default search action
Jilles Vreeken
Person information
- affiliation: CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
- affiliation: Saarland University, Saarbrücken, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j26]Corinna Coupette, Jilles Vreeken, Bastian Rieck:
All the world's a (hyper)graph: A data drama. Digit. Scholarsh. Humanit. 39(1): 74-96 (2024) - [c107]Boris Wiegand, Dietrich Klakow, Jilles Vreeken:
What Are the Rules? Discovering Constraints from Data. AAAI 2024: 8182-8190 - [c106]Joscha Cüppers, Paul Krieger, Jilles Vreeken:
Discovering Sequential Patterns with Predictable Inter-event Delays. AAAI 2024: 8346-8353 - [c105]Nils Philipp Walter, Jonas Fischer, Jilles Vreeken:
Finding Interpretable Class-Specific Patterns through Efficient Neural Search. AAAI 2024: 9062-9070 - [c104]Sarah Mameche, Jilles Vreeken, David Kaltenpoth:
Identifying Confounding from Causal Mechanism Shifts. AISTATS 2024: 4897-4905 - [c103]Sascha Xu, Nils Philipp Walter, Janis Kalofolias, Jilles Vreeken:
Learning Exceptional Subgroups by End-to-End Maximizing KL-Divergence. ICML 2024 - [c102]Osman Mian, Sarah Mameche, Jilles Vreeken:
Learning Causal Networks from Episodic Data. KDD 2024: 2224-2235 - [c101]Marco Bjarne Schuster, Boris Wiegand, Jilles Vreeken:
Data is Moody: Discovering Data Modification Rules from Process Event Logs. ECML/PKDD (2) 2024: 285-302 - [i47]Sascha Xu, Joscha Cüppers, Jilles Vreeken:
Succint Interaction-Aware Explanations. CoRR abs/2402.05566 (2024) - [i46]Sascha Xu, Nils Philipp Walter, Janis Kalofolias, Jilles Vreeken:
Learning Exceptional Subgroups by End-to-End Maximizing KL-divergence. CoRR abs/2402.12930 (2024) - [i45]Nils Philipp Walter, Linara Adilova, Jilles Vreeken, Michael Kamp:
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective. CoRR abs/2405.16918 (2024) - [i44]Sebastian Dalleiger, Jilles Vreeken, Michael Kamp:
Federated Binary Matrix Factorization using Proximal Optimization. CoRR abs/2407.01776 (2024) - [i43]Sascha Xu, Nils Philipp Walter, Jilles Vreeken:
Neuro-Symbolic Rule Lists. CoRR abs/2411.06428 (2024) - 2023
- [c100]David Kaltenpoth, Jilles Vreeken:
Identifying Selection Bias from Observational Data. AAAI 2023: 8177-8185 - [c99]Osman Mian, Michael Kamp, Jilles Vreeken:
Information-Theoretic Causal Discovery and Intervention Detection over Multiple Environments. AAAI 2023: 9171-9179 - [c98]Osman Mian, David Kaltenpoth, Michael Kamp, Jilles Vreeken:
Nothing but Regrets - Privacy-Preserving Federated Causal Discovery. AISTATS 2023: 8263-8278 - [c97]Chen Shani, Jilles Vreeken, Dafna Shahaf:
Towards Concept-Aware Large Language Models. EMNLP (Findings) 2023: 13158-13170 - [c96]Michael Kamp, Jonas Fischer, Jilles Vreeken:
Federated Learning from Small Datasets. ICLR 2023 - [c95]David Kaltenpoth, Jilles Vreeken:
Nonlinear Causal Discovery with Latent Confounders. ICML 2023: 15639-15654 - [c94]Joscha Cüppers, Jilles Vreeken:
Below the Surface: Summarizing Event Sequences with Generalized Sequential Patterns. KDD 2023: 348-357 - [c93]Sarah Mameche, David Kaltenpoth, Jilles Vreeken:
Learning Causal Models under Independent Changes. NeurIPS 2023 - [c92]Boris Wiegand, Dietrich Klakow, Jilles Vreeken:
Why Are We Waiting? Discovering Interpretable Models for Predicting Sojourn and Waiting Times. SDM 2023: 352-360 - [c91]David Kaltenpoth, Jilles Vreeken:
Causal Discovery with Hidden Confounders using the Algorithmic Markov Condition. UAI 2023: 1016-1026 - [i42]Jonas Fischer, Rebekka Burkholz, Jilles Vreeken:
Preserving local densities in low-dimensional embeddings. CoRR abs/2301.13732 (2023) - [i41]Sebastian Dalleiger, Jilles Vreeken:
Efficiently Factorizing Boolean Matrices using Proximal Gradient Descent. CoRR abs/2307.07615 (2023) - [i40]Chen Shani, Jilles Vreeken, Dafna Shahaf:
Towards Concept-Aware Large Language Models. CoRR abs/2311.01866 (2023) - [i39]Michael A. Hedderich, Jonas Fischer, Dietrich Klakow, Jilles Vreeken:
Understanding and Mitigating Classification Errors Through Interpretable Token Patterns. CoRR abs/2311.10920 (2023) - [i38]Nils Philipp Walter, Jonas Fischer, Jilles Vreeken:
Finding Interpretable Class-Specific Patterns through Efficient Neural Search. CoRR abs/2312.04311 (2023) - [i37]Marco Bjarne Schuster, Boris Wiegand, Jilles Vreeken:
Data is Moody: Discovering Data Modification Rules from Process Event Logs. CoRR abs/2312.14571 (2023) - 2022
- [j25]Joscha Cüppers, Janis Kalofolias, Jilles Vreeken:
Omen: discovering sequential patterns with reliable prediction delays. Knowl. Inf. Syst. 64(4): 1013-1045 (2022) - [c90]Corinna Coupette, Sebastian Dalleiger, Jilles Vreeken:
Differentially Describing Groups of Graphs. AAAI 2022: 3959-3967 - [c89]Janis Kalofolias, Jilles Vreeken:
Naming the Most Anomalous Cluster in Hilbert Space for Structures with Attribute Information. AAAI 2022: 4057-4064 - [c88]Boris Wiegand, Dietrich Klakow, Jilles Vreeken:
Discovering Interpretable Data-to-Sequence Generators. AAAI 2022: 4237-4244 - [c87]Michael A. Hedderich, Jonas Fischer, Dietrich Klakow, Jilles Vreeken:
Label-Descriptive Patterns and Their Application to Characterizing Classification Errors. ICML 2022: 8691-8707 - [c86]Sascha Xu, Osman Mian, Alexander Marx, Jilles Vreeken:
Inferring Cause and Effect in the Presence of Heteroscedastic Noise. ICML 2022: 24615-24630 - [c85]Sebastian Dalleiger, Jilles Vreeken:
Discovering Significant Patterns under Sequential False Discovery Control. KDD 2022: 263-272 - [c84]Sarah Mameche, David Kaltenpoth, Jilles Vreeken:
Discovering Invariant and Changing Mechanisms from Data. KDD 2022: 1242-1252 - [c83]Sebastian Dalleiger, Jilles Vreeken:
Efficiently Factorizing Boolean Matrices using Proximal Gradient Descent. NeurIPS 2022 - [d5]Corinna Coupette, Sebastian Dalleiger, Jilles Vreeken:
Differentially Describing Groups of Graphs (Paper Replication Code). Version 1.0. Zenodo, 2022 [all versions] - [d4]Corinna Coupette, Sebastian Dalleiger, Jilles Vreeken:
Differentially Describing Groups of Graphs (Paper Replication Code). Version 1.1. Zenodo, 2022 [all versions] - [d3]Corinna Coupette, Jilles Vreeken, Bastian Rieck:
Hyperbard (Dataset). Zenodo, 2022 - [d2]Corinna Coupette, Jilles Vreeken, Bastian Rieck:
Hyperbard (Code). Zenodo, 2022 - [i36]Corinna Coupette, Sebastian Dalleiger, Jilles Vreeken:
Differentially Describing Groups of Graphs. CoRR abs/2201.04064 (2022) - [i35]Corinna Coupette, Jilles Vreeken, Bastian Rieck:
All the World's a (Hyper)Graph: A Data Drama. CoRR abs/2206.08225 (2022) - 2021
- [c82]Osman Mian, Alexander Marx, Jilles Vreeken:
Discovering Fully Oriented Causal Networks. AAAI 2021: 8975-8982 - [c81]Jonas Fischer, Anna Oláh, Jilles Vreeken:
What's in the Box? Exploring the Inner Life of Neural Networks with Robust Rules. ICML 2021: 3352-3362 - [c80]Corinna Coupette, Jilles Vreeken:
Graph Similarity Description: How Are These Graphs Similar? KDD 2021: 185-195 - [c79]Jonas Fischer, Jilles Vreeken:
Differentiable Pattern Set Mining. KDD 2021: 383-392 - [c78]Kailash Budhathoki, Mario Boley, Jilles Vreeken:
Discovering Reliable Causal Rules. SDM 2021: 1-9 - [c77]Boris Wiegand, Dietrich Klakow, Jilles Vreeken:
Mining Easily Understandable Models from Complex Event Logs. SDM 2021: 244-252 - [c76]Janis Kalofolias, Pascal Welke, Jilles Vreeken:
SUSAN: The Structural Similarity Random Walk Kernel. SDM 2021: 298-306 - [d1]Corinna Coupette, Jilles Vreeken:
Graph Similarity Description: How Are These Graphs Similar? (Paper Replication Code). Zenodo, 2021 - [i34]Edith Heiter, Jonas Fischer, Jilles Vreeken:
Factoring out prior knowledge from low-dimensional embeddings. CoRR abs/2103.01828 (2021) - [i33]Alexander Marx, Jilles Vreeken:
Formally Justifying MDL-based Inference of Cause and Effect. CoRR abs/2105.01902 (2021) - [i32]Corinna Coupette, Jilles Vreeken:
Graph Similarity Description: How Are These Graphs Similar? CoRR abs/2105.14364 (2021) - [i31]Michael Kamp, Jonas Fischer, Jilles Vreeken:
Federated Learning from Small Datasets. CoRR abs/2110.03469 (2021) - [i30]Michael A. Hedderich, Jonas Fischer, Dietrich Klakow, Jilles Vreeken:
Label-Descriptive Patterns and their Application to Characterizing Classification Errors. CoRR abs/2110.09599 (2021) - 2020
- [j24]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering dependencies with reliable mutual information. Knowl. Inf. Syst. 62(11): 4223-4253 (2020) - [c75]Sebastian Dalleiger, Jilles Vreeken:
Explainable Data Decompositions. AAAI 2020: 3709-3716 - [c74]Joscha Cüppers, Jilles Vreeken:
Just Wait For It... Mining Sequential Patterns with Reliable Prediction Delays. ICDM 2020: 82-91 - [c73]Sebastian Dalleiger, Jilles Vreeken:
The Relaxed Maximum Entropy Distribution and its Application to Pattern Discovery. ICDM 2020: 978-983 - [c72]Jonas Fischer, Jilles Vreeken:
Discovering Succinct Pattern Sets Expressing Co-Occurrence and Mutual Exclusivity. KDD 2020: 813-823 - [c71]Frédéric Pennerath, Panagiotis Mandros, Jilles Vreeken:
Discovering Approximate Functional Dependencies using Smoothed Mutual Information. KDD 2020: 1254-1264 - [c70]Panagiotis Mandros, David Kaltenpoth, Mario Boley, Jilles Vreeken:
Discovering Functional Dependencies from Mixed-Type Data. KDD 2020: 1404-1414 - [c69]Yang Zhang, Mathias Humbert, Bartlomiej Surma, Praveen Manoharan, Jilles Vreeken, Michael Backes:
Towards Plausible Graph Anonymization. NDSS 2020 - [c68]Caleb Belth, Xinyi Zheng, Jilles Vreeken, Danai Koutra:
What is Normal, What is Strange, and What is Missing in a Knowledge Graph: Unified Characterization via Inductive Summarization. WWW 2020: 1115-1126 - [i29]Caleb Belth, Xinyi Zheng, Jilles Vreeken, Danai Koutra:
What is Normal, What is Strange, and What is Missing in a Knowledge Graph: Unified Characterization via Inductive Summarization. CoRR abs/2003.10412 (2020) - [i28]Kailash Budhathoki, Mario Boley, Jilles Vreeken:
Discovering Reliable Causal Rules. CoRR abs/2009.02728 (2020)
2010 – 2019
- 2019
- [j23]Alexander Marx, Jilles Vreeken:
Telling cause from effect by local and global regression. Knowl. Inf. Syst. 60(3): 1277-1305 (2019) - [j22]Matthijs van Leeuwen, Polo Chau, Jilles Vreeken, Dafna Shahaf, Christos Faloutsos:
Addendum to the Special Issue on Interactive Data Exploration and Analytics (TKDD, Vol. 12 Iss. 1). ACM Trans. Knowl. Discov. Data 13(1): 13:1-13:2 (2019) - [c67]Alexander Marx, Jilles Vreeken:
Testing Conditional Independence on Discrete Data using Stochastic Complexity. AISTATS 2019: 496-505 - [c66]Janis Kalofolias, Mario Boley, Jilles Vreeken:
Discovering Robustly Connected Subgraphs with Simple Descriptions. ICDM 2019: 1150-1155 - [c65]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Correlations in Categorical Data. ICDM 2019: 1252-1257 - [c64]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms. IJCAI 2019: 6206-6210 - [c63]Alexander Marx, Jilles Vreeken:
Identifiability of Cause and Effect using Regularized Regression. KDD 2019: 852-861 - [c62]Jilles Vreeken, Kenji Yamanishi:
Modern MDL meets Data Mining Insights, Theory, and Practice. KDD 2019: 3229-3230 - [c61]Jonas Fischer, Jilles Vreeken:
Sets of Robust Rules, and How to Find Them. ECML/PKDD (1) 2019: 38-54 - [c60]David Kaltenpoth, Jilles Vreeken:
We Are Not Your Real Parents: Telling Causal from Confounded using MDL. SDM 2019: 199-207 - [i27]David Kaltenpoth, Jilles Vreeken:
We Are Not Your Real Parents: Telling Causal from Confounded using MDL. CoRR abs/1901.06950 (2019) - [i26]Nikolaj Tatti, Jilles Vreeken:
Finding Good Itemsets by Packing Data. CoRR abs/1902.02392 (2019) - [i25]Nikolaj Tatti, Jilles Vreeken:
The Long and the Short of It: Summarising Event Sequences with Serial Episodes. CoRR abs/1902.02834 (2019) - [i24]Nikolaj Tatti, Jilles Vreeken:
Discovering Descriptive Tile Trees by Mining Optimal Geometric Subtiles. CoRR abs/1902.02861 (2019) - [i23]Nikolaj Tatti, Jilles Vreeken:
Comparing Apples and Oranges: Measuring Differences between Data Mining Results. CoRR abs/1902.07165 (2019) - [i22]Alexander Marx, Jilles Vreeken:
Testing Conditional Independence on Discrete Data using Stochastic Complexity. CoRR abs/1903.04829 (2019) - [i21]Michael Mampaey, Jilles Vreeken, Nikolaj Tatti:
Summarizing Data Succinctly with the Most Informative Itemsets. CoRR abs/1904.11134 (2019) - [i20]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Correlations in Categorical Data. CoRR abs/1908.11682 (2019) - 2018
- [j21]Andrea Hornáková, Markus List, Jilles Vreeken, Marcel H. Schulz:
JAMI: fast computation of conditional mutual information for ceRNA network analysis. Bioinform. 34(17): 3050-3051 (2018) - [j20]Kailash Budhathoki, Jilles Vreeken:
Origo: causal inference by compression. Knowl. Inf. Syst. 56(2): 285-307 (2018) - [j19]Hao Wu, Yue Ning, Prithwish Chakraborty, Jilles Vreeken, Nikolaj Tatti, Naren Ramakrishnan:
Generating Realistic Synthetic Population Datasets. ACM Trans. Knowl. Discov. Data 12(4): 45:1-45:22 (2018) - [c59]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms. ICDM 2018: 317-326 - [c58]Kailash Budhathoki, Jilles Vreeken:
Accurate Causal Inference on Discrete Data. ICDM 2018: 881-886 - [c57]Danai Koutra, Jilles Vreeken, Francesco Bonchi:
Summarizing Graphs at Multiple Scales: New Trends. ICDM 2018: 1097 - [c56]Alexander Marx, Jilles Vreeken:
Causal Inference on Multivariate and Mixed-Type Data. ECML/PKDD (2) 2018: 655-671 - [c55]Kailash Budhathoki, Jilles Vreeken:
Causal Inference on Event Sequences. SDM 2018: 55-63 - [i19]Alexander Marx, Jilles Vreeken:
Causal Discovery by Telling Apart Parents and Children. CoRR abs/1808.06356 (2018) - [i18]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms. CoRR abs/1809.05467 (2018) - 2017
- [j18]Andrea K. Fischer, Jilles Vreeken, Dietrich Klakow:
Beyond Pairwise Similarity: Quantifying and Characterizing Linguistic Similarity between Groups of Languages by MDL. Computación y Sistemas 21(4) (2017) - [j17]Mario Boley, Bryan R. Goldsmith, Luca M. Ghiringhelli, Jilles Vreeken:
Identifying consistent statements about numerical data with dispersion-corrected subgroup discovery. Data Min. Knowl. Discov. 31(5): 1391-1418 (2017) - [c54]Janis Kalofolias, Mario Boley, Jilles Vreeken:
Efficiently Discovering Locally Exceptional Yet Globally Representative Subgroups. ICDM 2017: 197-206 - [c53]Alexander Marx, Jilles Vreeken:
Telling Cause from Effect Using MDL-Based Local and Global Regression. ICDM 2017: 307-316 - [c52]Kailash Budhathoki, Jilles Vreeken:
MDL for Causal Inference on Discrete Data. ICDM 2017: 751-756 - [c51]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Approximate Functional Dependencies. KDD 2017: 355-363 - [c50]Roel Bertens, Jilles Vreeken, Arno Siebes:
Efficiently Discovering Unexpected Pattern-Co-Occurrences. SDM 2017: 126-134 - [c49]Kailash Budhathoki, Jilles Vreeken:
Correlation by Compression. SDM 2017: 525-533 - [c48]Robert S. Pienta, Minsuk Kahng, Zhiyuan Lin, Jilles Vreeken, Partha P. Talukdar, James Abello, Ganesh Parameswaran, Duen Horng Chau:
FACETS: Adaptive Local Exploration of Large Graphs. SDM 2017: 597-605 - [c47]Apratim Bhattacharyya, Jilles Vreeken:
Efficiently Summarising Event Sequences with Rich Interleaving Patterns. SDM 2017: 795-803 - [i17]Mario Boley, Bryan R. Goldsmith, Luca M. Ghiringhelli, Jilles Vreeken:
Identifying Consistent Statements about Numerical Data with Dispersion-Corrected Subgroup Discovery. CoRR abs/1701.07696 (2017) - [i16]Apratim Bhattacharyya, Jilles Vreeken:
Efficiently Summarising Event Sequences with Rich Interleaving Patterns. CoRR abs/1701.08096 (2017) - [i15]Alexander Marx, Jilles Vreeken:
Causal Inference on Multivariate Mixed-Type Data by Minimum Description Length. CoRR abs/1702.06385 (2017) - [i14]Kailash Budhathoki, Jilles Vreeken:
Causal Inference by Stochastic Complexity. CoRR abs/1702.06776 (2017) - [i13]Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Approximate Functional Dependencies. CoRR abs/1705.09391 (2017) - [i12]Janis Kalofolias, Mario Boley, Jilles Vreeken:
Efficiently Discovering Locally Exceptional yet Globally Representative Subgroups. CoRR abs/1709.07941 (2017) - [i11]Yang Zhang, Mathias Humbert, Bartlomiej Surma, Praveen Manoharan, Jilles Vreeken, Michael Backes:
CTRL+Z: Recovering Anonymized Social Graphs. CoRR abs/1711.05441 (2017) - 2016
- [j16]Kumaripaba Athukorala, Dorota Glowacka, Giulio Jacucci, Antti Oulasvirta, Jilles Vreeken:
Is exploratory search different? A comparison of information search behavior for exploratory and lookup tasks. J. Assoc. Inf. Sci. Technol. 67(11): 2635-2651 (2016) - [c46]Kailash Budhathoki, Jilles Vreeken:
Causal Inference by Compression. ICDM 2016: 41-50 - [c45]Roel Bertens, Jilles Vreeken, Arno Siebes:
Keeping it Short and Simple: Summarising Complex Event Sequences with Multivariate Patterns. KDD 2016: 735-744 - [c44]Polina Rozenshtein, Aristides Gionis, B. Aditya Prakash, Jilles Vreeken:
Reconstructing an Epidemic Over Time. KDD 2016: 1835-1844 - [c43]Hoang Vu Nguyen, Jilles Vreeken:
Flexibly Mining Better Subgroups. SDM 2016: 585-593 - [c42]Hoang Vu Nguyen, Panagiotis Mandros, Jilles Vreeken:
Universal Dependency Analysis. SDM 2016: 792-800 - [c41]Hoang Vu Nguyen, Jilles Vreeken:
Linear-time Detection of Non-linear Changes in Massively High Dimensional Time Series. SDM 2016: 828-836 - [e4]Paolo Frasconi, Niels Landwehr, Giuseppe Manco, Jilles Vreeken:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I. Lecture Notes in Computer Science 9851, Springer 2016, ISBN 978-3-319-46127-4 [contents] - [e3]Paolo Frasconi, Niels Landwehr, Giuseppe Manco, Jilles Vreeken:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II. Lecture Notes in Computer Science 9852, Springer 2016, ISBN 978-3-319-46226-4 [contents] - [i10]Hao Wu, Yue Ning, Prithwish Chakraborty, Jilles Vreeken, Nikolaj Tatti, Naren Ramakrishnan:
Generating Realistic Synthetic Population Datasets. CoRR abs/1602.06844 (2016) - [i9]Hao Wu, Maoyuan Sun, Jilles Vreeken, Nikolaj Tatti, Chris North, Naren Ramakrishnan:
Interactive and Iterative Discovery of Entity Network Subgraphs. CoRR abs/1608.03889 (2016) - 2015
- [j15]Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Klemens Böhm:
Erratum to: Unsupervised interaction-preserving discretization of multivariate data. Data Min. Knowl. Discov. 29(1): 296-297 (2015) - [j14]Arthur Zimek, Jilles Vreeken:
The blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectives. Mach. Learn. 98(1-2): 121-155 (2015) - [j13]Danai Koutra, U Kang, Jilles Vreeken, Christos Faloutsos:
Summarizing and understanding large graphs. Stat. Anal. Data Min. 8(3): 183-202 (2015) - [c40]Hoang Vu Nguyen, Jilles Vreeken:
Non-parametric Jensen-Shannon Divergence. ECML/PKDD (2) 2015: 173-189 - [c39]Kailash Budhathoki, Jilles Vreeken:
The Difference and the Norm - Characterising Similarities and Differences Between Databases. ECML/PKDD (2) 2015: 206-223 - [c38]Sanjar Karaev, Pauli Miettinen, Jilles Vreeken:
Getting to Know the Unknown Unknowns: Destructive-Noise Resistant Boolean Matrix Factorization. SDM 2015: 325-333 - [c37]Shashidhar Sundareisan, Jilles Vreeken, B. Aditya Prakash:
Hidden Hazards: Finding Missing Nodes in Large Graph Epidemics. SDM 2015: 415-423 - [c36]Jilles Vreeken:
Causal Inference by Direction of Information. SDM 2015: 909-917 - [i8]Robert S. Pienta, Zhiyuan Lin, Minsuk Kahng, Jilles Vreeken, Partha P. Talukdar, James Abello, Ganesh Parameswaran, Duen Horng Chau:
Seeing the Forest through the Trees: Adaptive Local Exploration of Large Graphs. CoRR abs/1505.06792 (2015) - [i7]Hoang Vu Nguyen, Jilles Vreeken:
Canonical Divergence Analysis. CoRR abs/1510.08370 (2015) - [i6]Hoang Vu Nguyen, Jilles Vreeken:
Flexibly Mining Better Subgroups. CoRR abs/1510.08382 (2015) - [i5]Hoang Vu Nguyen, Jilles Vreeken:
Linear-time Detection of Non-linear Changes in Massively High Dimensional Time Series. CoRR abs/1510.08385 (2015) - [i4]Hoang Vu Nguyen, Jilles Vreeken:
Universal Dependency Analysis. CoRR abs/1510.08389 (2015) - [i3]Roel Bertens, Jilles Vreeken, Arno Siebes:
Beauty and Brains: Detecting Anomalous Pattern Co-Occurrences. CoRR abs/1512.07048 (2015) - [i2]Roel Bertens, Jilles Vreeken, Arno Siebes:
Keeping it Short and Simple: Summarising Complex Event Sequences with Multivariate Patterns. CoRR abs/1512.07056 (2015) - 2014
- [j12]Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Klemens Böhm:
Unsupervised interaction-preserving discretization of multivariate data. Data Min. Knowl. Discov. 28(5-6): 1366-1397 (2014) - [j11]Hao Wu, Jilles Vreeken, Nikolaj Tatti, Naren Ramakrishnan:
Uncovering the plot: detecting surprising coalitions of entities in multi-relational schemas. Data Min. Knowl. Discov. 28(5-6): 1398-1428 (2014) - [j10]B. Aditya Prakash, Jilles Vreeken, Christos Faloutsos:
Efficiently spotting the starting points of an epidemic in a large graph. Knowl. Inf. Syst. 38(1): 35-59 (2014) - [j9]Pauli Miettinen, Jilles Vreeken:
MDL4BMF: Minimum Description Length for Boolean Matrix Factorization. ACM Trans. Knowl. Discov. Data 8(4): 18:1-18:31 (2014) - [c35]Kumaripaba Athukorala, Antti Oulasvirta, Dorota Glowacka, Jilles Vreeken, Giulio Jacucci:
Narrow or Broad?: Estimating Subjective Specificity in Exploratory Search. CIKM 2014: 819-828 - [c34]Erdal Kuzey, Jilles Vreeken, Gerhard Weikum:
A Fresh Look on Knowledge Bases: Distilling Named Events from News. CIKM 2014: 1689-1698 - [c33]Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Pavel Efros, Klemens Böhm:
Multivariate Maximal Correlation Analysis. ICML 2014: 775-783 - [c32]Danai Koutra, U Kang, Jilles Vreeken, Christos Faloutsos:
VOG: Summarizing and Understanding Large Graphs. SDM 2014: 91-99 - [c31]Kumaripaba Athukorala, Antti Oulasvirta, Dorota Glowacka, Jilles Vreeken, Giulio Jacucci:
Interaction Model to Predict Subjective-Specificity of Search Results. UMAP Workshops 2014 - [c30]Kumaripaba Athukorala, Antti Oulasvirta, Dorota Glowacka, Jilles Vreeken, Giulio Jacucci:
Supporting Exploratory Search Through User Modeling. UMAP Workshops 2014 - [p3]Jilles Vreeken, Nikolaj Tatti:
Interesting Patterns. Frequent Pattern Mining 2014: 105-134 - [p2]Matthijs van Leeuwen, Jilles Vreeken:
Mining and Using Sets of Patterns through Compression. Frequent Pattern Mining 2014: 165-198 - [p1]Arthur Zimek, Ira Assent, Jilles Vreeken:
Frequent Pattern Mining Algorithms for Data Clustering. Frequent Pattern Mining 2014: 403-423 - [i1]Danai Koutra, U Kang, Jilles Vreeken, Christos Faloutsos:
VoG: Summarizing and Understanding Large Graphs. CoRR abs/1406.3411 (2014) - 2013
- [j8]Michael Mampaey, Jilles Vreeken:
Summarizing categorical data by clustering attributes. Data Min. Knowl. Discov. 26(1): 130-173 (2013) - [j7]Geoffrey I. Webb, Jilles Vreeken:
Efficient Discovery of the Most Interesting Associations. ACM Trans. Knowl. Discov. Data 8(3): 15:1-15:31 (2013) - [c29]Emin Aksehirli, Bart Goethals, Emmanuel Müller, Jilles Vreeken:
Cartification: A Neighborhood Preserving Transformation for Mining High Dimensional Data. ICDM 2013: 937-942 - [c28]Kleanthis-Nikolaos Kontonasios, Jilles Vreeken, Tijl De Bie:
Maximum Entropy Models for Iteratively Identifying Subjectively Interesting Structure in Real-Valued Data. ECML/PKDD (2) 2013: 256-271 - [c27]Jan Ramon, Pauli Miettinen, Jilles Vreeken:
Detecting Bicliques in GF[q]. ECML/PKDD (1) 2013: 509-524 - [c26]Leman Akoglu, Duen Horng Chau, Christos Faloutsos, Nikolaj Tatti, Hanghang Tong, Jilles Vreeken:
Mining Connection Pathways for Marked Nodes in Large Graphs. SDM 2013: 37-45 - [c25]Klemens Böhm, Fabian Keller, Emmanuel Müller, Hoang Vu Nguyen, Jilles Vreeken:
CMI: An Information-Theoretic Contrast Measure for Enhancing Subspace Cluster and Outlier Detection. SDM 2013: 198-206 - [e2]Duen Horng Chau, Jilles Vreeken, Matthijs van Leeuwen, Christos Faloutsos:
Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics, IDEA@KDD 2013, Chicago, Illinois, USA, August 11, 2013. ACM 2013, ISBN 978-1-4503-2329-1 [contents] - 2012
- [j6]Nikolaj Tatti, Jilles Vreeken:
Comparing apples and oranges: measuring differences between exploratory data mining results. Data Min. Knowl. Discov. 25(2): 173-207 (2012) - [j5]Michael Mampaey, Jilles Vreeken, Nikolaj Tatti:
Summarizing data succinctly with the most informative itemsets. ACM Trans. Knowl. Discov. Data 6(4): 16:1-16:42 (2012) - [c24]Duen Horng Chau, Leman Akoglu, Jilles Vreeken, Hanghang Tong, Christos Faloutsos:
Interactively and Visually Exploring Tours of Marked Nodes in Large Graphs. ASONAM 2012: 696-698 - [c23]Leman Akoglu, Hanghang Tong, Jilles Vreeken, Christos Faloutsos:
Fast and reliable anomaly detection in categorical data. CIKM 2012: 415-424 - [c22]B. Aditya Prakash, Jilles Vreeken, Christos Faloutsos:
Spotting Culprits in Epidemics: How Many and Which Ones? ICDM 2012: 11-20 - [c21]Nikolaj Tatti, Jilles Vreeken:
The long and the short of it: summarising event sequences with serial episodes. KDD 2012: 462-470 - [c20]Duen Horng Chau, Leman Akoglu, Jilles Vreeken, Hanghang Tong, Christos Faloutsos:
TourViz: interactive visualization of connection pathways in large graphs. KDD 2012: 1516-1519 - [c19]Nikolaj Tatti, Jilles Vreeken:
Discovering Descriptive Tile Trees - By Mining Optimal Geometric Subtiles. ECML/PKDD (1) 2012: 9-24 - [c18]Koen Smets, Jilles Vreeken:
Slim: Directly Mining Descriptive Patterns. SDM 2012: 236-247 - [e1]Jilles Vreeken, Charles Ling, Mohammed Javeed Zaki, Arno Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb, Xindong Wu:
12th IEEE International Conference on Data Mining Workshops, ICDM Workshops, Brussels, Belgium, December 10, 2012. IEEE Computer Society 2012, ISBN 978-1-4673-5164-5 [contents] - 2011
- [j4]Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1): 169-214 (2011) - [c17]Kleanthis-Nikolaos Kontonasios, Jilles Vreeken, Tijl De Bie:
Maximum Entropy Modelling for Assessing Results on Real-Valued Data. ICDM 2011: 350-359 - [c16]Pauli Miettinen, Jilles Vreeken:
Model order selection for boolean matrix factorization. KDD 2011: 51-59 - [c15]Michael Mampaey, Nikolaj Tatti, Jilles Vreeken:
Tell me what i need to know: succinctly summarizing data with itemsets. KDD 2011: 573-581 - [c14]Bart Goethals, Sandy Moens, Jilles Vreeken:
MIME: a framework for interactive visual pattern mining. KDD 2011: 757-760 - [c13]Jilles Vreeken, Arthur Zimek:
When Pattern Met Subspace Cluster. MultiClust@ECML/PKDD 2011: 7-18 - [c12]Nikolaj Tatti, Jilles Vreeken:
Comparing Apples and Oranges - Measuring Differences between Data Mining Results. ECML/PKDD (3) 2011: 398-413 - [c11]Bart Goethals, Sandy Moens, Jilles Vreeken:
MIME: A Framework for Interactive Visual Pattern Mining. ECML/PKDD (3) 2011: 634-637 - [c10]Koen Smets, Jilles Vreeken:
The Odd One Out: Identifying and Characterising Anomalies. SDM 2011: 804-815 - 2010
- [j3]Jilles Vreeken:
Making pattern mining useful. SIGKDD Explor. 12(1): 75-76 (2010) - [j2]Jilles Vreeken, Nikolaj Tatti, Bart Goethals:
Useful patterns (UP'10) ACM SIGKDD workshop report. SIGKDD Explor. 12(2): 56-58 (2010) - [c9]Michael Mampaey, Jilles Vreeken:
Summarising Data by Clustering Items. ECML/PKDD (2) 2010: 321-336
2000 – 2009
- 2009
- [b1]Jilles Vreeken:
Making Pattern Mining Useful. Utrecht University, Netherlands, 2009 - [j1]Matthijs van Leeuwen, Jilles Vreeken, Arno Siebes:
Identifying the components. Data Min. Knowl. Discov. 19(2): 176-193 (2009) - [c8]Matthijs van Leeuwen, Jilles Vreeken, Arno Siebes:
Identifying the Components. ECML/PKDD (1) 2009: 32 - [c7]Hannes Heikinheimo, Jilles Vreeken, Arno Siebes, Heikki Mannila:
Low-Entropy Set Selection. SDM 2009: 569-580 - 2008
- [c6]Nikolaj Tatti, Jilles Vreeken:
Finding Good Itemsets by Packing Data. ICDM 2008: 588-597 - [c5]Jilles Vreeken, Arno Siebes:
Filling in the Blanks - Krimp Minimisation for Missing Data. ICDM 2008: 1067-1072 - 2007
- [c4]Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Preserving Privacy through Data Generation. ICDM 2007: 685-690 - [c3]Jilles Vreeken, Matthijs van Leeuwen, Arno Siebes:
Characterising the difference. KDD 2007: 765-774 - 2006
- [c2]Matthijs van Leeuwen, Jilles Vreeken, Arno Siebes:
Compression Picks Item Sets That Matter. PKDD 2006: 585-592 - [c1]Arno Siebes, Jilles Vreeken, Matthijs van Leeuwen:
Item Sets that Compress. SDM 2006: 395-406
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-02 18:16 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint