default search action
Padhraic Smyth
Person information
- affiliation: University of California, Irvine, Department of Computer Science, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c143]Samuel Showalter, Alex J. Boyd, Padhraic Smyth, Mark Steyvers:
Bayesian Online Learning for Consensus Prediction. AISTATS 2024: 2539-2547 - [c142]Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth:
Functional Flow Matching. AISTATS 2024: 3934-3942 - [c141]Yuxin Chang, Alex J. Boyd, Padhraic Smyth:
Probabilistic Modeling for Sequences of Sets in Continuous-Time. AISTATS 2024: 4357-4365 - [c140]Catarina G. Belém, Markelle Kelly, Mark Steyvers, Sameer Singh, Padhraic Smyth:
Perceptions of Linguistic Uncertainty by Language Models and Humans. EMNLP 2024: 8467-8502 - [i39]Mark Steyvers, Heliodoro Tejeda Lemus, Aakriti Kumar, Catarina G. Belém, Sheer Karny, Xinyue Hu, Lukas William Mayer, Padhraic Smyth:
The Calibration Gap between Model and Human Confidence in Large Language Models. CoRR abs/2401.13835 (2024) - [i38]Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth:
Dynamic Conditional Optimal Transport through Simulation-Free Flows. CoRR abs/2404.04240 (2024) - [i37]Aodong Li, Yunhan Zhao, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, Stephan Mandt:
Anomaly Detection of Tabular Data Using LLMs. CoRR abs/2406.16308 (2024) - [i36]Eshant English, Eliot Wong-Toi, Matteo Fontana, Stephan Mandt, Padhraic Smyth, Christoph Lippert:
JANET: Joint Adaptive predictioN-region Estimation for Time-series. CoRR abs/2407.06390 (2024) - [i35]Catarina G. Belém, Markelle Kelly, Mark Steyvers, Sameer Singh, Padhraic Smyth:
Perceptions of Linguistic Uncertainty by Language Models and Humans. CoRR abs/2407.15814 (2024) - [i34]Gavin Kerrigan, Kai Nelson, Padhraic Smyth:
EventFlow: Forecasting Continuous-Time Event Data with Flow Matching. CoRR abs/2410.07430 (2024) - [i33]Ola Rønning, Eric T. Nalisnick, Christophe Ley, Padhraic Smyth, Thomas Hamelryck:
ELBOing Stein: Variational Bayes with Stein Mixture Inference. CoRR abs/2410.22948 (2024) - [i32]Rachel Longjohn, Markelle Kelly, Sameer Singh, Padhraic Smyth:
Benchmark Data Repositories for Better Benchmarking. CoRR abs/2410.24100 (2024) - 2023
- [j60]Edgar E. Robles, Ye Jin, Padhraic Smyth, Richard H. Scheuermann, Jack D. Bui, Huan-You Wang, Jean Oak, Yu Qian:
A cell-level discriminative neural network model for diagnosis of blood cancers. Bioinform. 39(10) (2023) - [c139]Markelle Kelly, Padhraic Smyth:
Variable-Based Calibration for Machine Learning Classifiers. AAAI 2023: 8211-8219 - [c138]Gavin Kerrigan, Justin Ley, Padhraic Smyth:
Diffusion Generative Models in Infinite Dimensions. AISTATS 2023: 9538-9563 - [c137]Alex Boyd, Yuxin Chang, Stephan Mandt, Padhraic Smyth:
Probabilistic Querying of Continuous-Time Event Sequences. AISTATS 2023: 10235-10251 - [c136]Markelle Kelly, Aakriti Kumar, Padhraic Smyth, Mark Steyvers:
Capturing Humans' Mental Models of AI: An Item Response Theory Approach. FAccT 2023: 1723-1734 - [c135]Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Stephan Mandt, Maja Rudolph:
Deep Anomaly Detection under Labeling Budget Constraints. ICML 2023: 19882-19910 - [c134]Hyungrok Do, Yuxin Chang, Yoon-Sang Cho, Padhraic Smyth, Judy Zhong:
When More is Less: Incorporating Additional Datasets Can Hurt Performance By Introducing Spurious Correlations. MLHC 2023: 128-149 - [c133]Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, Stephan Mandt:
Zero-Shot Anomaly Detection via Batch Normalization. NeurIPS 2023 - [c132]Alex Boyd, Yuxin Chang, Stephan Mandt, Padhraic Smyth:
Inference for mark-censored temporal point processes. UAI 2023: 226-236 - [i31]Aodong Li, Chen Qiu, Padhraic Smyth, Marius Kloft, Stephan Mandt, Maja Rudolph:
Deep Anomaly Detection under Labeling Budget Constraints. CoRR abs/2302.07832 (2023) - [i30]Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, Stephan Mandt:
Zero-Shot Anomaly Detection without Foundation Models. CoRR abs/2302.07849 (2023) - [i29]Markelle Kelly, Aakriti Kumar, Padhraic Smyth, Mark Steyvers:
Capturing Humans' Mental Models of AI: An Item Response Theory Approach. CoRR abs/2305.09064 (2023) - [i28]Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth:
Functional Flow Matching. CoRR abs/2305.17209 (2023) - [i27]Samuel Showalter, Alex Boyd, Padhraic Smyth, Mark Steyvers:
Bayesian Online Learning for Consensus Prediction. CoRR abs/2312.07679 (2023) - [i26]Yuxin Chang, Alex Boyd, Padhraic Smyth:
Probabilistic Modeling for Sequences of Sets in Continuous-Time. CoRR abs/2312.15045 (2023) - 2022
- [j59]Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H. Hoos, Padhraic Smyth, Christopher K. I. Williams:
Automating data science. Commun. ACM 65(3): 76-87 (2022) - [c131]Hyungrok Do, Preston Putzel, Axel S. Martin, Padhraic Smyth, Judy Zhong:
Fair Generalized Linear Models with a Convex Penalty. ICML 2022: 5286-5308 - [c130]Alex Boyd, Samuel Showalter, Stephan Mandt, Padhraic Smyth:
Predictive Querying for Autoregressive Neural Sequence Models. NeurIPS 2022 - [i25]Hyungrok Do, Preston Putzel, Axel S. Martin, Padhraic Smyth, Judy Zhong:
Fair Generalized Linear Models with a Convex Penalty. CoRR abs/2206.09076 (2022) - [i24]Markelle Kelly, Padhraic Smyth:
Variable-Based Calibration for Machine Learning Classifiers. CoRR abs/2209.15154 (2022) - [i23]Alex Boyd, Samuel Showalter, Stephan Mandt, Padhraic Smyth:
Predictive Querying for Autoregressive Neural Sequence Models. CoRR abs/2210.06464 (2022) - [i22]Alex Boyd, Yuxin Chang, Stephan Mandt, Padhraic Smyth:
Probabilistic Querying of Continuous-Time Event Sequences. CoRR abs/2211.08499 (2022) - [i21]Gavin Kerrigan, Justin Ley, Padhraic Smyth:
Diffusion Generative Models in Infinite Dimensions. CoRR abs/2212.00886 (2022) - 2021
- [c129]Disi Ji, Robert L. Logan IV, Padhraic Smyth, Mark Steyvers:
Active Bayesian Assessment of Black-Box Classifiers. AAAI 2021: 7935-7944 - [c128]Preston Putzel, Hyungrok Do, Alex Boyd, Hua Zhong, Padhraic Smyth:
Dynamic Survival Analysis for EHR Data with Personalized Parametric Distributions. MLHC 2021: 648-673 - [c127]Gavin Kerrigan, Padhraic Smyth, Mark Steyvers:
Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration. NeurIPS 2021: 4421-4434 - [c126]Aodong Li, Alex Boyd, Padhraic Smyth, Stephan Mandt:
Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning. NeurIPS 2021: 6816-6828 - [c125]Preston Putzel, Padhraic Smyth, Jaehong Yu, Hua Zhong:
Dynamic Survival Analysis with Individualized Truncated Parametric Distributions. SPACA 2021: 159-170 - [i20]Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H. Hoos, Padhraic Smyth, Christopher K. I. Williams:
Automating Data Science: Prospects and Challenges. CoRR abs/2105.05699 (2021) - [i19]Gavin Kerrigan, Padhraic Smyth, Mark Steyvers:
Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration. CoRR abs/2109.14591 (2021) - 2020
- [j58]Christopher Galbraith, Padhraic Smyth, Hal S. Stern:
Statistical Methods for the Forensic Analysis of Geolocated Event Data. Digit. Investig. 33 Supplement: 301009 (2020) - [j57]Casey A. Graff, Shane R. Coffield, Yang Chen, Efi Foufoula-Georgiou, James T. Randerson, Padhraic Smyth:
Forecasting Daily Wildfire Activity Using Poisson Regression. IEEE Trans. Geosci. Remote. Sens. 58(7): 4837-4851 (2020) - [c124]Alex Boyd, Robert Bamler, Stephan Mandt, Padhraic Smyth:
User-Dependent Neural Sequence Models for Continuous-Time Event Data. NeurIPS 2020 - [c123]Disi Ji, Padhraic Smyth, Mark Steyvers:
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference. NeurIPS 2020 - [i18]Disi Ji, Robert L. Logan IV, Padhraic Smyth, Mark Steyvers:
Active Bayesian Assessment for Black-Box Classifiers. CoRR abs/2002.06532 (2020) - [i17]Disi Ji, Padhraic Smyth, Mark Steyvers:
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference. CoRR abs/2010.09851 (2020) - [i16]Alex Boyd, Robert Bamler, Stephan Mandt, Padhraic Smyth:
User-Dependent Neural Sequence Models for Continuous-Time Event Data. CoRR abs/2011.03231 (2020) - [i15]Aodong Li, Alex Boyd, Padhraic Smyth, Stephan Mandt:
Variational Beam Search for Online Learning with Distribution Shifts. CoRR abs/2012.08101 (2020)
2010 – 2019
- 2019
- [j56]Jihyun Park, Dimitrios Kotzias, Patty Kuo, Robert L. Logan IV, Kritzia Merced, Sameer Singh, Michael Tanana, Efi Karra Taniskidou, Jennifer Elston-Lafata, David C. Atkins, Ming Tai-Seale, Zac E. Imel, Padhraic Smyth:
Detecting conversation topics in primary care office visits from transcripts of patient-provider interactions. J. Am. Medical Informatics Assoc. 26(12): 1493-1504 (2019) - [j55]Dimitrios Kotzias, Moshe Lichman, Padhraic Smyth:
Predicting Consumption Patterns with Repeated and Novel Events. IEEE Trans. Knowl. Data Eng. 31(2): 371-384 (2019) - [c122]Eric T. Nalisnick, José Miguel Hernández-Lobato, Padhraic Smyth:
Dropout as a Structured Shrinkage Prior. ICML 2019: 4712-4722 - 2018
- [c121]Eric T. Nalisnick, Padhraic Smyth:
Learning Priors for Invariance. AISTATS 2018: 366-375 - [c120]Jihyun Park, Renzhe Yu, Fernando Rodriguez, Rachel B. Baker, Padhraic Smyth, Mark Warschauer:
Understanding Student Procrastination via Mixture Models. EDM 2018 - [c119]Disi Ji, Eric T. Nalisnick, Yu Qian, Richard H. Scheuermann, Padhraic Smyth:
Bayesian Trees for Automated Cytometry Data Analysis. MLHC 2018: 465-483 - [c118]Moshe Lichman, Padhraic Smyth:
Prediction of Sparse User-Item Consumption Rates with Zero-Inflated Poisson Regression. WWW 2018: 719-728 - [i14]Eric T. Nalisnick, Padhraic Smyth:
Unifying the Dropout Family Through Structured Shrinkage Priors. CoRR abs/1810.04045 (2018) - [i13]Tijl De Bie, Luc De Raedt, Holger H. Hoos, Padhraic Smyth:
Automating Data Science (Dagstuhl Seminar 18401). Dagstuhl Reports 8(9): 154-181 (2018) - 2017
- [j54]Christopher Galbraith, Padhraic Smyth:
Analyzing user-event data using score-based likelihood ratios with marked point processes. Digit. Investig. 22 Supplement: S106-S114 (2017) - [j53]David M. Blei, Padhraic Smyth:
Science and data science. Proc. Natl. Acad. Sci. USA 114(33): 8689-8692 (2017) - [j52]Garren Gaut, Mark Steyvers, Zac E. Imel, David C. Atkins, Padhraic Smyth:
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models. IEEE J. Biomed. Health Informatics 21(2): 476-487 (2017) - [c117]Eric T. Nalisnick, Padhraic Smyth:
Stick-Breaking Variational Autoencoders. ICLR (Poster) 2017 - [c116]Eric T. Nalisnick, Padhraic Smyth:
Variational Reference Priors. ICLR (Workshop) 2017 - [c115]Jihyun Park, Kameryn Denaro, Fernando Rodriguez, Padhraic Smyth, Mark Warschauer:
Detecting changes in student behavior from clickstream data. LAK 2017: 21-30 - [c114]Eric T. Nalisnick, Padhraic Smyth:
Learning Approximately Objective Priors. UAI 2017 - 2016
- [j51]Petter Arnesen, Tracy Holsclaw, Padhraic Smyth:
Bayesian Detection of Changepoints in Finite-State Markov Chains for Multiple Sequences. Technometrics 58(2): 205-213 (2016) - [c113]Jihyun Park, Margaret Blume-Kohout, Ralf Krestel, Eric T. Nalisnick, Padhraic Smyth:
Analyzing NIH Funding Patterns over Time with Statistical Text Analysis. AAAI Workshop: Scholarly Big Data 2016 - [c112]Moshe Lichman, Dimitrios Kotzias, Padhraic Smyth:
Personalized location models with adaptive mixtures. SIGSPATIAL/GIS 2016: 67:1-67:4 - 2015
- [c111]Nicholas Martin Navaroli, Padhraic Smyth:
Modeling Response Time in Digital Human Communication. ICWSM 2015: 278-287 - [c110]Dimitrios Kotzias, Misha Denil, Nando de Freitas, Padhraic Smyth:
From Group to Individual Labels Using Deep Features. KDD 2015: 597-606 - [c109]Michael Tanana, Kevin Hallgren, Zac E. Imel, David C. Atkins, Padhraic Smyth, Vivek Srikumar:
Recursive Neural Networks for Coding Therapist and Patient Behavior in Motivational Interviewing. CLPsych@HLT-NAACL 2015: 71-79 - [c108]Kevin Bache, Dennis DeCoste, Padhraic Smyth:
Hot Swapping for Online Adaptation of Optimization Hyperparameters. ICLR (Workshop) 2015 - 2014
- [j50]Andrew J. Frank, Padhraic Smyth, Alexander Ihler:
Beyond MAP Estimation With the Track-Oriented Multiple Hypothesis Tracker. IEEE Trans. Signal Process. 62(9): 2413-2423 (2014) - [c107]Christopher DuBois, Anoop Korattikara Balan, Max Welling, Padhraic Smyth:
Approximate Slice Sampling for Bayesian Posterior Inference. AISTATS 2014: 185-193 - [c106]Moshe Lichman, Padhraic Smyth:
Modeling human location data with mixtures of kernel densities. KDD 2014: 35-44 - [c105]James R. Foulds, Padhraic Smyth:
Annealing Paths for the Evaluation of Topic Models. UAI 2014: 220-229 - 2013
- [j49]Nicholas Navaroli, Christopher DuBois, Padhraic Smyth:
Modeling individual email patterns over time with latent variable models. Mach. Learn. 92(2-3): 431-455 (2013) - [c104]Christopher DuBois, Carter T. Butts, Padhraic Smyth:
Stochastic blockmodeling of relational event dynamics. AISTATS 2013: 238-246 - [c103]James R. Foulds, Padhraic Smyth:
Modeling Scientific Impact with Topical Influence Regression. EMNLP 2013: 113-123 - [c102]Kevin Bache, David Newman, Padhraic Smyth:
Text-based measures of document diversity. KDD 2013: 23-31 - [c101]James R. Foulds, Levi Boyles, Christopher DuBois, Padhraic Smyth, Max Welling:
Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation. KDD 2013: 446-454 - [c100]Ralf Krestel, Padhraic Smyth:
Recommending patents based on latent topics. RecSys 2013: 395-398 - [c99]Michael J. Bannister, Christopher DuBois, David Eppstein, Padhraic Smyth:
Windows into Relational Events: Data Structures for Contiguous Subsequences of Edges. SODA 2013: 856-864 - [e4]Ann E. Nicholson, Padhraic Smyth:
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013. AUAI Press 2013 [contents] - [i12]Dmitry Pavlov, Heikki Mannila, Padhraic Smyth:
Probabilistic Models for Query Approximation with Large Sparse Binary Datasets. CoRR abs/1301.3884 (2013) - [i11]James R. Foulds, Levi Boyles, Christopher DuBois, Padhraic Smyth, Max Welling:
Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation. CoRR abs/1305.2452 (2013) - [i10]Ann E. Nicholson, Padhraic Smyth:
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (2013). CoRR abs/1309.7971 (2013) - 2012
- [j48]Timothy N. Rubin, America Chambers, Padhraic Smyth, Mark Steyvers:
Statistical topic models for multi-label document classification. Mach. Learn. 88(1-2): 157-208 (2012) - [j47]Brynjar Gretarsson, John O'Donovan, Svetlin Bostandjiev, Tobias Höllerer, Arthur U. Asuncion, David Newman, Padhraic Smyth:
TopicNets: Visual Analysis of Large Text Corpora with Topic Modeling. ACM Trans. Intell. Syst. Technol. 3(2): 23:1-23:26 (2012) - [j46]Joydeep Ghosh, Padhraic Smyth, Andrew Tomkins, Rich Caruana:
Special issue on best of SIGKDD 2011. ACM Trans. Knowl. Discov. Data 6(4): 14:1-14:2 (2012) - [c98]Jasmine Ion Titapiccolo, Manuela Ferrario, Carlo Barbieri, Daniele Marcelli, Flavio Mari, Emanuele Gatti, Sergio Cerutti, Padhraic Smyth, Maria G. Signorini:
Predictive modeling of cardiovascular complications in incident hemodialysis patients. EMBC 2012: 3943-3946 - [c97]Padhraic Smyth:
Analyzing Text and Social Network Data with Probabilistic Models. ECML/PKDD (1) 2012: 7-8 - [c96]Andrew J. Frank, Padhraic Smyth, Alexander Ihler:
A graphical model representation of the track-oriented multiple hypothesis tracker. SSP 2012: 768-771 - [c95]Nicholas Navaroli, Christopher DuBois, Padhraic Smyth:
Statistical Models for Exploring Individual Email Communication Behavior. ACML 2012: 317-332 - [i9]Arthur U. Asuncion, Max Welling, Padhraic Smyth, Yee Whye Teh:
On Smoothing and Inference for Topic Models. CoRR abs/1205.2662 (2012) - [i8]Ian Porteous, Alexander T. Ihler, Padhraic Smyth, Max Welling:
Gibbs Sampling for (Coupled) Infinite Mixture Models in the Stick Breaking Representation. CoRR abs/1206.6845 (2012) - [i7]Sergey Kirshner, Padhraic Smyth, Andrew Robertson:
Conditional Chow-Liu Tree Structures for Modeling Discrete-Valued Vector Time Series. CoRR abs/1207.4142 (2012) - [i6]Seyoung Kim, Padhraic Smyth, Stefan Luther:
Modeling Waveform Shapes with Random Eects Segmental Hidden Markov Models. CoRR abs/1207.4143 (2012) - [i5]Michal Rosen-Zvi, Thomas L. Griffiths, Mark Steyvers, Padhraic Smyth:
The Author-Topic Model for Authors and Documents. CoRR abs/1207.4169 (2012) - [i4]Michael J. Bannister, Christopher DuBois, David Eppstein, Padhraic Smyth:
Windows into Relational Events: Data Structures for Contiguous Subsequences of Edges. CoRR abs/1209.5791 (2012) - 2011
- [j45]Mark Steyvers, Padhraic Smyth, Chaitanya Chemudugunta:
Combining Background Knowledge and Learned Topics. Top. Cogn. Sci. 3(1): 18-47 (2011) - [c94]Duy Quang Vu, Arthur U. Asuncion, David R. Hunter, Padhraic Smyth:
Dynamic Egocentric Models for Citation Networks. ICML 2011: 857-864 - [c93]Christopher DuBois, James R. Foulds, Padhraic Smyth:
Latent Set Models for Two-Mode Network Data. ICWSM 2011 - [c92]Duy Quang Vu, Arthur U. Asuncion, David R. Hunter, Padhraic Smyth:
Continuous-Time Regression Models for Longitudinal Networks. NIPS 2011: 2492-2500 - [c91]James R. Foulds, Padhraic Smyth:
Multi-Instance Mixture Models. SDM 2011: 606-617 - [c90]James R. Foulds, Nicholas Navaroli, Padhraic Smyth, Alexander Ihler:
Revisiting MAP Estimation, Message Passing and Perfect Graphs. AISTATS 2011: 278-286 - [c89]James R. Foulds, Christopher DuBois, Arthur U. Asuncion, Carter T. Butts, Padhraic Smyth:
A Dynamic Relational Infinite Feature Model for Longitudinal Social Networks. AISTATS 2011: 287-295 - [e3]Chid Apté, Joydeep Ghosh, Padhraic Smyth:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011. ACM 2011, ISBN 978-1-4503-0813-7 [contents] - [i3]Timothy N. Rubin, America Chambers, Padhraic Smyth, Mark Steyvers:
Statistical Topic Models for Multi-Label Document Classification. CoRR abs/1107.2462 (2011) - 2010
- [j44]Qiang Liu, Kevin K. Lin, Bogi Andersen, Padhraic Smyth, Alexander Ihler:
Estimating replicate time shifts using Gaussian process regression. Bioinform. 26(6): 770-776 (2010) - [j43]Padhraic Smyth, Charles Elkan:
Technical perspective - Creativity helps influence prediction precision. Commun. ACM 53(4): 88 (2010) - [j42]Seyoung Kim, Padhraic Smyth, Hal S. Stern:
A Bayesian Mixture Approach to Modeling Spatial Activation Patterns in Multisite fMRI Data. IEEE Trans. Medical Imaging 29(6): 1260-1274 (2010) - [j41]Michal Rosen-Zvi, Chaitanya Chemudugunta, Thomas L. Griffiths, Padhraic Smyth, Mark Steyvers:
Learning author-topic models from text corpora. ACM Trans. Inf. Syst. 28(1): 4:1-4:38 (2010) - [c88]Arthur U. Asuncion, Qiang Liu, Alexander T. Ihler, Padhraic Smyth:
Particle Filtered MCMC-MLE with Connections to Contrastive Divergence. ICML 2010: 47-54 - [c87]Christopher DuBois, Padhraic Smyth:
Modeling relational events via latent classes. KDD 2010: 803-812 - [c86]America Chambers, Padhraic Smyth, Mark Steyvers:
Learning concept graphs from text with stick-breaking priors. NIPS 2010: 334-342 - [c85]Arthur U. Asuncion, Qiang Liu, Alexander Ihler, Padhraic Smyth:
Learning with Blocks: Composite Likelihood and Contrastive Divergence. AISTATS 2010: 33-40
2000 – 2009
- 2009
- [j40]Darya Chudova, Alexander Ihler, Kevin K. Lin, Bogi Andersen, Padhraic Smyth:
Bayesian detection of non-sinusoidal periodic patterns in circadian expression data. Bioinform. 25(23): 3114-3120 (2009) - [j39]David Newman, Arthur U. Asuncion, Padhraic Smyth, Max Welling:
Distributed Algorithms for Topic Models. J. Mach. Learn. Res. 10: 1801-1828 (2009) - [c84]Alexander Ihler, Andrew J. Frank, Padhraic Smyth:
Particle-based Variational Inference for Continuous Systems. NIPS 2009: 826-834 - [c83]Arthur U. Asuncion, Max Welling, Padhraic Smyth, Yee Whye Teh:
On Smoothing and Inference for Topic Models. UAI 2009: 27-34 - 2008
- [c82]Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyvers:
Combining concept hierarchies and statistical topic models. CIKM 2008: 1469-1470 - [c81]Jon Hutchins, Alexander Ihler, Padhraic Smyth:
Probabilistic Analysis of a Large-Scale Urban Traffic Sensor Data Set. KDD Workshop on Knowledge Discovery from Sensor Data 2008: 94-114 - [c80]Ian Porteous, David Newman, Alexander Ihler, Arthur U. Asuncion, Padhraic Smyth, Max Welling:
Fast collapsed gibbs sampling for latent dirichlet allocation. KDD 2008: 569-577 - [c79]Arthur U. Asuncion, Padhraic Smyth, Max Welling:
Asynchronous Distributed Learning of Topic Models. NIPS 2008: 81-88 - [c78]Chaitanya Chemudugunta, America Holloway, Padhraic Smyth, Mark Steyvers:
Modeling Documents by Combining Semantic Concepts with Unsupervised Statistical Learning. ISWC 2008: 229-244 - [i2]Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyvers:
Text Modeling using Unsupervised Topic Models and Concept Hierarchies. CoRR abs/0808.0973 (2008) - 2007
- [j38]James Bennett, Charles Elkan, Bing Liu, Padhraic Smyth, Domonkos Tikk:
KDD Cup and workshop 2007. SIGKDD Explor. 9(2): 51-52 (2007) - [j37]Alexander T. Ihler, Jon Hutchins, Padhraic Smyth:
Learning to detect events with Markov-modulated poisson processes. ACM Trans. Knowl. Discov. Data 1(3): 13 (2007) - [c77]Sergey Kirshner, Padhraic Smyth:
Infinite mixtures of trees. ICML 2007: 417-423 - [c76]David Newman, Kat Hagedorn, Chaitanya Chemudugunta, Padhraic Smyth:
Subject metadata enrichment using statistical topic models. JCDL 2007: 366-375 - [c75]David Newman, Arthur U. Asuncion, Padhraic Smyth, Max Welling:
Distributed Inference for Latent Dirichlet Allocation. NIPS 2007: 1081-1088 - 2006
- [j36]Seyoung Kim, Padhraic Smyth:
Segmental Hidden Markov Models with Random Effects for Waveform Modeling. J. Mach. Learn. Res. 7: 945-969 (2006) - [j35]Jessica A. Turner, Padhraic Smyth, Fabio Macciardi, James H. Fallon, James L. Kennedy, Steven G. Potkin:
Imaging phenotypes and genotypes in schizophrenia. Neuroinformatics 4(1): 21-49 (2006) - [c74]Padhraic Smyth:
Data-Driven Discovery Using Probabilistic Hidden Variable Models. ALT 2006: 28 - [c73]Padhraic Smyth:
Data-Driven Discovery Using Probabilistic Hidden Variable Models. Discovery Science 2006: 13 - [c72]David Newman, Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyvers:
Analyzing Entities and Topics in News Articles Using Statistical Topic Models. ISI 2006: 93-104 - [c71]Alexander Ihler, Jon Hutchins, Padhraic Smyth:
Adaptive event detection with time-varying poisson processes. KDD 2006: 207-216 - [c70]David Newman, Chaitanya Chemudugunta, Padhraic Smyth:
Statistical entity-topic models. KDD 2006: 680-686 - [c69]Seyoung Kim, Padhraic Smyth, Hal S. Stern:
A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fMRI Data. MICCAI (2) 2006: 217-224 - [c68]Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyvers:
Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model. NIPS 2006: 241-248 - [c67]Alexander T. Ihler, Padhraic Smyth:
Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models. NIPS 2006: 625-632 - [c66]Seyoung Kim, Padhraic Smyth:
Hierarchical Dirichlet Processes with Random Effects. NIPS 2006: 697-704 - [c65]Ian Porteous, Alexander T. Ihler, Padhraic Smyth, Max Welling:
Gibbs Sampling for (Coupled) Infinite Mixture Models in the Stick Breaking Representation. UAI 2006 - 2005
- [j34]Joshua O'Madadhain, Jon Hutchins, Padhraic Smyth:
Prediction and ranking algorithms for event-based network data. SIGKDD Explor. 7(2): 23-30 (2005) - [c64]Joshua O'Madadhain, Padhraic Smyth:
EventRank: a framework for ranking time-varying networks. LinkKDD 2005: 9-16 - [c63]Seyoung Kim, Padhraic Smyth, Hal S. Stern, Jessica A. Turner:
Parametric Response Surface Models for Analysis of Multi-site fMRI Data. MICCAI 2005: 352-359 - [c62]Scott White, Padhraic Smyth:
A Spectral Clustering Approach To Finding Communities in Graph. SDM 2005: 274-285 - 2004
- [j33]Kevin K. Lin, Darya Chudova, G. Wesley Hatfield, Padhraic Smyth, Bogi Andersen:
Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. Proc. Natl. Acad. Sci. USA 101(45): 15955-15960 (2004) - [c61]Mark Steyvers, Padhraic Smyth, Michal Rosen-Zvi, Thomas L. Griffiths:
Probabilistic author-topic models for information discovery. KDD 2004: 306-315 - [c60]Scott Gaffney, Padhraic Smyth:
Joint Probabilistic Curve Clustering and Alignment. NIPS 2004: 473-480 - [c59]Seyoung Kim, Padhraic Smyth, Stefan Luther:
Modeling Waveform Shapes with Random E ects Segmental Hidden Markov Models. UAI 2004: 309-316 - [c58]Sergey Kirshner, Padhraic Smyth, Andrew Robertson:
Conditional Chow-Liu Tree Structures for Modeling Discrete-Valued Vector Time Series. UAI 2004: 317-314 - [c57]Michal Rosen-Zvi, Thomas L. Griffiths, Mark Steyvers, Padhraic Smyth:
The Author-Topic Model for Authors and Documents. UAI 2004: 487-494 - 2003
- [b2]Pierre Baldi, Paolo Frasconi, Padhraic Smyth:
Modeling the Internet and the Web: Probabilistic Method and Algorithms. John Wiley 2003, ISBN 0-470-84906-1 - [j32]Darya Chudova, Padhraic Smyth:
Analysis of Pattern Discovery in Sequences Using a Bayes Error Framework. Data Min. Knowl. Discov. 7(3): 273-299 (2003) - [j31]Igor V. Cadez, David Heckerman, Christopher Meek, Padhraic Smyth, Steven White:
Model-Based Clustering and Visualization of Navigation Patterns on a Web Site. Data Min. Knowl. Discov. 7(4): 399-424 (2003) - [j30]Dmitry Pavlov, Heikki Mannila, Padhraic Smyth:
Beyond Independence: Probabilistic Models for Query Approximation on Binary Transaction Data. IEEE Trans. Knowl. Data Eng. 15(6): 1409-1421 (2003) - [c56]Scott Gaffney, Padhraic Smyth:
Curve Clustering with Random Effects Regression Mixtures. AISTATS 2003: 101-108 - [c55]Xianping Ge, Sridevi Parise, Padhraic Smyth:
Clustering Markov States into Equivalence Classes using SVD and Heuristic Search Algorithms. AISTATS 2003: 109-116 - [c54]Sergey Kirshner, Sridevi Parise, Padhraic Smyth:
Unsupervised Learning with Permuted Data. ICML 2003: 345-352 - [c53]Darya Chudova, Scott Gaffney, Eric Mjolsness, Padhraic Smyth:
Translation-invariant mixture models for curve clustering. KDD 2003: 79-88 - [c52]Scott White, Padhraic Smyth:
Algorithms for estimating relative importance in networks. KDD 2003: 266-275 - [c51]Darya Chudova, Christopher E. Hart, Eric Mjolsness, Padhraic Smyth:
Gene Expression Clustering with Functional Mixture Models. NIPS 2003: 683-690 - [c50]Dmitry Pavlov, Padhraic Smyth:
Approximate Query Answering by Model Averaging. SDM 2003: 142-153 - [c49]Darya Chudova, Scott Gaffney, Padhraic Smyth:
Probabilistic Models For Joint Clustering And Time-Warping Of Multidimensional Curves. UAI 2003: 134-141 - 2002
- [j29]Padhraic Smyth, Daryl Pregibon, Christos Faloutsos:
Data-driven evolution of data mining algorithms. Commun. ACM 45(8): 33-37 (2002) - [j28]Chidanand Apté, Bing Liu, Edwin P. D. Pednault, Padhraic Smyth:
Business applications of data mining. Commun. ACM 45(8): 49-53 (2002) - [j27]Igor V. Cadez, Padhraic Smyth, Geoffrey J. McLachlan, Christine E. McLaren:
Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate Data. Mach. Learn. 47(1): 7-34 (2002) - [c48]Padhraic Smyth:
Learning with Mixture Models: Concepts and Applications. ECML 2002: 529- - [c47]Sergey Kirshner, Igor V. Cadez, Padhraic Smyth, Chandrika Kamath, Erick Cantú-Paz:
Probabilistic Model-Based Detection of Bent-Double Radio Galaxies. ICPR (2) 2002: 499-502 - [c46]Darya Chudova, Padhraic Smyth:
Pattern discovery in sequences under a Markov assumption. KDD 2002: 153-162 - [c45]Sergey Kirshner, Igor V. Cadez, Padhraic Smyth, Chandrika Kamath:
Learning to Classify Galaxy Shapes Using the EM Algorithm. NIPS 2002: 1497-1504 - [c44]Padhraic Smyth:
Learning with Mixture Models: Concepts and Applications. PKDD 2002: 512 - 2001
- [b1]David J. Hand, Heikki Mannila, Padhraic Smyth:
Principles of Data Mining. MIT Press 2001, ISBN 9780262082907 - [j26]Xianping Ge, David Eppstein, Padhraic Smyth:
The distribution of loop lengths in graphical models for turbo decoding. IEEE Trans. Inf. Theory 47(6): 2549-2553 (2001) - [c43]Padhraic Smyth:
Breaking out of the Black-Box: Research Challenges in Data Mining. DMKD 2001 - [c42]Igor V. Cadez, Padhraic Smyth, Heikki Mannila:
Probabilistic modeling of transaction data with applications to profiling, visualization, and prediction. KDD 2001: 37-46 - [c41]Dmitry Pavlov, Padhraic Smyth:
Probabilistic query models for transaction data. KDD 2001: 164-173 - [c40]Igor V. Cadez, Padhraic Smyth:
Bayesian Predictive Profiles With Applications to Retail Transaction Data. NIPS 2001: 1353-1360 - 2000
- [j25]Padhraic Smyth:
Model selection for probabilistic clustering using cross-validated likelihood. Stat. Comput. 10(1): 63-72 (2000) - [j24]Stephen D. Bay, Dennis F. Kibler, Michael J. Pazzani, Padhraic Smyth:
The UCI KDD Archive of Large Data Sets for Data Mining Research and Experimentation. SIGKDD Explor. 2(2): 81-85 (2000) - [c39]Heikki Mannila, Padhraic Smyth:
Approximate Query Answering with Frequent Sets and Maximum Entropy. ICDE 2000: 309 - [c38]Xianping Ge, Padhraic Smyth:
Deformable Markov model templates for time-series pattern matching. KDD 2000: 81-90 - [c37]Igor V. Cadez, Scott Gaffney, Padhraic Smyth:
A general probabilistic framework for clustering individuals and objects. KDD 2000: 140-149 - [c36]Igor V. Cadez, David Heckerman, Christopher Meek, Padhraic Smyth, Steven White:
Visualization of navigation patterns on a Web site using model-based clustering. KDD 2000: 280-284 - [c35]Dmitry Pavlov, Darya Chudova, Padhraic Smyth:
Towards scalable support vector machines using squashing. KDD 2000: 295-299 - [c34]Igor V. Cadez, Padhraic Smyth:
Model Complexity, Goodness of Fit and Diminishing Returns. NIPS 2000: 388-394 - [c33]Dmitry Pavlov, Heikki Mannila, Padhraic Smyth:
Probabilistic Models for Query Approximation with Large Sparse Binary Data Sets. UAI 2000: 465-472
1990 – 1999
- 1999
- [j23]Padhraic Smyth, David H. Wolpert:
Linearly Combining Density Estimators via Stacking. Mach. Learn. 36(1-2): 59-83 (1999) - [j22]Padhraic Smyth:
Discussion on the paper by Friedman and Fisher. Stat. Comput. 9(2): 149-150 (1999) - [c32]Padhraic Smyth:
Joint probabilistic clustering of multivariate and sequential data. AISTATS 1999 - [c31]Igor V. Cadez, Christine E. McLaren, Padhraic Smyth, Geoffrey J. McLachlan:
Hierarchical Models for Screening of Iron Deficiency Anemia. ICML 1999: 77-86 - [c30]Scott Gaffney, Padhraic Smyth:
Trajectory Clustering with Mixtures of Regression Models. KDD 1999: 63-72 - [c29]Heikki Mannila, Dmitry Pavlov, Padhraic Smyth:
Prediction with Local Patterns using Cross-Entropy. KDD 1999: 357-361 - [c28]Xianping Ge, Wanda Pratt, Padhraic Smyth:
Discovering Chinese Words from Unsegmented Text (poster abstract). SIGIR 1999: 271-272 - [i1]Xianping Ge, David Eppstein, Padhraic Smyth:
The Distribution of Cycle Lengths in Graphical Models for Iterative Decoding. CoRR cs.DM/9907002 (1999) - 1998
- [j21]Michael C. Burl, Lars Asker, Padhraic Smyth, Usama M. Fayyad, Pietro Perona, Larry Crumpler, Jayne Aubele:
Learning to Recognize Volcanoes on Venus. Mach. Learn. 30(2-3): 165-194 (1998) - [c27]Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, Padhraic Smyth:
Rule Discovery from Time Series. KDD 1998: 16-22 - 1997
- [j20]Clark Glymour, David Madigan, Daryl Pregibon, Padhraic Smyth:
Statistical Themes and Lessons for Data Mining. Data Min. Knowl. Discov. 1(1): 11-28 (1997) - [j19]Pat Langley, Gregory M. Provan, Padhraic Smyth:
Learning with Probabilistic Representations. Mach. Learn. 29(2-3): 91-101 (1997) - [j18]Padhraic Smyth, David Heckerman, Michael I. Jordan:
Probabilistic Independence Networks for Hidden Markov Probability Models. Neural Comput. 9(2): 227-269 (1997) - [j17]Padhraic Smyth:
Belief networks, hidden Markov models, and Markov random fields: A unifying view. Pattern Recognit. Lett. 18(11-13): 1261-1268 (1997) - [j16]Carla E. Brodley, Padhraic Smyth:
Applying classification algorithms in practice. Stat. Comput. 7(1): 45-56 (1997) - [c26]William Rodman Shankle, Subramani Mani, Michael J. Pazzani, Padhraic Smyth:
Detecting Very Early Stages of Dementia from Normal Aging with Machine Learning Methods. AIME 1997: 73-85 - [c25]Padhraic Smyth:
Cross-validated Likelihood for Model Selection in Unsupervised Learning. AISTATS 1997: 473-480 - [c24]David Madigan, Padhraic Smyth:
Preface. AISTATS 1997: i-xiii - [c23]Subramani Mani, William Rodman Shankle, Michael J. Pazzani, Padhraic Smyth, Malcolm B. Dick:
Differential Diagnosis of Dementia: A Knowledge Discovery and Data Mining (KDD) Approach. AMIA 1997 - [c22]Eamonn J. Keogh, Padhraic Smyth:
A Probabilistic Approach to Fast Pattern Matching in Time Series Databases. KDD 1997: 24-30 - [c21]Padhraic Smyth, David H. Wolpert:
Anytime Exploratory Data Analysis for Massive Data Sets. KDD 1997: 54-60 - [c20]Padhraic Smyth, Michael Ghil, Kayo Ide, Joseph Roden, Andrew Fraser:
Detecting Atmospheric Regimes Using Cross-Validated Clustering. KDD 1997: 61-66 - [c19]Padhraic Smyth, David H. Wolpert:
Stacked Density Estimation. NIPS 1997: 668-674 - [e2]David Madigan, Padhraic Smyth:
Proceedings of the Sixth International Workshop on Artificial Intelligence and Statistics, AISTATS 1997, Fort Lauderdale, Florida, USA, January, 4-7, 1997. MLR Press 1997 [contents] - 1996
- [j15]Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth:
From Data Mining to Knowledge Discovery in Databases. AI Mag. 17(3): 37-54 (1996) - [j14]Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth:
The KDD Process for Extracting Useful Knowledge from Volumes of Data. Commun. ACM 39(11): 27-34 (1996) - [j13]Clark Glymour, David Madigan, Daryl Pregibon, Padhraic Smyth:
Statistical Inference and Data Mining. Commun. ACM 39(11): 35-41 (1996) - [j12]Padhraic Smyth:
Bounds on the mean classification error rate of multiple experts. Pattern Recognit. Lett. 17(12): 1253-1257 (1996) - [c18]Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth:
Knowledge Discovery and Data Mining: Towards a Unifying Framework. KDD 1996: 82-88 - [c17]Padhraic Smyth:
Clustering Using Monte Carlo Cross-Validation. KDD 1996: 126-133 - [c16]Padhraic Smyth:
Clustering Sequences with Hidden Markov Models. NIPS 1996: 648-654 - [p3]Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth:
From Data Mining to Knowledge Discovery: An Overview. Advances in Knowledge Discovery and Data Mining 1996: 1-34 - [p2]Padhraic Smyth, Usama M. Fayyad, Michael C. Burl, Pietro Perona:
Modeling Subjective Uncertainty in Image Annotation. Advances in Knowledge Discovery and Data Mining 1996: 517-539 - [e1]Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, Ramasamy Uthurusamy:
Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press 1996, ISBN 0-262-56097-6 [contents] - 1995
- [j11]Usama M. Fayyad, Padhraic Smyth, Nicholas Weir, S. George Djorgovski:
Automated Analysis and Exploration of Image Databases: Results, Progress, and Challenges. J. Intell. Inf. Syst. 4(1): 7-25 (1995) - [c15]Padhraic Smyth, Alexander G. Gray, Usama M. Fayyad:
Retrofitting Decision Tree Classifiers Using Kernel Density Estimation. ICML 1995: 506-514 - 1994
- [j10]Gregory Piatetsky-Shapiro, Christopher J. Matheus, Padhraic Smyth, Ramasamy Uthurusamy:
KDD-93: Progress and Challenges in Knowledge Discovery in Databases. AI Mag. 15(3): 77-82 (1994) - [j9]Padhraic Smyth:
Markov monitoring with unknown states. IEEE J. Sel. Areas Commun. 12(9): 1600-1612 (1994) - [j8]Padhraic Smyth:
Hidden Markov models for fault detection in dynamic system. Pattern Recognit. 27(1): 149-164 (1994) - [j7]Zheng Zeng, Rodney M. Goodman, Padhraic Smyth:
Discrete recurrent neural networks for grammatical inference. IEEE Trans. Neural Networks 5(2): 320-330 (1994) - [c14]Michael C. Burl, Usama M. Fayyad, Pietro Perona, Padhraic Smyth:
Automating the hunt for volcanoes on Venus. CVPR 1994: 302-309 - [c13]Usama M. Fayyad, Padhraic Smyth:
The Automated Analysis, Cataloging, and Searching of Digital Image Libraries: A Machine Learning Approach. DL 1994: 225-249 - [c12]Michael C. Burl, Usama M. Fayyad, Pietro Perona, Padhraic Smyth:
Automated Analysis of Radar Imagery of Venus: Handling Lack of Ground Truth. ICIP (3) 1994: 236-240 - [c11]Padhraic Smyth, Michael C. Burl, Usama M. Fayyad, Pietro Perona:
Knowledge Discovery in Large Image Databases: Dealing with Uncertainties in Ground Truth. KDD Workshop 1994: 109-120 - [c10]Padhraic Smyth, Usama M. Fayyad, Michael C. Burl, Pietro Perona, Pierre Baldi:
Inferring Ground Truth from Subjective Labelling of Venus Images. NIPS 1994: 1085-1092 - 1993
- [j6]Zheng Zeng, Rodney M. Goodman, Padhraic Smyth:
Learning Finite State Machines With Self-Clustering Recurrent Networks. Neural Comput. 5(6): 976-990 (1993) - [j5]John W. Miller, Rodney M. Goodman, Padhraic Smyth:
On loss functions which minimize to conditional expected values and posterior proba- bilities. IEEE Trans. Inf. Theory 39(4): 1404-1408 (1993) - [c9]Zheng Zeng, Rodney M. Goodman, Padhraic Smyth:
Self-clustering recurrent networks. ICNN 1993: 33-38 - [c8]Padhraic Smyth:
Probabilistic Anomaly Detection in Dynamic Systems. NIPS 1993: 825-832 - 1992
- [j4]Rodney M. Goodman, Charles M. Higgins, John W. Miller, Padhraic Smyth:
Rule-Based Neural Networks for Classification and Probability Estimation. Neural Comput. 4(6): 781-804 (1992) - [j3]Padhraic Smyth, Rodney M. Goodman:
An Information Theoretic Approach to Rule Induction from Databases. IEEE Trans. Knowl. Data Eng. 4(4): 301-316 (1992) - [c7]Padhraic Smyth, Jeff Mellstrom:
Detecting Novel Classes with Applications to Fault Diagnosis. ML 1992: 416-425 - 1991
- [c6]Padhraic Smyth, Jeff Mellstrom:
Fault Diagnosis of Antenna Pointing Systems Using Hybrid Neural Network and Signal Processing Models. NIPS 1991: 667-674 - [p1]Padhraic Smyth, Rodney M. Goodman:
Rule Induction Using Information Theory. Knowledge Discovery in Databases 1991: 159-176 - 1990
- [j2]Rodney M. Goodman, Padhraic Smyth:
Decision tree design using information theory. Knowl. Acquis. 2(1): 1-19 (1990) - [c5]Padhraic Smyth, Rodney M. Goodman, Charles M. Higgins:
A Hybrid Rule-Based/Bayesian Classifier. ECAI 1990: 610-615 - [c4]Padhraic Smyth:
On Stochastic Complexity and Admissible Models for Neural Network Classifiers. NIPS 1990: 818-824
1980 – 1989
- 1989
- [c3]Rodney M. Goodman, Padhraic Smyth:
The Induction of Probabilistic Rule Sets - The Itrule Algorithm. ML 1989: 129-132 - 1988
- [j1]Rodney M. Goodman, Padhraic Smyth:
Decision tree design from a communication theory standpoint. IEEE Trans. Inf. Theory 34(5): 979-994 (1988) - [c2]Rodney M. Goodman, Padhraic Smyth:
Information-Theoretic Rule Induction. ECAI 1988: 357-362 - [c1]Rodney M. Goodman, John W. Miller, Padhraic Smyth:
An Information Theoretic Approach to Rule-Based Connectionist Expert Systems. NIPS 1988: 256-263
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:55 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint