default search action
Igor Mezic
Person information
- unicode name: Igor Mezić
- affiliation: University of California, Santa Barbara, CA, USA
- affiliation: Harvard University, Cambridge, MA, USA
- affiliation: University of Warwick, Coventry, UK
- affiliation (PhD): California Institute of Technology, Pasadena, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i21]Matthew J. Colbrook, Igor Mezic, Alexei Stepanenko:
Limits and Powers of Koopman Learning. CoRR abs/2407.06312 (2024) - [i20]Tomislav Bazina, Ervin Kamenar, Maria Fonoberova, Igor Mezic:
Koopman-driven grip force prediction through EMG sensing. CoRR abs/2409.17340 (2024) - 2023
- [j39]David A. Haggerty, Michael J. Banks, Ervin Kamenar, Alan B. Cao, Patrick C. Curtis, Igor Mezic, Elliot W. Hawkes:
Control of soft robots with inertial dynamics. Sci. Robotics 8(81) (2023) - [j38]Allan M. Avila, Igor Mezic:
Spectral Properties of Pullback Operators on Vector Bundles of a Dynamical System. SIAM J. Appl. Dyn. Syst. 22(4): 3059-3092 (2023) - [i19]William T. Redman, Juan M. Bello-Rivas, Maria Fonoberova, Ryan Mohr, Ioannis G. Kevrekidis, Igor Mezic:
On Equivalent Optimization of Machine Learning Methods. CoRR abs/2302.09160 (2023) - [i18]Mathias Wanner, Igor Mezic:
On Numerical Methods for Stochastic SINDy. CoRR abs/2306.17814 (2023) - [i17]William T. Redman, Dean Huang, Maria Fonoberova, Igor Mezic:
Koopman Learning with Episodic Memory. CoRR abs/2311.12615 (2023) - [i16]Yanran Wang, Michael J. Banks, Igor Mezic, Takashi Hikihara:
Trajectory Estimation in Unknown Nonlinear Manifold Using Koopman Operator Theory. CoRR abs/2312.05428 (2023) - [i15]Zlatko Drmac, Igor Mezic:
A data driven Koopman-Schur decomposition for computational analysis of nonlinear dynamics. CoRR abs/2312.15837 (2023) - 2022
- [j37]Mathias Wanner, Igor Mezic:
Robust Approximation of the Stochastic Koopman Operator. SIAM J. Appl. Dyn. Syst. 21(3): 1930-1951 (2022) - [c50]William T. Redman, Maria Fonoberova, Ryan Mohr, Ioannis G. Kevrekidis, Igor Mezic:
Algorithmic (Semi-)Conjugacy via Koopman Operator Theory. CDC 2022: 6006-6011 - [c49]William T. Redman, Maria Fonoberova, Ryan Mohr, Yannis G. Kevrekidis, Igor Mezic:
An Operator Theoretic View On Pruning Deep Neural Networks. ICLR 2022 - [i14]William T. Redman, Maria Fonoberova, Ryan Mohr, Ioannis G. Kevrekidis, Igor Mezic:
Algorithmic (Semi-)Conjugacy via Koopman Operator Theory. CoRR abs/2209.06374 (2022) - 2021
- [j36]Ryan Mohr, Maria Fonoberova, Zlatko Drmac, Iva Manojlovic, Igor Mezic:
Predicting the Critical Number of Layers for Hierarchical Support Vector Regression. Entropy 23(1): 37 (2021) - [j35]Milan Korda, Didier Henrion, Igor Mezic:
Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes. J. Nonlinear Sci. 31(1): 14 (2021) - [j34]Nithin Govindarajan, Ryan Mohr, Shivkumar Chandrasekaran, Igor Mezic:
On the Approximation of Koopman Spectra of Measure-Preserving Flows. SIAM J. Appl. Dyn. Syst. 20(1): 232-261 (2021) - [j33]Yoshihiko Susuki, Alexandre Mauroy, Igor Mezic:
Koopman Resolvent: A Laplace-Domain Analysis of Nonlinear Autonomous Dynamical Systems. SIAM J. Appl. Dyn. Syst. 20(4): 2013-2036 (2021) - [c48]Ryan Mohr, Allan M. Avila, Soham Ghosh, Ananta Bhattarai, Muqiao Yang, Xintian Feng, Martin Head-Gordon, Ruslan Salakhutdinov, Maria Fonoberova, Igor Mezic:
Combining Programmable Potentials and Neural Networks for Materials Problems. AAAI Spring Symposium: MLPS 2021 - [c47]Ryan Mohr, Maria Fonoberova, Iva Manojlovic, Aleksandr Andrejcuk, Zlatko Drmac, Yannis G. Kevrekidis, Igor Mezic:
Applications of Koopman Mode Analysis to Neural Networks. AAAI Spring Symposium: MLPS 2021 - [c46]Allan M. Avila, Maria Fonoberova, João P. Hespanha, Igor Mezic, Daniel Clymer, Jonathan Goldstein, Marco A. Pravia, Daniel Javorsek:
Game Balancing using Koopman-based Learning. ACC 2021: 710-717 - [i13]William T. Redman, Maria Fonoberova, Ryan Mohr, Ioannis G. Kevrekidis, Igor Mezic:
An Operator Theoretic Perspective on Pruning Deep Neural Networks. CoRR abs/2110.14856 (2021) - 2020
- [j32]Nelida Crnjaric-Zic, Senka Macesic, Igor Mezic:
Koopman Operator Spectrum for Random Dynamical Systems. J. Nonlinear Sci. 30(5): 2007-2056 (2020) - [j31]Igor Mezic:
Spectrum of the Koopman Operator, Spectral Expansions in Functional Spaces, and State-Space Geometry. J. Nonlinear Sci. 30(5): 2091-2145 (2020) - [j30]Yoshihiko Susuki, Igor Mezic:
Invariant Sets in Quasiperiodically Forced Dynamical Systems. SIAM J. Appl. Dyn. Syst. 19(1): 329-351 (2020) - [j29]Zlatko Drmac, Igor Mezic, Ryan Mohr:
On Least Squares Problems with Certain Vandermonde-Khatri-Rao Structure with Applications to DMD. SIAM J. Sci. Comput. 42(5): A3250-A3284 (2020) - [j28]Milan Korda, Igor Mezic:
Optimal Construction of Koopman Eigenfunctions for Prediction and Control. IEEE Trans. Autom. Control. 65(12): 5114-5129 (2020) - [c45]Carl Folkestad, Daniel Pastor, Igor Mezic, Ryan Mohr, Maria Fonoberova, Joel Burdick:
Extended Dynamic Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and Control. ACC 2020: 3906-3913 - [c44]Ervin Kamenar, Nelida Crnjaric-Zic, David A. Haggerty, Sasa Zelenika, Elliot W. Hawkes, Igor Mezic:
Prediction of the behavior of a pneumatic soft robot based on Koopman operator theory. MIPRO 2020: 1169-1173 - [i12]Stefan Ivic, Bojan Crnkovic, Hassan Arbabi, Sophie Loire, Patrick Clary, Igor Mezic:
Search strategy in a complex and dynamic environment: the MH370 case. CoRR abs/2004.14110 (2020) - [i11]Iva Manojlovic, Maria Fonoberova, Ryan Mohr, Aleksandr Andrejcuk, Zlatko Drmac, Yannis G. Kevrekidis, Igor Mezic:
Applications of Koopman Mode Analysis to Neural Networks. CoRR abs/2006.11765 (2020) - [i10]Yoshihiko Susuki, Alexandre Mauroy, Igor Mezic:
Koopman Resolvent: A Laplace-Domain Analysis of Nonlinear Autonomous Dynamical Systems. CoRR abs/2009.11544 (2020) - [i9]David A. Haggerty, Michael J. Banks, Patrick C. Curtis, Igor Mezic, Elliot W. Hawkes:
Modeling, Reduction, and Control of a Helically Actuated Inertial Soft Robotic Arm via the Koopman Operator. CoRR abs/2011.07939 (2020) - [i8]Ryan Mohr, Maria Fonoberova, Zlatko Drmac, Iva Manojlovic, Igor Mezic:
Predicting the Critical Number of Layers for Hierarchical Support Vector Regression. CoRR abs/2012.11734 (2020)
2010 – 2019
- 2019
- [j27]Igor Mezic, Vladimir A. Fonoberov, Maria Fonoberova, Tuhin Sahai:
Spectral Complexity of Directed Graphs and Application to Structural Decomposition. Complex. 2019: 9610826:1-9610826:18 (2019) - [j26]Nithin Govindarajan, Ryan Mohr, Shivkumar Chandrasekaran, Igor Mezic:
On the Approximation of Koopman Spectra for Measure Preserving Transformations. SIAM J. Appl. Dyn. Syst. 18(3): 1454-1497 (2019) - [j25]Zlatko Drmac, Igor Mezic, Ryan Mohr:
Data Driven Koopman Spectral Analysis in Vandermonde-Cauchy Form via the DFT: Numerical Method and Theoretical Insights. SIAM J. Sci. Comput. 41(5): A3118-A3151 (2019) - [i7]Carl Folkestad, Daniel Pastor, Igor Mezic, Ryan Mohr, Maria Fonoberova, Joel Burdick:
Extended Dynamic Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and Control. CoRR abs/1911.08751 (2019) - [i6]Ljuboslav Boskic, Milan Korda, Igor Mezic:
Control-Oriented, Data-Driven Models of Thermal Dynamics. CoRR abs/1912.03860 (2019) - 2018
- [j24]Milan Korda, Igor Mezic:
Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Autom. 93: 149-160 (2018) - [j23]Milan Korda, Igor Mezic:
On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator. J. Nonlinear Sci. 28(2): 687-710 (2018) - [j22]Senka Macesic, Nelida Crnjaric-Zic, Igor Mezic:
Koopman Operator Family Spectrum for Nonautonomous Systems. SIAM J. Appl. Dyn. Syst. 17(4): 2478-2515 (2018) - [j21]Zlatko Drmac, Igor Mezic, Ryan Mohr:
Data Driven Modal Decompositions: Analysis and Enhancements. SIAM J. Sci. Comput. 40(4): A2253-A2285 (2018) - [c43]Hassan Arbabi, Milan Korda, Igor Mezic:
A Data-Driven Koopman Model Predictive Control Framework for Nonlinear Partial Differential Equations. CDC 2018: 6409-6414 - [i5]Yoshihiko Susuki, Igor Mezic:
Uniformly Bounded Sets in Quasiperiodically Forced Dynamical Systems. CoRR abs/1808.08340 (2018) - [i4]Zlatko Drmac, Igor Mezic, Ryan Mohr:
On least squares problems with certain Vandermonde-Khatri-Rao structure with applications to DMD. CoRR abs/1811.12562 (2018) - 2017
- [j20]Hassan Arbabi, Igor Mezic:
Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator. SIAM J. Appl. Dyn. Syst. 16(4): 2096-2126 (2017) - [j19]Stefan Ivic, Bojan Crnkovic, Igor Mezic:
Ergodicity-Based Cooperative Multiagent Area Coverage via a Potential Field. IEEE Trans. Cybern. 47(8): 1983-1993 (2017) - [i3]Michael Georgescu, Sophie Loire, Don Kasper, Igor Mezic:
Whole-Building Fault Detection: A Scalable Approach Using Spectral Methods. CoRR abs/1703.07048 (2017) - [i2]Yoshihiko Susuki, Igor Mezic, Fredrik Raak, Takashi Hikihara:
Applied Koopman Operator Theory for Power Systems Technology. CoRR abs/1706.00159 (2017) - 2016
- [j18]Alexandre Mauroy, Igor Mezic:
Global Stability Analysis Using the Eigenfunctions of the Koopman Operator. IEEE Trans. Autom. Control. 61(11): 3356-3369 (2016) - [c42]Bradford Littooy, Sophie Loire, Michael Georgescu, Igor Mezic:
Pattern recognition and classification of HVAC rule-based faults in commercial buildings. IEEE BigData 2016: 1412-1421 - [c41]Thibaud Nesztler, Don Kasper, Michael Georgescu, Sophie Loire, Igor Mezic:
Uniformization, organization, association and use of metadata from multiple content providers and manufacturers: A close look at the Building Automation System (BAS) sector. IEEE BigData 2016: 1633-1638 - [c40]Nithin Govindarajan, Hassan Arbabi, Louis van Blargian, Timothy Matchen, Emma Tegling, Igor Mezic:
An operator-theoretic viewpoint to non-smooth dynamical systems: Koopman analysis of a hybrid pendulum. CDC 2016: 6477-6484 - [c39]Fredrik Raak, Yoshihiko Susuki, Igor Mezic, Takashi Hikihara:
On Koopman and dynamic mode decompositions for application to dynamic data with low spatial dimension. CDC 2016: 6485-6491 - 2015
- [j17]Ryan Mohr, Igor Mezic:
Searching for Targets of Nonuniform Size Using Mixing Transformations: Constructive Upper Bounds and Limit Laws. J. Nonlinear Sci. 25(3): 741-777 (2015) - [c38]Yoshihiko Susuki, Igor Mezic:
A prony approximation of Koopman Mode Decomposition. CDC 2015: 7022-7027 - [c37]Igor Mezic:
On applications of the spectral theory of the Koopman operator in dynamical systems and control theory. CDC 2015: 7034-7041 - 2014
- [j16]Alexandre Mauroy, Blane Rhoads, Jeff Moehlis, Igor Mezic:
Global Isochrons and Phase Sensitivity of Bursting Neurons. SIAM J. Appl. Dyn. Syst. 13(1): 306-338 (2014) - 2013
- [j15]Sophie Loire, Igor Mezic:
Spatial filter averaging approach of probabilistic method to linear second-order partial differential equations of the parabolic type. J. Comput. Phys. 233: 175-191 (2013) - [j14]Maria Fonoberova, Vladimir A. Fonoberov, Igor Mezic:
Global sensitivity/uncertainty analysis for agent-based models. Reliab. Eng. Syst. Saf. 118: 8-17 (2013) - [j13]Sophie Loire, Vladimir A. Fonoberov, Igor Mezic:
Performance Study of an Adaptive Controller in the Presence of Uncertainty. IEEE Trans. Control. Syst. Technol. 21(3): 1039-1043 (2013) - [c36]Alexandre Mauroy, Igor Mezic:
A spectral operator-theoretic framework for global stability. CDC 2013: 5234-5239 - [c35]Blane Rhoads, Igor Mezic, Andrew Poje:
Efficient Guidance in finite time flow fields. CDC 2013: 6182-6189 - 2012
- [j12]Maria Fonoberova, Vladimir A. Fonoberov, Igor Mezic, Jadranka Mezic, P. Jeffrey Brantingham:
Nonlinear Dynamics of Crime and Violence in Urban Settings. J. Artif. Soc. Soc. Simul. 15(1) (2012) - [c34]Bryan Eisenhower, Igor Mezic:
Uncertainty in the energy dynamics of commercial office buildings. CDC 2012: 6945-6950 - 2011
- [j11]Andrzej Banaszuk, Vladimir A. Fonoberov, Thomas A. Frewen, Marin Kobilarov, George Mathew, Igor Mezic, Alessandro Pinto, Tuhin Sahai, Harshad S. Sane, Alberto Speranzon, Amit Surana:
Scalable approach to uncertainty quantification and robust design of interconnected dynamical systems. Annu. Rev. Control. 35(1): 77-98 (2011) - [j10]Yueheng Lan, Igor Mezic:
On the architecture of cell regulation networks. BMC Syst. Biol. 5: 37 (2011) - [j9]Yoshihiko Susuki, Igor Mezic, Takashi Hikihara:
Coherent Swing Instability of Power Grids. J. Nonlinear Sci. 21(3): 403-439 (2011) - [j8]Alice Hubenko, Vladimir A. Fonoberov, George Mathew, Igor Mezic:
Multiscale Adaptive Search. IEEE Trans. Syst. Man Cybern. Part B 41(4): 1076-1087 (2011) - [i1]Andrzej Banaszuk, Vladimir A. Fonoberov, Thomas A. Frewen, Marin Kobilarov, George Mathew, Igor Mezic, Alessandro Pinto, Tuhin Sahai, Harshad S. Sane, Alberto Speranzon, Amit Surana:
Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems. CoRR abs/1103.0733 (2011) - 2010
- [c33]Blane Rhoads, Igor Mezic, Andrew Poje:
Minimum time feedback control of autonomous underwater vehicles. CDC 2010: 5828-5834 - [c32]George Mathew, Amit Surana, Igor Mezic:
Uniform coverage control of mobile sensor networks for dynamic target detection. CDC 2010: 7292-7299 - [c31]Ryan Mohr, Igor Mezic:
The use of ergodic theory in designing dynamics for search problems. CDC 2010: 7300-7307
2000 – 2009
- 2009
- [c30]Yoshihiko Susuki, Igor Mezic, Takashi Hikihara:
Global swing instability in the New England power grid model. ACC 2009: 3446-3451 - [c29]Marko Budisic, Igor Mezic:
An approximate parametrization of the ergodic partition using time averaged observables. CDC 2009: 3162-3168 - [c28]Yoshihiko Susuki, Igor Mezic:
Ergodic partition of phase space in continuous dynamical systems. CDC 2009: 7497-7502 - [c27]George Mathew, Igor Mezic:
Spectral Multiscale Coverage: A uniform coverage algorithm for mobile sensor networks. CDC 2009: 7872-7877 - 2008
- [j7]Igor Mezic, Thordur Runolfsson:
Uncertainty propagation in dynamical systems. Autom. 44(12): 3003-3013 (2008) - [c26]Bryan Eisenhower, Igor Mezic:
Actuation requirements in high dimensional oscillator systems. ACC 2008: 177-182 - [c25]Yoshihiko Susuki, Igor Mezic, Takashi Hikihara:
Global swing instability of multimachine power systems. CDC 2008: 2487-2492 - 2007
- [c24]Bryan Eisenhower, Igor Mezic:
A mechanism for energy transfer leading to conformation change in networked nonlinear systems. CDC 2007: 3976-3981 - [c23]Gregory Hagen, Troy Smith, Andrzej Banaszuk, Ronald R. Coifman, Igor Mezic:
Validation of low-dimensional models using diffusion maps and harmonic averaging. CDC 2007: 5353-5357 - 2006
- [c22]Thomas John, Igor Mezic, Umesh G. Vaidya, M. Lelic:
Low order modeling, dynamics and control of an inert gas based fire protection system. ACC 2006 - 2005
- [c21]Umesh Vaidya, Gregory Hagen, Stéphane Lafon, Andrzej Banaszuk, Igor Mezic, Ronald R. Coifman:
Comparison of Systems using Diffusion Maps. CDC/ECC 2005: 7931-7936 - 2004
- [j6]Gregory Hagen, Igor Mezic, Bassam Bamieh:
Distributed control design for parabolic evolution equations: application to compressor stall control. IEEE Trans. Autom. Control. 49(8): 1247-1258 (2004) - [c20]Igor Mezic, Thordur Runolfsson:
Uncertainty analysis of complex dynamical systems. ACC 2004: 2659-2664 - [c19]Igor Mezic:
Coupled nonlinear dynamical systems: asymptotic behavior and uncertainty propagation. CDC 2004: 1778-1783 - [c18]Subbarao Varigonda, Tamás Kalmár-Nagy, Bob LaBarre, Igor Mezic:
Graph decomposition methods for uncertainty propagation in complex, nonlinear interconnected dynamical systems. CDC 2004: 1794-1798 - [c17]Oliver Junge, Jerrold E. Marsden, Igor Mezic:
Uncertainty in the dynamics of conservative maps. CDC 2004: 2225-2230 - [c16]Andrzej Banaszuk, Prashant G. Mehta, Igor Mezic:
Spectral balance: a frequency domain framework for analysis of nonlinear dynamical systems. CDC 2004: 2244-2249 - 2003
- [j5]Gregory Hagen, Igor Mezic:
Spillover Stabilization in Finite-Dimensional Control and Observer Design for Dissipative Evolution Equations. SIAM J. Control. Optim. 42(2): 746-768 (2003) - [c15]Umesh Vaidya, Igor Mezic:
Controllability for a class of discrete-time Hamiltonian systems. CDC 2003: 1351-1356 - [c14]George Mathew, Igor Mezic, Linda R. Petzold:
A multiscale measure for mixing and its applications. CDC 2003: 2314-2321 - [c13]Prashant G. Mehta, Marios C. Soteriou, Andrzej Banaszuk, Igor Mezic:
Fuel control of a ducted bluffbody flame. CDC 2003: 2340-2345 - [c12]Igor Mezic:
Controllability of Hamiltonian systems with drift: action-angle variables and ergodic partition. CDC 2003: 2585-2592 - [c11]Umesh G. Vaidya, Domenico D'Alessandro, Igor Mezic:
Control of Heisenberg spin systems; Lie algebraic decompositions and action-angle variables. CDC 2003: 4174-4178 - [c10]Dmitri Vainchtein, Igor Mezic:
Capture into resonance: A novel method of efficient control. ECC 2003: 3022-3027 - 2002
- [j4]Domenico D'Alessandro, Igor Mezic, Mohammed Dahleh:
Statistical properties of controlled fluid flows with applications to control of mixing. Syst. Control. Lett. 45(4): 249-256 (2002) - [c9]Umesh Vaidya, Igor Mezic:
Controllability of twist maps. ACC 2002: 4648-4653 - 2001
- [c8]Igor Mezic:
Controllability of group translations. ACC 2001: 4058-4060 - [c7]Gregory Hagen, Igor Mezic:
Finite-dimensional decentralized control of semilinear dissipative parabolic PDEs. CDC 2001: 555-560 - [c6]André Valente, Igor Mezic:
Observability and controllability in systems with moving averages. CDC 2001: 2671-2673 - [c5]Bassam Bamieh, Igor Mezic, Makan Fardad:
A framework for destabilization of dynamical systems and mixing enhancement. CDC 2001: 4980-4983 - 2000
- [c4]Gregory Hagen, Igor Mezic:
Control spillover in dissipative evolution equations. ACC 2000: 3783-3787 - [c3]Igor Mezic, Andrzej Banaszuk:
Comparison of systems with complex behavior: spectral methods. CDC 2000: 1224-1231 - [c2]Igor Mezic, S. Narayanan:
Overview of some theoretical and experimental results on modeling and control of shear flows. CDC 2000: 1709-1715 - [c1]Bernd R. Noack, Igor Mezic, Andrzej Banaszuk:
Controlling vortex motion and chaotic advection. CDC 2000: 1716-1723
1990 – 1999
- 1999
- [j3]M. Ashhab, Murti V. Salapaka, Mohammed Dahleh, Igor Mezic:
Dynamical analysis and control of microcantilevers. Autom. 35(10): 1663-1670 (1999) - [j2]Domenico D'Alessandro, Mohammed Dahleh, Igor Mezic:
Control of mixing in fluid flow: a maximum entropy approach. IEEE Trans. Autom. Control. 44(10): 1852-1863 (1999) - 1996
- [j1]Igor Mezic, John F. Brady, Stephen Wiggins:
Maximal Effective Diffusivity for Time-Periodic Incompressible Fluid Flows. SIAM J. Appl. Math. 56(1): 40-56 (1996)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 19:29 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint