]Valentin Khrulkov, Ivan V. Oseledets:
Art of singular vectors and universal adversarial perturbations. CoRR abs/1709.03582 (2017) - [i16]Artem L. Pavlov, Grigory V. Ovchinnikov, Dmitry Yu. Derbyshev, Dzmitry Tsetserukou, Ivan V. Oseledets:
AA-ICP: Iterative Closest Point with Anderson Acceleration. CoRR abs/1709.05479 (2017) - [i15]Ivan Sosnovik, Ivan V. Oseledets:
Neural networks for topology optimization. CoRR abs/1709.09578 (2017) - [i14]Valentin Khrulkov, Alexander Novikov, Ivan V. Oseledets:
Expressive power of recurrent neural networks. CoRR abs/1711.00811 (2017) - 2016
- [j29]Andrzej Cichocki, Namgil Lee, Ivan V. Oseledets, Anh Huy Phan, Qibin Zhao, Danilo P. Mandic:
Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. Found. Trends Mach. Learn. 9(4-5): 249-429 (2016) - [j28]Mikhail S. Litsarev, Ivan V. Oseledets:
A low-rank approach to the computation of path integrals. J. Comput. Phys. 305: 557-574 (2016) - [j27]M. V. Rakhuba, Ivan V. Oseledets:
Grid-based electronic structure calculations: The tensor decomposition approach. J. Comput. Phys. 312: 19-30 (2016) - [j26]A. Yu. Mikhalev, Ivan V. Oseledets:
Iterative representing set selection for nested cross approximation. Numer. Linear Algebra Appl. 23(2): 230-248 (2016) - [c6]Alexander Fonarev, Alexander Mikhalev, Pavel Serdyukov, Gleb Gusev, Ivan V. Oseledets:
Efficient Rectangular Maximal-Volume Algorithm for Rating Elicitation in Collaborative Filtering. ICDM 2016: 141-150 - [c5]Evgeny Frolov, Ivan V. Oseledets:
Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks. RecSys 2016: 91-98 - [c4]Kirill Struminsky, Stanislav Kruglik, Dmitry P. Vetrov, Ivan V. Oseledets:
A new approach for sparse Bayesian channel estimation in SCMA uplink systems. WCSP 2016: 1-5 - [i13]Evgeny Frolov, Ivan V. Oseledets:
Tensor Methods and Recommender Systems. CoRR abs/1603.06038 (2016) - [i12]Daria A. Sushnikova, Ivan V. Oseledets:
"Compress and eliminate" solver for symmetric positive definite sparse matrices. CoRR abs/1603.09133 (2016) - [i11]Alexander Novikov, Mikhail Trofimov, Ivan V. Oseledets:
Tensor Train polynomial models via Riemannian optimization. CoRR abs/1605.03795 (2016) - [i10]Evgeny Frolov, Ivan V. Oseledets:
Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks. CoRR abs/1607.04228 (2016) - [i9]Andrzej Cichocki, Namgil Lee, Ivan V. Oseledets, Anh Huy Phan, Qibin Zhao, Danilo P. Mandic:
Low-Rank Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Problems: Perspectives and Challenges PART 1. CoRR abs/1609.00893 (2016) - [i8]Alexander Fonarev, Alexander Mikhalev, Pavel Serdyukov, Gleb Gusev, Ivan V. Oseledets:
Efficient Rectangular Maximal-Volume Algorithm for Rating Elicitation in Collaborative Filtering. CoRR abs/1610.04850 (2016) - 2015
- [j25]Pierre-Antoine Absil, Ivan V. Oseledets:
Low-rank retractions: a survey and new results. Comput. Optim. Appl. 62(1): 5-29 (2015) - [j24]Mikhail S. Litsarev, Ivan V. Oseledets:
Fast low-rank approximations of multidimensional integrals in ion-atomic collisions modelling. Numer. Linear Algebra Appl. 22(6): 1147-1160 (2015) - [j23]D. A. Kolesnikov, Ivan V. Oseledets:
From Low-Rank Approximation to a Rational Krylov Subspace Method for the Lyapunov Equation. SIAM J. Matrix Anal. Appl. 36(4): 1622-1637 (2015) - [j22]Christian Lubich, Ivan V. Oseledets, Bart Vandereycken:
Time Integration of Tensor Trains. SIAM J. Numer. Anal. 53(2): 917-941 (2015) - [j21]M. V. Rakhuba, Ivan V. Oseledets:
Fast Multidimensional Convolution in Low-Rank Tensor Formats via Cross Approximation. SIAM J. Sci. Comput. 37(2) (2015) - [j20]Zheng Zhang, Xiu Yang, Ivan V. Oseledets, George E. Karniadakis, Luca Daniel:
Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(1): 63-76 (2015) - [c3]Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, Victor S. Lempitsky:
Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition. ICLR (Poster) 2015 - [i7]Ben Usman, Ivan V. Oseledets:
Tensor SimRank for Heterogeneous Information Networks. CoRR abs/1502.06818 (2015) - [i6]Ivan V. Oseledets, G. V. Ovchinnikov, Alexandr M. Katrutsa:
Linear complexity SimRank computation based on the iterative diagonal estimation. CoRR abs/1502.07167 (2015) - [i5]A. Yu. Mikhalev, Ivan V. Oseledets:
Rectangular maximum-volume submatrices and their applications. CoRR abs/1502.07838 (2015) - 2014
- [j19]Anwesha Chaudhury, Ivan V. Oseledets, Rohit Ramachandran:
A computationally efficient technique for the solution of multi-dimensional PBMs of granulation via tensor decomposition. Comput. Chem. Eng. 61: 234-244 (2014) - [j18]Mike A. Botchev, Ivan V. Oseledets, Eugene E. Tyrtyshnikov:
Iterative across-time solution of linear differential equations: Krylov subspace versus waveform relaxation. Comput. Math. Appl. 67(12): 2088-2098 (2014) - [j17]Sergey V. Dolgov, Boris N. Khoromskij, Ivan V. Oseledets, Dmitry V. Savostyanov:
Computation of extreme eigenvalues in higher dimensions using block tensor train format. Comput. Phys. Commun. 185(4): 1207-1216 (2014) - [j16]Mikhail S. Litsarev, Ivan V. Oseledets:
The DEPOSIT computer code based on the low rank approximations. Comput. Phys. Commun. 185(10): 2801-2802 (2014) - [i4]Zheng Zhang, Xiu Yang, Ivan V. Oseledets, George E. Karniadakis, Luca Daniel:
Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition. CoRR abs/1407.3023 (2014) - [i3]Ivan V. Oseledets, G. V. Ovchinnikov:
Fast, memory efficient low-rank approximation of SimRank. CoRR abs/1410.0717 (2014) - [i2]G. V. Ovchinnikov, D. A. Kolesnikov, Ivan V. Oseledets:
Algebraic reputation model RepRank and its application to spambot detection. CoRR abs/1411.5995 (2014) - 2012
- [j15]Sergei A. Goreinov, Ivan V. Oseledets, Dmitry V. Savostyanov:
Wedderburn Rank Reduction and Krylov Subspace Method for Tensor Approximation. Part 1: Tucker Case. SIAM J. Sci. Comput. 34(1) (2012) - [j14]Ivan V. Oseledets, Sergey V. Dolgov:
Solution of Linear Systems and Matrix Inversion in the TT-Format. SIAM J. Sci. Comput. 34(5) (2012) - [j13]Sergey V. Dolgov, Boris N. Khoromskij, Ivan V. Oseledets:
Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation. SIAM J. Sci. Comput. 34(6) (2012) - 2011
- [j12]Ivan V. Oseledets:
DMRG Approach to Fast Linear Algebra in the TT-Format. Comput. Methods Appl. Math. 11(3): 382-393 (2011) - [j11]Ivan V. Oseledets, Eugene E. Tyrtyshnikov, Nickolai L. Zamarashkin:
Tensor-Train Ranks for Matrices and Their Inverses. Comput. Methods Appl. Math. 11(3): 394-403 (2011) - [j10]Ivan V. Oseledets, Eugene E. Tyrtyshnikov:
Algebraic Wavelet Transform via Quantics Tensor Train Decomposition. SIAM J. Sci. Comput. 33(3): 1315-1328 (2011) - [j9]Ivan V. Oseledets:
Tensor-Train Decomposition. SIAM J. Sci. Comput. 33(5): 2295-2317 (2011) - [j8]Ivan V. Oseledets:
Improved n-Term Karatsuba-Like Formulas in GF(2). IEEE Trans. Computers 60(8): 1212-1216 (2011) - [c2]Ivan V. Oseledets:
Tensor train decomposition for low-parametric representation of high-dimensional arrays and functions: Review of recent results. nDS 2011: 1-3 - [c1]Dmitry V. Savostyanov, Ivan V. Oseledets:
Fast adaptive interpolation of multi-dimensional arrays in tensor train format. nDS 2011: 1-8 - 2010
- [j7]Boris N. Khoromskij, Ivan V. Oseledets:
Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs. Comput. Methods Appl. Math. 10(4): 376-394 (2010) - [j6]Ivan V. Oseledets, Dmitry V. Savostyanov, Eugene E. Tyrtyshnikov:
Cross approximation in tensor electron density computations. Numer. Linear Algebra Appl. 17(6): 935-952 (2010) - [j5]Ivan V. Oseledets:
Approximation of 2d˟2d Matrices Using Tensor Decomposition. SIAM J. Matrix Anal. Appl. 31(4): 2130-2145 (2010) - [i1]Sergei A. Goreinov, Ivan V. Oseledets, Dmitry V. Savostyanov:
Wedderburn rank reduction and Krylov subspace method for tensor approximation. Part 1: Tucker case. CoRR abs/1004.1986 (2010)
2000 – 2009
- 2009
- [j4]Ivan V. Oseledets, Dmitry V. Savostyanov, Eugene E. Tyrtyshnikov:
Linear algebra for tensor problems. Computing 85(3): 169-188 (2009) - [j3]Ivan V. Oseledets, Dmitry V. Savostyanov, Eugene E. Tyrtyshnikov:
Fast Simultaneous Orthogonal Reduction to Triangular Matrices. SIAM J. Matrix Anal. Appl. 31(2): 316-330 (2009) - [j2]Ivan V. Oseledets, Eugene E. Tyrtyshnikov:
Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions. SIAM J. Sci. Comput. 31(5): 3744-3759 (2009) - 2008
- [j1]Ivan V. Oseledets, Dmitry V. Savostyanov, Eugene E. Tyrtyshnikov:
Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time. SIAM J. Matrix Anal. Appl. 30(3): 939-956 (2008)
Coauthor Index
aka: Andrzej S. Cichocki
aka: Denis Valerievich Dimitrov
aka: Georgii Sergeevich Novikov
aka: Dmitrii Shadrin
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 19:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint