default search action
Lifang He 0001
Person information
- affiliation: Lehigh University, Bethlehem, PA, USA
- affiliation: University of Pennsylvania, Department of Biostatistics, Epidemiology and Informatics, Philadelphia, PA, USA
- affiliation (former): Cornell University, Weill Cornell Medical College, New York, NY, USA
- affiliation (former): Shenzhen University, School of Computer Science and Software Engineering, Computer Vision Institute, China
- affiliation (PhD 2014): South China Institute of Technology, School of Computer Science and Engineering, Guangzhou, China
- unicode name: 何丽芳
Other persons with the same name
- Lifang He
- Lifang He 0002 — Central South University, School of Information Science and Engineering, Changsha, China
- Lifang He 0003 — Nanjing University of Aeronautics and Astronautics, College of Economics and Management, China
- Lifang He 0004 — Kunming University of Science and Technology, Department of Electronics and Communication Engineering, China
- Lifang He 0005 — Chongqing University of Posts and Telecommunications, School of Communication and Information Engineering, China
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j45]Houliang Zhou, Lifang He, Brian Y. Chen, Li Shen, Yu Zhang:
Multi-Modal Diagnosis of Alzheimer's Disease Using Interpretable Graph Convolutional Networks. IEEE Trans. Medical Imaging 44(1): 142-153 (2025) - 2024
- [j44]Xinqi Du, Hechang Chen, Yongheng Xing, Philip S. Yu, Lifang He:
A Contrastive-Enhanced Ensemble Framework for Efficient Multi-Agent Reinforcement Learning. Expert Syst. Appl. 245: 123158 (2024) - [j43]Yazhou Ren, Xinyue Chen, Jie Xu, Jingyu Pu, Yonghao Huang, Xiaorong Pu, Ce Zhu, Xiaofeng Zhu, Zhifeng Hao, Lifang He:
A novel federated multi-view clustering method for unaligned and incomplete data fusion. Inf. Fusion 108: 102357 (2024) - [j42]Xinqi Du, Hechang Chen, Che Wang, Yongheng Xing, Jielong Yang, Philip S. Yu, Yi Chang, Lifang He:
Robust multi-agent reinforcement learning via Bayesian distributional value estimation. Pattern Recognit. 145: 109917 (2024) - [j41]Jun Yu, Zhaoming Kong, Kun Chen, Xin Zhang, Yong Chen, Lifang He:
A Multilinear Least-Squares Formulation for Sparse Tensor Canonical Correlation Analysis. Trans. Mach. Learn. Res. 2024 (2024) - [j40]Song Wu, Yan Zheng, Yazhou Ren, Jing He, Xiaorong Pu, Shudong Huang, Zhifeng Hao, Lifang He:
Self-Weighted Contrastive Fusion for Deep Multi-View Clustering. IEEE Trans. Multim. 26: 9150-9162 (2024) - [j39]Haonan Huang, Guoxu Zhou, Qibin Zhao, Lifang He, Shengli Xie:
Comprehensive Multiview Representation Learning via Deep Autoencoder-Like Nonnegative Matrix Factorization. IEEE Trans. Neural Networks Learn. Syst. 35(5): 5953-5967 (2024) - [c91]Jingyu Pu, Chenhang Cui, Xinyue Chen, Yazhou Ren, Xiaorong Pu, Zhifeng Hao, Philip S. Yu, Lifang He:
Adaptive Feature Imputation with Latent Graph for Deep Incomplete Multi-View Clustering. AAAI 2024: 14633-14641 - [c90]Zichen Wen, Yawen Ling, Yazhou Ren, Tianyi Wu, Jianpeng Chen, Xiaorong Pu, Zhifeng Hao, Lifang He:
Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph Clustering. AAAI 2024: 15841-15849 - [c89]Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, Joaquin Vanschoren, John C. Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yong Chen, Yue Zhao:
Position: TrustLLM: Trustworthiness in Large Language Models. ICML 2024 - [c88]JunLong Ke, Zichen Wen, Yechenhao Yang, Chenhang Cui, Yazhou Ren, Xiaorong Pu, Lifang He:
Integrating Vision-Language Semantic Graphs in Multi-View Clustering. IJCAI 2024: 4273-4281 - [c87]Yazhou Ren, Jingyu Pu, Chenhang Cui, Yan Zheng, Xinyue Chen, Xiaorong Pu, Lifang He:
Dynamic Weighted Graph Fusion for Deep Multi-View Clustering. IJCAI 2024: 4842-4850 - [c86]Yan Zheng, Song Wu, Junyu Lin, Yazhou Ren, Jing He, Xiaorong Pu, Lifang He:
Cross-View Contrastive Fusion for Enhanced Molecular Property Prediction. IJCAI 2024: 5617-5625 - [c85]Haoteng Tang, Guodong Liu, Siyuan Dai, Kai Ye, Kun Zhao, Wenlu Wang, Carl Yang, Lifang He, Alex D. Leow, Paul M. Thompson, Heng Huang, Liang Zhan:
Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. MICCAI (2) 2024: 227-237 - [c84]Zichen Wen, Tianyi Wu, Yazhou Ren, Yawen Ling, Chenhang Cui, Xiaorong Pu, Lifang He:
Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering. ACM Multimedia 2024: 1819-1828 - [c83]Guangjie Zeng, Hao Peng, Angsheng Li, Zhiwei Liu, Runze Yang, Chunyang Liu, Lifang He:
Semi-Supervised Clustering via Structural Entropy with Different Constraints. SDM 2024: 208-216 - [i83]Zichen Wen, Yawen Ling, Yazhou Ren, Tianyi Wu, Jianpeng Chen, Xiaorong Pu, Zhifeng Hao, Lifang He:
Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph Clustering. CoRR abs/2401.02682 (2024) - [i82]Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, Jindong Wang, John C. Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Lifang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana, Tianlong Chen, Tianming Liu, Tianyi Zhou, William Wang, Xiang Li, Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang Ye, Yinzhi Cao, Yue Zhao:
TrustLLM: Trustworthiness in Large Language Models. CoRR abs/2401.05561 (2024) - [i81]Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang, Hanchi Sun, Jianfeng Gao, Lifang He, Lichao Sun:
Sora: A Review on Background, Technology, Limitations, and Opportunities of Large Vision Models. CoRR abs/2402.17177 (2024) - [i80]Zhengqing Yuan, Ruoxi Chen, Zhaoxu Li, Haolong Jia, Lifang He, Chi Wang, Lichao Sun:
Mora: Enabling Generalist Video Generation via A Multi-Agent Framework. CoRR abs/2403.13248 (2024) - [i79]Kaiqiao Han, Yi Yang, Zijie Huang, Xuan Kan, Yang Yang, Ying Guo, Lifang He, Liang Zhan, Yizhou Sun, Wei Wang, Carl Yang:
BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations. CoRR abs/2405.00077 (2024) - [i78]Haoteng Tang, Guodong Liu, Siyuan Dai, Kai Ye, Kun Zhao, Wenlu Wang, Carl Yang, Lifang He, Alex D. Leow, Paul Thompson, Heng Huang, Liang Zhan:
Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. CoRR abs/2405.13190 (2024) - [i77]Zhengqing Yuan, Rong Zhou, Hongyi Wang, Lifang He, Yanfang Ye, Lichao Sun:
ViT-1.58b: Mobile Vision Transformers in the 1-bit Era. CoRR abs/2406.18051 (2024) - [i76]Weixiang Sun, Xiaocao You, Ruizhe Zheng, Zhengqing Yuan, Xiang Li, Lifang He, Quanzheng Li, Lichao Sun:
Bora: Biomedical Generalist Video Generation Model. CoRR abs/2407.08944 (2024) - [i75]Zhiling Yan, Weixiang Sun, Rong Zhou, Zhengqing Yuan, Kai Zhang, Yiwei Li, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun:
Biomedical SAM 2: Segment Anything in Biomedical Images and Videos. CoRR abs/2408.03286 (2024) - [i74]Rong Zhou, Zhengqing Yuan, Zhiling Yan, Weixiang Sun, Kai Zhang, Yiwei Li, Yanfang Ye, Xiang Li, Lifang He, Lichao Sun:
TTT-Unet: Enhancing U-Net with Test-Time Training Layers for Biomedical Image Segmentation. CoRR abs/2409.11299 (2024) - [i73]Jianpeng Chen, Yawen Ling, Yazhou Ren, Zichen Wen, Tianyi Wu, Shufei Zhang, Lifang He:
SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering. CoRR abs/2410.03596 (2024) - [i72]Zichen Wen, Tianyi Wu, Yazhou Ren, Yawen Ling, Chenhang Cui, Xiaorong Pu, Lifang He:
Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering. CoRR abs/2410.22983 (2024) - [i71]Lincan Li, Jiaqi Li, Catherine Chen, Fred Gui, Hongjia Yang, Chenxiao Yu, Zhengguang Wang, Jianing Cai, Junlong Aaron Zhou, Bolin Shen, Alex Qian, Weixin Chen, Zhongkai Xue, Lichao Sun, Lifang He, Hanjie Chen, Kaize Ding, Zijian Du, Fangzhou Mu, Jiaxin Pei, Jieyu Zhao, Swabha Swayamdipta, Willie Neiswanger, Hua Wei, Xiyang Hu, Shixiang Zhu, Tianlong Chen, Yingzhou Lu, Yang Shi, Lianhui Qin, Tianfan Fu, Zhengzhong Tu, Yuzhe Yang, Jaemin Yoo, Jiaheng Zhang, Ryan A. Rossi, Liang Zhan, Liang Zhao, Emilio Ferrara, Yan Liu, Furong Huang, Xiangliang Zhang, Lawrence Rothenberg, Shuiwang Ji, Philip S. Yu, Yue Zhao, Yushun Dong:
Political-LLM: Large Language Models in Political Science. CoRR abs/2412.06864 (2024) - 2023
- [j38]Zhimeng Yang, Yazhou Ren, Zirui Wu, Ming Zeng, Jie Xu, Yang Yang, Xiaorong Pu, Philip S. Yu, Lifang He:
DC-FUDA: Improving deep clustering via fully unsupervised domain adaptation. Neurocomputing 526: 109-120 (2023) - [j37]Yucheng Jin, Yun Xiong, Dan Shi, Yifei Lin, Lifang He, Yao Zhang, Joseph M. Plasek, Li Zhou, David W. Bates, Chunlei Tang:
Learning from undercoded clinical records for automated International Classification of Diseases (ICD) coding. J. Am. Medical Informatics Assoc. 30(3): 438-446 (2023) - [j36]Feng Zhao, Cheng Yan, Hai Jin, Lifang He:
BayesKGR: Bayesian Few-Shot Learning for Knowledge Graph Reasoning. ACM Trans. Asian Low Resour. Lang. Inf. Process. 22(6): 160:1-160:21 (2023) - [j35]Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, Philip S. Yu, Lifang He:
Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks. IEEE Trans. Knowl. Data Eng. 35(1): 560-574 (2023) - [j34]Hao Peng, Jianxin Li, Zheng Wang, Renyu Yang, Mingsheng Liu, Mingming Zhang, Philip S. Yu, Lifang He:
Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate Market. IEEE Trans. Knowl. Data Eng. 35(3): 2765-2780 (2023) - [j33]Jie Xu, Yazhou Ren, Huayi Tang, Zhimeng Yang, Lili Pan, Yang Yang, Xiaorong Pu, Philip S. Yu, Lifang He:
Self-Supervised Discriminative Feature Learning for Deep Multi-View Clustering. IEEE Trans. Knowl. Data Eng. 35(7): 7470-7482 (2023) - [j32]Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, Philip S. Yu, Lifang He, Bo Li:
Adversarial Attack and Defense on Graph Data: A Survey. IEEE Trans. Knowl. Data Eng. 35(8): 7693-7711 (2023) - [j31]Jianxin Li, Xingcheng Fu, Shijie Zhu, Hao Peng, Senzhang Wang, Qingyun Sun, Philip S. Yu, Lifang He:
A Robust and Generalized Framework for Adversarial Graph Embedding. IEEE Trans. Knowl. Data Eng. 35(11): 11004-11018 (2023) - [j30]Jianxin Li, Lifang He, Hao Peng, Peng Cui, Charu C. Aggarwal, Philip S. Yu:
Guest Editorial Introduction to the Special Issue on Anomaly Detection in Emerging Data-Driven Applications: Theory, Algorithms, and Applications. IEEE Trans. Knowl. Data Eng. 35(12): 11982-11983 (2023) - [j29]Hejie Cui, Wei Dai, Yanqiao Zhu, Xuan Kan, Antonio Aodong Chen Gu, Joshua Lukemire, Liang Zhan, Lifang He, Ying Guo, Carl Yang:
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks. IEEE Trans. Medical Imaging 42(2): 493-506 (2023) - [c82]Zongmo Huang, Yazhou Ren, Xiaorong Pu, Shudong Huang, Zenglin Xu, Lifang He:
Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering. AAAI 2023: 7936-7943 - [c81]Yawen Ling, Jianpeng Chen, Yazhou Ren, Xiaorong Pu, Jie Xu, Xiaofeng Zhu, Lifang He:
Dual Label-Guided Graph Refinement for Multi-View Graph Clustering. AAAI 2023: 8791-8798 - [c80]Houliang Zhou, Yu Zhang, Lifang He, Li Shen, Brian Y. Chen:
Interpretable Graph Convolutional Network for Alzheimer's Disease Diagnosis using Multi-Modal Imaging Genetics. BIBM 2023: 1004-1007 - [c79]Rong Zhou, Houliang Zhou, Li Shen, Brian Y. Chen, Yu Zhang, Lifang He:
Integrating Multimodal Contrastive Learning and Cross-Modal Attention for Alzheimer's Disease Prediction in Brain Imaging Genetics. BIBM 2023: 1806-1811 - [c78]Guangjie Zeng, Hao Peng, Angsheng Li, Zhiwei Liu, Chunyang Liu, Philip S. Yu, Lifang He:
Unsupervised Skin Lesion Segmentation via Structural Entropy Minimization on Multi-Scale Superpixel Graphs. ICDM 2023: 768-777 - [c77]Chenhang Cui, Yazhou Ren, Jingyu Pu, Xiaorong Pu, Lifang He:
Deep Multi-view Subspace Clustering with Anchor Graph. IJCAI 2023: 3577-3585 - [c76]Xianghua Zeng, Hao Peng, Angsheng Li, Chunyang Liu, Lifang He, Philip S. Yu:
Hierarchical State Abstraction based on Structural Information Principles. IJCAI 2023: 4549-4557 - [c75]Xuetong Wang, Rong Zhou, Kanhao Zhao, Alex D. Leow, Yu Zhang, Lifang He:
Normative Modeling Via Conditional Variational Autoencoder and Adversarial Learning to Identify Brain Dysfunction in Alzheimer's Disease. ISBI 2023: 1-4 - [c74]Yao Su, Zhentian Qian, Lei Ma, Lifang He, Xiangnan Kong:
One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data. KDD 2023: 2049-2060 - [c73]Rong Zhou, Houliang Zhou, Brian Y. Chen, Li Shen, Yu Zhang, Lifang He:
Attentive Deep Canonical Correlation Analysis for Diagnosing Alzheimer's Disease Using Multimodal Imaging Genetics. MICCAI (2) 2023: 681-691 - [c72]Xinyue Chen, Jie Xu, Yazhou Ren, Xiaorong Pu, Ce Zhu, Xiaofeng Zhu, Zhifeng Hao, Lifang He:
Federated Deep Multi-View Clustering with Global Self-Supervision. ACM Multimedia 2023: 3498-3506 - [c71]Zhenqian Wu, Yazhou Ren, Xiaorong Pu, Zhifeng Hao, Lifang He:
Generative Neutral Features-Disentangled Learning for Facial Expression Recognition. ACM Multimedia 2023: 4300-4308 - [c70]Chenhang Cui, Yazhou Ren, Jingyu Pu, Jiawei Li, Xiaorong Pu, Tianyi Wu, Yutao Shi, Lifang He:
A Novel Approach for Effective Multi-View Clustering with Information-Theoretic Perspective. NeurIPS 2023 - [i70]Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu, Lichao Sun:
A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT. CoRR abs/2302.09419 (2023) - [i69]Zhenqian Wu, Xiaoyuan Li, Yazhou Ren, Xiaorong Pu, Xiaofeng Zhu, Lifang He:
Self-Paced Neutral Expression-Disentangled Learning for Facial Expression Recognition. CoRR abs/2303.11840 (2023) - [i68]Zhaoming Kong, Fangxi Deng, Haomin Zhuang, Xiaowei Yang, Jun Yu, Lifang He:
A Comparison of Image Denoising Methods. CoRR abs/2304.08990 (2023) - [i67]Xianghua Zeng, Hao Peng, Angsheng Li, Chunyang Liu, Lifang He, Philip S. Yu:
Hierarchical State Abstraction Based on Structural Information Principles. CoRR abs/2304.12000 (2023) - [i66]Chenhang Cui, Yazhou Ren, Jingyu Pu, Xiaorong Pu, Lifang He:
Deep Multi-View Subspace Clustering with Anchor Graph. CoRR abs/2305.06939 (2023) - [i65]Kai Zhang, Jun Yu, Zhiling Yan, Yixin Liu, Eashan Adhikarla, Sunyang Fu, Xun Chen, Chen Chen, Yuyin Zhou, Xiang Li, Lifang He, Brian D. Davison, Quanzheng Li, Yong Chen, Hongfang Liu, Lichao Sun:
BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks. CoRR abs/2305.17100 (2023) - [i64]Yao Su, Zhentian Qian, Lei Ma, Lifang He, Xiangnan Kong:
One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data. CoRR abs/2307.15198 (2023) - [i63]Guangjie Zeng, Hao Peng, Angsheng Li, Zhiwei Liu, Chunyang Liu, Philip S. Yu, Lifang He:
Unsupervised Skin Lesion Segmentation via Structural Entropy Minimization on Multi-Scale Superpixel Graphs. CoRR abs/2309.01899 (2023) - [i62]Xinyue Chen, Jie Xu, Yazhou Ren, Xiaorong Pu, Ce Zhu, Xiaofeng Zhu, Zhifeng Hao, Lifang He:
Federated Deep Multi-View Clustering with Global Self-Supervision. CoRR abs/2309.13697 (2023) - [i61]Chenhang Cui, Yazhou Ren, Jingyu Pu, Jiawei Li, Xiaorong Pu, Tianyi Wu, Yutao Shi, Lifang He:
A Novel Approach for Effective Multi-View Clustering with Information-Theoretic Perspective. CoRR abs/2309.13989 (2023) - [i60]Zhiling Yan, Kai Zhang, Rong Zhou, Lifang He, Xiang Li, Lichao Sun:
Multimodal ChatGPT for Medical Applications: an Experimental Study of GPT-4V. CoRR abs/2310.19061 (2023) - [i59]Guangjie Zeng, Hao Peng, Angsheng Li, Zhiwei Liu, Runze Yang, Chunyang Liu, Lifang He:
Semi-Supervised Clustering via Structural Entropy with Different Constraints. CoRR abs/2312.10917 (2023) - 2022
- [j28]Yue Fei, Fan Chen, Lifang He, Jiamin Chen, Yuexing Hao, Xia Li, Guiqing Liu, Qinqun Chen, Li Li, Hang Wei:
Intelligent classification of antenatal cardiotocography signals via multimodal bidirectional gated recurrent units. Biomed. Signal Process. Control. 78: 104008 (2022) - [j27]Hongren Huang, Chen Li, Xutan Peng, Lifang He, Shu Guo, Hao Peng, Lihong Wang, Jianxin Li:
Cross-knowledge-graph entity alignment via relation prediction. Knowl. Based Syst. 240: 107813 (2022) - [j26]Liping Huang, Yongjian Yang, Hechang Chen, Yunke Zhang, Zijia Wang, Lifang He:
Context-aware road travel time estimation by coupled tensor decomposition based on trajectory data. Knowl. Based Syst. 245: 108596 (2022) - [j25]Xiangchun Yu, Hechang Chen, Miaomiao Liang, Qing Xu, Lifang He:
A transfer learning-based novel fusion convolutional neural network for breast cancer histology classification. Multim. Tools Appl. 81(9): 11949-11963 (2022) - [j24]Xusheng Zhao, Jia Wu, Hao Peng, Amin Beheshti, Jessica J. M. Monaghan, David McAlpine, Heivet Hernandez-Perez, Mark Dras, Qiong Dai, Yangyang Li, Philip S. Yu, Lifang He:
Deep reinforcement learning guided graph neural networks for brain network analysis. Neural Networks 154: 56-67 (2022) - [j23]Hao Peng, Renyu Yang, Zheng Wang, Jianxin Li, Lifang He, Philip S. Yu, Albert Y. Zomaya, Rajiv Ranjan:
Lime: Low-Cost and Incremental Learning for Dynamic Heterogeneous Information Networks. IEEE Trans. Computers 71(3): 628-642 (2022) - [j22]Xiaohang Xu, Hao Peng, Md. Zakirul Alam Bhuiyan, Zhifeng Hao, Lianzhong Liu, Lichao Sun, Lifang He:
Privacy-Preserving Federated Depression Detection From Multisource Mobile Health Data. IEEE Trans. Ind. Informatics 18(7): 4788-4797 (2022) - [j21]Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu, Lifang He:
A Survey on Text Classification: From Traditional to Deep Learning. ACM Trans. Intell. Syst. Technol. 13(2): 31:1-31:41 (2022) - [j20]Sicong Che, Zhaoming Kong, Hao Peng, Lichao Sun, Alex D. Leow, Yong Chen, Lifang He:
Federated Multi-view Learning for Private Medical Data Integration and Analysis. ACM Trans. Intell. Syst. Technol. 13(4): 61:1-61:23 (2022) - [j19]Chen Li, Hao Peng, Jianxin Li, Lichao Sun, Lingjuan Lyu, Lihong Wang, Philip S. Yu, Lifang He:
Joint Stance and Rumor Detection in Hierarchical Heterogeneous Graph. IEEE Trans. Neural Networks Learn. Syst. 33(6): 2530-2542 (2022) - [c69]Gongxu Luo, Chenyang Li, Hejie Cui, Lichao Sun, Lifang He, Carl Yang:
Multi-View Brain Network Analysis with Cross-View Missing Network Generation. BIBM 2022: 108-115 - [c68]Jun Yu, Benjamin Zalatan, Yong Chen, Li Shen, Lifang He:
Tensor-Based Multi-Modal Multi-Target Regression for Alzheimer's Disease Prediction. BIBM 2022: 639-646 - [c67]Hejie Cui, Wei Dai, Yanqiao Zhu, Xuan Kan, Antonio Aodong Chen Gu, Joshua Lukemire, Liang Zhan, Lifang He, Ying Guo, Carl Yang:
BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks (Extended Abstract). IEEE Big Data 2022: 4968-4969 - [c66]Jiaqian Ren, Lei Jiang, Hao Peng, Yuwei Cao, Jia Wu, Philip S. Yu, Lifang He:
From Known to Unknown: Quality-aware Self-improving Graph Neural Network For Open Set Social Event Detection. CIKM 2022: 1696-1705 - [c65]Jie Xu, Huayi Tang, Yazhou Ren, Liang Peng, Xiaofeng Zhu, Lifang He:
Multi-level Feature Learning for Contrastive Multi-view Clustering. CVPR 2022: 16030-16039 - [c64]Yanqiao Zhu, Hejie Cui, Lifang He, Lichao Sun, Carl Yang:
Joint Embedding of Structural and Functional Brain Networks with Graph Neural Networks for Mental Illness Diagnosis. EMBC 2022: 272-276 - [c63]Yao Su, Xin Dai, Lifang He, Xiangnan Kong:
ABN: Anti-Blur Neural Networks for Multi-Stage Deformable Image Registration. ICDM 2022: 468-477 - [c62]Jianpeng Chen, Zhimeng Yang, Jingyu Pu, Yazhou Ren, Xiaorong Pu, Li Gao, Lifang He:
Shared-Attribute Multi-Graph Clustering with Global Self-Attention. ICONIP (1) 2022: 51-63 - [c61]Jun Yu, Zhaoming Kong, Aditya Kendre, Hao Peng, Carl Yang, Lichao Sun, Alex D. Leow, Lifang He:
Structure-Preserving Graph Kernel for Brain Network Classification. ISBI 2022: 1-5 - [c60]Houliang Zhou, Lifang He, Yu Zhang, Li Shen, Brian Chen:
Interpretable Graph Convolutional Network Of Multi-Modality Brain Imaging For Alzheimer's Disease Diagnosis. ISBI 2022: 1-5 - [c59]Yao Su, Zhentian Qian, Lifang He, Xiangnan Kong:
ERNet: Unsupervised Collective Extraction and Registration in Neuroimaging Data. KDD 2022: 1666-1675 - [c58]Yi Yang, Yanqiao Zhu, Hejie Cui, Xuan Kan, Lifang He, Ying Guo, Carl Yang:
Data-Efficient Brain Connectome Analysis via Multi-Task Meta-Learning. KDD 2022: 4743-4751 - [c57]Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, Carl Yang:
Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis. MICCAI (8) 2022: 375-385 - [c56]Houliang Zhou, Yu Zhang, Brian Y. Chen, Li Shen, Lifang He:
Sparse Interpretation of Graph Convolutional Networks for Multi-modal Diagnosis of Alzheimer's Disease. MICCAI (8) 2022: 469-478 - [i58]Weihang Yuan, Hector Muñoz-Avila, Venkatsampath Raja Gogineni, Sravya Kondrakunta, Michael T. Cox, Lifang He:
Task Modifiers for HTN Planning and Acting. CoRR abs/2202.04611 (2022) - [i57]Xiaoqin Pan, Xuan Lin, Dongsheng Cao, Xiangxiang Zeng, Philip S. Yu, Lifang He, Ruth Nussinov, Feixiong Cheng:
Deep learning for drug repurposing: methods, databases, and applications. CoRR abs/2202.05145 (2022) - [i56]Xusheng Zhao, Jia Wu, Hao Peng, Amin Beheshti, Jessica Monaghan, David McAlpine, Heivet Hernandez-Perez, Mark Dras, Qiong Dai, Yangyang Li, Philip S. Yu, Lifang He:
Deep Reinforcement Learning Guided Graph Neural Networks for Brain Network Analysis. CoRR abs/2203.10093 (2022) - [i55]Hejie Cui, Wei Dai, Yanqiao Zhu, Xuan Kan, Antonio Aodong Chen Gu, Joshua Lukemire, Liang Zhan, Lifang He, Ying Guo, Carl Yang:
BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks. CoRR abs/2204.07054 (2022) - [i54]Houliang Zhou, Lifang He, Yu Zhang, Li Shen, Brian Chen:
Interpretable Graph Convolutional Network of Multi-Modality Brain Imaging for Alzheimer's Disease Diagnosis. CoRR abs/2204.13188 (2022) - [i53]Zongmo Huang, Yazhou Ren, Xiaorong Pu, Lifang He:
Deep Embedded Multi-View Clustering via Jointly Learning Latent Representations and Graphs. CoRR abs/2205.03803 (2022) - [i52]Yi Yang, Yanqiao Zhu, Hejie Cui, Xuan Kan, Lifang He, Ying Guo, Carl Yang:
Data-Efficient Brain Connectome Analysis via Multi-Task Meta-Learning. CoRR abs/2206.04486 (2022) - [i51]Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, Carl Yang:
Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis. CoRR abs/2207.00813 (2022) - [i50]Jiaqian Ren, Lei Jiang, Hao Peng, Yuwei Cao, Jia Wu, Philip S. Yu, Lifang He:
From Known to Unknown: Quality-aware Self-improving Graph Neural Network for Open Set Social Event Detection. CoRR abs/2208.06973 (2022) - [i49]Jun Yu, Zhaoming Kong, Liang Zhan, Li Shen, Lifang He:
Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis. CoRR abs/2209.11372 (2022) - [i48]Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, Philip S. Yu, Lifang He:
Deep Clustering: A Comprehensive Survey. CoRR abs/2210.04142 (2022) - [i47]Jianpeng Chen, Yawen Ling, Jie Xu, Yazhou Ren, Shudong Huang, Xiaorong Pu, Lifang He:
Variational Graph Generator for Multi-View Graph Clustering. CoRR abs/2210.07011 (2022) - [i46]Xuetong Wang, Kanhao Zhao, Rong Zhou, Alex D. Leow, Ricardo Osorio, Yu Zhang, Lifang He:
Normative Modeling via Conditional Variational Autoencoder and Adversarial Learning to Identify Brain Dysfunction in Alzheimer's Disease. CoRR abs/2211.08982 (2022) - [i45]Yao Su, Xin Dai, Lifang He, Xiangnan Kong:
ABN: Anti-Blur Neural Networks for Multi-Stage Deformable Image Registration. CoRR abs/2212.03277 (2022) - [i44]Yao Su, Zhentian Qian, Lifang He, Xiangnan Kong:
ERNet: Unsupervised Collective Extraction and Registration in Neuroimaging Data. CoRR abs/2212.03306 (2022) - 2021
- [j18]Hao Peng, Bowen Du, Mingsheng Liu, Mingzhe Liu, Shumei Ji, Senzhang Wang, Xu Zhang, Lifang He:
Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf. Sci. 578: 401-416 (2021) - [j17]Haoteng Tang, Guixiang Ma, Lifang He, Heng Huang, Liang Zhan:
CommPOOL: An interpretable graph pooling framework for hierarchical graph representation learning. Neural Networks 143: 669-677 (2021) - [j16]Hao Peng, Jianxin Li, Yangqiu Song, Renyu Yang, Rajiv Ranjan, Philip S. Yu, Lifang He:
Streaming Social Event Detection and Evolution Discovery in Heterogeneous Information Networks. ACM Trans. Knowl. Discov. Data 15(5): 89:1-89:33 (2021) - [j15]Hao Peng, Jianxin Li, Senzhang Wang, Lihong Wang, Qiran Gong, Renyu Yang, Bo Li, Philip S. Yu, Lifang He:
Hierarchical Taxonomy-Aware and Attentional Graph Capsule RCNNs for Large-Scale Multi-Label Text Classification. IEEE Trans. Knowl. Data Eng. 33(6): 2505-2519 (2021) - [j14]Linchuan Xu, Jing Wang, Lifang He, Jiannong Cao, Xiaokai Wei, Philip S. Yu, Kenji Yamanishi:
MixSp: A Framework for Embedding Heterogeneous Information Networks With Arbitrary Number of Node and Edge Types. IEEE Trans. Knowl. Data Eng. 33(6): 2627-2639 (2021) - [c55]Shijie Zhu, Jianxin Li, Hao Peng, Senzhang Wang, Lifang He:
Adversarial Directed Graph Embedding. AAAI 2021: 4741-4748 - [c54]Ye Liu, Yao Wan, Lifang He, Hao Peng, Philip S. Yu:
KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning. AAAI 2021: 6418-6425 - [c53]Ye Liu, Jian-Guo Zhang, Yao Wan, Congying Xia, Lifang He, Philip S. Yu:
HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text Extractive Summarization. EMNLP (1) 2021: 146-154 - [c52]Jie Xu, Yazhou Ren, Huayi Tang, Xiaorong Pu, Xiaofeng Zhu, Ming Zeng, Lifang He:
Multi-VAE: Learning Disentangled View-common and View-peculiar Visual Representations for Multi-view Clustering. ICCV 2021: 9214-9223 - [c51]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Outlier-Robust Multi-View Subspace Clustering with Prior Constraints. ICDM 2021: 439-448 - [c50]Gongxu Luo, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu, Lifang He:
Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks. IJCAI 2021: 2767-2774 - [c49]Zongmo Huang, Yazhou Ren, Xiaorong Pu, Lifang He:
Non-Linear Fusion for Self-Paced Multi-View Clustering. ACM Multimedia 2021: 3211-3219 - [c48]Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S. Yu, Lifang He:
SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism. WWW 2021: 2081-2091 - [i43]Zheng Liu, Xiaohan Li, Hao Peng, Lifang He, Philip S. Yu:
Heterogeneous Similarity Graph Neural Network on Electronic Health Records. CoRR abs/2101.06800 (2021) - [i42]Qingyun Sun, Hao Peng, Jianxin Li, Jia Wu, Yuanxing Ning, Philip S. Yu, Lifang He:
SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism. CoRR abs/2101.08170 (2021) - [i41]Xiaohang Xu, Hao Peng, Lichao Sun, Yan Niu, Hongyuan Ma, Lianzhong Liu, Lifang He:
Federated Depression Detection from Multi-SourceMobile Health Data. CoRR abs/2102.09342 (2021) - [i40]Hao Peng, Jianxin Li, Yangqiu Song, Renyu Yang, Rajiv Ranjan, Philip S. Yu, Lifang He:
Streaming Social Event Detection and Evolution Discovery in Heterogeneous Information Networks. CoRR abs/2104.00853 (2021) - [i39]Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, Philip S. Yu, Lifang He:
Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks. CoRR abs/2104.07892 (2021) - [i38]Zongmo Huang, Yazhou Ren, Xiaorong Pu, Lifang He:
Non-Linear Fusion for Self-Paced Multi-View Clustering. CoRR abs/2104.09255 (2021) - [i37]Sicong Che, Hao Peng, Lichao Sun, Yong Chen, Lifang He:
Federated Multi-View Learning for Private Medical Data Integration and Analysis. CoRR abs/2105.01603 (2021) - [i36]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Error-Robust Multi-View Clustering: Progress, Challenges and Opportunities. CoRR abs/2105.03058 (2021) - [i35]Gongxu Luo, Jianxin Li, Hao Peng, Carl Yang, Lichao Sun, Philip S. Yu, Lifang He:
Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural Networks. CoRR abs/2105.03178 (2021) - [i34]Jianxin Li, Xingcheng Fu, Hao Peng, Senzhang Wang, Shijie Zhu, Qingyun Sun, Philip S. Yu, Lifang He:
A Robust and Generalized Framework for Adversarial Graph Embedding. CoRR abs/2105.10651 (2021) - [i33]Jie Xu, Huayi Tang, Yazhou Ren, Xiaofeng Zhu, Lifang He:
Contrastive Multi-Modal Clustering. CoRR abs/2106.11193 (2021) - [i32]Yanqiao Zhu, Hejie Cui, Lifang He, Lichao Sun, Carl Yang:
Joint Embedding of Structural and Functional Brain Networks with Graph Neural Networks for Mental Illness Diagnosis. CoRR abs/2107.03220 (2021) - [i31]Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, Carl Yang:
BrainNNExplainer: An Interpretable Graph Neural Network Framework for Brain Network based Disease Analysis. CoRR abs/2107.05097 (2021) - [i30]Zhaoming Kong, Lichao Sun, Hao Peng, Liang Zhan, Yong Chen, Lifang He:
Multiplex Graph Networks for Multimodal Brain Network Analysis. CoRR abs/2108.00158 (2021) - [i29]Ye Liu, Jian-Guo Zhang, Yao Wan, Congying Xia, Lifang He, Philip S. Yu:
HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text Extractive Summarization. CoRR abs/2110.06388 (2021) - [i28]Zhaoming Kong, Aditya Kendre, Jun Yu, Hao Peng, Carl Yang, Lichao Sun, Alex D. Leow, Lifang He:
Structure-Preserving Graph Kernel for Brain Network Classification. CoRR abs/2111.10803 (2021) - 2020
- [j13]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Haochao Ying, Philip S. Yu, Jian Wu:
CAMAR: a broad learning based context-aware recommender for mobile applications. Knowl. Inf. Syst. 62(8): 3291-3319 (2020) - [c47]Hao Peng, Jianxin Li, Qiran Gong, Yuanxing Ning, Senzhang Wang, Lifang He:
Motif-Matching Based Subgraph-Level Attentional Convolutional Network for Graph Classification. AAAI 2020: 5387-5394 - [c46]Zheng Liu, Xiaohan Li, Hao Peng, Lifang He, Philip S. Yu:
Heterogeneous Similarity Graph Neural Network on Electronic Health Records. IEEE BigData 2020: 1196-1205 - [c45]Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu, Lifang He:
Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks. COLING 2020: 3436-3440 - [c44]Zhongfen Deng, Hao Peng, Congying Xia, Jianxin Li, Lifang He, Philip S. Yu:
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation. COLING 2020: 6302-6314 - [c43]Qingyun Sun, Hao Peng, Jianxin Li, Senzhang Wang, Xiangyu Dong, Liangxuan Zhao, Philip S. Yu, Lifang He:
Pairwise Learning for Name Disambiguation in Large-Scale Heterogeneous Academic Networks. ICDM 2020: 511-520 - [i27]Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu, Lifang He:
A Survey on Text Classification: From Shallow to Deep Learning. CoRR abs/2008.00364 (2020) - [i26]Shijie Zhu, Jianxin Li, Hao Peng, Senzhang Wang, Philip S. Yu, Lifang He:
Adversarial Directed Graph Embedding. CoRR abs/2008.03667 (2020) - [i25]Hao Peng, Jianxin Li, Zheng Wang, Renyu Yang, Mingzhe Liu, Mingming Zhang, Philip S. Yu, Lifang He:
Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate Market. CoRR abs/2008.05880 (2020) - [i24]Qingyun Sun, Hao Peng, Jianxin Li, Senzhang Wang, Xiangyu Dong, Liangxuan Zhao, Philip S. Yu, Lifang He:
Pairwise Learning for Name Disambiguation in Large-Scale Heterogeneous Academic Networks. CoRR abs/2008.13099 (2020) - [i23]Ye Liu, Yao Wan, Lifang He, Hao Peng, Philip S. Yu:
KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning. CoRR abs/2009.12677 (2020) - [i22]Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu, Lifang He:
Mixup-Transfomer: Dynamic Data Augmentation for NLP Tasks. CoRR abs/2010.02394 (2020) - [i21]Zhongfen Deng, Hao Peng, Congying Xia, Jianxin Li, Lifang He, Philip S. Yu:
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation. CoRR abs/2011.00802 (2020) - [i20]Zhaoming Kong, Xiaowei Yang, Lifang He:
A Comprehensive Comparison of Multi-Dimensional Image Denoising Methods. CoRR abs/2011.03462 (2020) - [i19]Haoteng Tang, Guixiang Ma, Lifang He, Heng Huang, Liang Zhan:
CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical Graph Representation Learning. CoRR abs/2012.05980 (2020)
2010 – 2019
- 2019
- [j12]Ke Yu, Lifang He, Philip S. Yu, Wenkai Zhang, Yue Liu:
Coupled Tensor Decomposition for User Clustering in Mobile Internet Traffic Interaction Pattern. IEEE Access 7: 18113-18124 (2019) - [j11]Limeng Cui, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-view collective tensor decomposition for cross-modal hashing. Int. J. Multim. Inf. Retr. 8(1): 47-59 (2019) - [c42]Lei Zheng, Chun-Ta Lu, Lifang He, Sihong Xie, He Huang, Chaozhuo Li, Vahid Noroozi, Bowen Dong, Philip S. Yu:
MARS: Memory Attention-Aware Recommender System. DSAA 2019: 11-20 - [c41]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Outlier-Robust Multi-Aspect Streaming Tensor Completion and Factorization. IJCAI 2019: 3187-3194 - [i18]Hao Peng, Jianxin Li, Qiran Gong, Senzhang Wang, Lifang He, Bo Li, Lihong Wang, Philip S. Yu:
Hierarchical Taxonomy-Aware and Attentional Graph Capsule RCNNs for Large-Scale Multi-Label Text Classification. CoRR abs/1906.04898 (2019) - 2018
- [c40]Ye Liu, Lifang He, Bokai Cao, Philip S. Yu, Ann B. Ragin, Alex D. Leow:
Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis. AAAI 2018: 117-124 - [c39]Xi Zhang, Lifang He, Kun Chen, Yuan Luo, Jiayu Zhou, Fei Wang:
Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease. AMIA 2018 - [c38]Lei Zheng, Yixue Wang, Lifang He, Sihong Xie, Fengjiao Wang, Philip S. Yu:
PER: A Probabilistic Attentional Model for Personalized Text Recommendations. IEEE BigData 2018: 911-920 - [c37]Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu:
Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks. ICBK 2018: 131-138 - [c36]Chaozhuo Li, Senzhang Wang, Lifang He, Philip S. Yu, Yanbo Liang, Zhoujun Li:
SSDMV: Semi-Supervised Deep Social Spammer Detection by Multi-view Data Fusion. ICDM 2018: 247-256 - [c35]Lifang He, Chun-Ta Lu, Yong Chen, Jiawei Zhang, Linlin Shen, Philip S. Yu, Fei Wang:
A Self-Organizing Tensor Architecture for Multi-view Clustering. ICDM 2018: 1007-1012 - [c34]Jianguo Zhang, Ji Wang, Lifang He, Zhao Li, Philip S. Yu:
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction. ICDM 2018: 1428-1433 - [c33]Limeng Cui, Zhensong Chen, Jiawei Zhang, Lifang He, Yong Shi, Philip S. Yu:
Multi-View Fusion Through Cross-Modal Retrieval. ICIP 2018: 1977-1981 - [c32]Limeng Cui, Zhensong Chen, Jiawei Zhang, Lifang He, Yong Shi, Philip S. Yu:
Multi-view Collective Tensor Decomposition for Cross-modal Hashing. ICMR 2018: 73-81 - [c31]Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang:
Boosted Sparse and Low-Rank Tensor Regression. NeurIPS 2018: 1017-1026 - [c30]Fei Jiang, Lifang He, Yi Zheng, Enqiang Zhu, Jin Xu, Philip S. Yu:
On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation. SDM 2018: 324-332 - [c29]Chun-Ta Lu, Lifang He, Hao Ding, Bokai Cao, Philip S. Yu:
Learning from Multi-View Multi-Way Data via Structural Factorization Machines. WWW 2018: 1593-1602 - [i17]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Error-Robust Multi-View Clustering. CoRR abs/1801.00384 (2018) - [i16]Fei Jiang, Lifang He, Yi Zheng, Enqiang Zhu, Jin Xu, Philip S. Yu:
On Spectral Graph Embedding: A Non-Backtracking Perspective and Graph Approximation. CoRR abs/1801.05855 (2018) - [i15]Lei Zheng, Chun-Ta Lu, Lifang He, Sihong Xie, Vahid Noroozi, He Huang, Philip S. Yu:
MARS: Memory Attention-Aware Recommender System. CoRR abs/1805.07037 (2018) - [i14]Xi Zhang, Lifang He, Kun Chen, Yuan Luo, Jiayu Zhou, Fei Wang:
Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease. CoRR abs/1805.08801 (2018) - [i13]Ye Liu, Lifang He, Bokai Cao, Philip S. Yu, Ann B. Ragin, Alex D. Leow:
Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis. CoRR abs/1806.07703 (2018) - [i12]Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu:
Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks. CoRR abs/1809.04110 (2018) - [i11]Jianguo Zhang, Ji Wang, Lifang He, Zhao Li, Philip S. Yu:
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction. CoRR abs/1809.04188 (2018) - [i10]Lifang He, Chun-Ta Lu, Yong Chen, Jiawei Zhang, Linlin Shen, Philip S. Yu, Fei Wang:
A Self-Organizing Tensor Architecture for Multi-View Clustering. CoRR abs/1810.07874 (2018) - [i9]Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang:
Boosted Sparse and Low-Rank Tensor Regression. CoRR abs/1811.01158 (2018) - 2017
- [j10]Ning Yang, Lifang He, Zheng Li, Philip S. Yu:
Reducing uncertainty of dynamic heterogeneous information networks: a fusing reconstructing approach. Data Min. Knowl. Discov. 31(3): 879-906 (2017) - [j9]Senzhang Wang, Xiaoming Zhang, Jianping Cao, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li, Zhiqiu Huang:
Computing Urban Traffic Congestions by Incorporating Sparse GPS Probe Data and Social Media Data. ACM Trans. Inf. Syst. 35(4): 40:1-40:30 (2017) - [c28]Mehrnaz Najafi, Lifang He, Philip S. Yu:
Error-robust multi-view clustering. IEEE BigData 2017: 736-745 - [c27]Lichao Sun, Xiaokai Wei, Jiawei Zhang, Lifang He, Philip S. Yu, Witawas Srisa-an:
Contaminant removal for Android malware detection systems. IEEE BigData 2017: 1053-1062 - [c26]Guixiang Ma, Lifang He, Chun-Ta Lu, Weixiang Shao, Philip S. Yu, Alex D. Leow, Ann B. Ragin:
Multi-view Clustering with Graph Embedding for Connectome Analysis. CIKM 2017: 127-136 - [c25]Yuqi Wang, Jiannong Cao, Lifang He, Wengen Li, Lichao Sun, Philip S. Yu:
Coupled Sparse Matrix Factorization for Response Time Prediction in Logistics Services. CIKM 2017: 939-947 - [c24]Junxing Zhu, Jiawei Zhang, Lifang He, Quanyuan Wu, Bin Zhou, Chenwei Zhang, Philip S. Yu:
Broad Learning based Multi-Source Collaborative Recommendation. CIKM 2017: 1409-1418 - [c23]Lifang He, Chun-Ta Lu, Hao Ding, Shen Wang, Linlin Shen, Philip S. Yu, Ann B. Ragin:
Multi-way Multi-level Kernel Modeling for Neuroimaging Classification. CVPR 2017: 6846-6854 - [c22]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Philip S. Yu, Jian Wu:
A Broad Learning Approach for Context-Aware Mobile Application Recommendation. ICDM 2017: 955-960 - [c21]Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin:
Multi-view Graph Embedding with Hub Detection for Brain Network Analysis. ICDM 2017: 967-972 - [c20]Lifang He, Chun-Ta Lu, Guixiang Ma, Shen Wang, LinLin Shen, Philip S. Yu, Ann B. Ragin:
Kernelized Support Tensor Machines. ICML 2017: 1442-1451 - [c19]Shen Wang, Lifang He, Bokai Cao, Chun-Ta Lu, Philip S. Yu, Ann B. Ragin:
Structural Deep Brain Network Mining. KDD 2017: 475-484 - [c18]Bokai Cao, Lifang He, Xiaokai Wei, Mengqi Xing, Philip S. Yu, Heide Klumpp, Alex D. Leow:
t-BNE: Tensor-based Brain Network Embedding. SDM 2017: 189-197 - [c17]Chun-Ta Lu, Lifang He, Weixiang Shao, Bokai Cao, Philip S. Yu:
Multilinear Factorization Machines for Multi-Task Multi-View Learning. WSDM 2017: 701-709 - [i8]Chun-Ta Lu, Lifang He, Hao Ding, Philip S. Yu:
Learning from Multi-View Structural Data via Structural Factorization Machines. CoRR abs/1704.03037 (2017) - [i7]Tingting Liang, Lifang He, Chun-Ta Lu, Liang Chen, Philip S. Yu, Jian Wu:
A Broad Learning Approach for Context-Aware Mobile Application Recommendation. CoRR abs/1709.03621 (2017) - [i6]Guixiang Ma, Chun-Ta Lu, Lifang He, Philip S. Yu, Ann B. Ragin:
Multi-view Graph Embedding with Hub Detection for Brain Network Analysis. CoRR abs/1709.03659 (2017) - [i5]Lichao Sun, Xiaokai Wei, Jiawei Zhang, Lifang He, Philip S. Yu, Witawas Srisa-an:
Contaminant Removal for Android Malware Detection Systems. CoRR abs/1711.02715 (2017) - 2016
- [j8]De-Yu Tang, Shoubin Dong, Lifang He, Yi Jiang:
Intrusive tumor growth inspired optimization algorithm for data clustering. Neural Comput. Appl. 27(2): 349-374 (2016) - [c16]Weixiang Shao, Lifang He, Chun-Ta Lu, Philip S. Yu:
Online multi-view clustering with incomplete views. IEEE BigData 2016: 1012-1017 - [c15]Weixiang Shao, Lifang He, Chun-Ta Lu, Xiaokai Wei, Philip S. Yu:
Online Unsupervised Multi-view Feature Selection. ICDM 2016: 1203-1208 - [c14]Chun-Ta Lu, Sihong Xie, Weixiang Shao, Lifang He, Philip S. Yu:
Item Recommendation for Emerging Online Businesses. IJCAI 2016: 3797-3803 - [c13]Weixiang Shao, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-source Multi-view Clustering via discrepancy penalty. IJCNN 2016: 2714-2721 - [c12]Lifang He, Chun-Ta Lu, Jiaqi Ma, Jianping Cao, Linlin Shen, Philip S. Yu:
Joint Community and Structural Hole Spanner Detection via Harmonic Modularity. KDD 2016: 875-884 - [c11]Senzhang Wang, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li, Zhiqiu Huang:
Estimating Urban Traffic Congestions with Multi-sourced Data. MDM 2016: 82-91 - [c10]Guixiang Ma, Lifang He, Bokai Cao, Jiawei Zhang, Philip S. Yu, Ann B. Ragin:
Multi-graph Clustering Based on Interior-Node Topology with Applications to Brain Networks. ECML/PKDD (1) 2016: 476-492 - [c9]Jiawei Zhang, Qianyi Zhan, Lifang He, Charu C. Aggarwal, Philip S. Yu:
Trust Hole Identification in Signed Networks. ECML/PKDD (1) 2016: 697-713 - [c8]Guixiang Ma, Lifang He, Chun-Ta Lu, Philip S. Yu, Linlin Shen, Ann B. Ragin:
Spatio-Temporal Tensor Analysis for Whole-Brain fMRI Classification. SDM 2016: 819-827 - [i4]Weixiang Shao, Jiawei Zhang, Lifang He, Philip S. Yu:
Multi-Source Multi-View Clustering via Discrepancy Penalty. CoRR abs/1604.04029 (2016) - [i3]Weixiang Shao, Lifang He, Chun-Ta Lu, Xiaokai Wei, Philip S. Yu:
Online Unsupervised Multi-view Feature Selection. CoRR abs/1609.08286 (2016) - [i2]Weixiang Shao, Lifang He, Chun-Ta Lu, Philip S. Yu:
Online Multi-view Clustering with Incomplete Views. CoRR abs/1611.00481 (2016) - 2015
- [j7]Xiaowei Yang, Le Han, Yan Li, Lifang He:
A bilateral-truncated-loss based robust support vector machine for classification problems. Soft Comput. 19(10): 2871-2882 (2015) - [j6]Xiaolan Liu, Tengjiao Guo, Lifang He, Xiaowei Yang:
A Low-Rank Approximation-Based Transductive Support Tensor Machine for Semisupervised Classification. IEEE Trans. Image Process. 24(6): 1825-1838 (2015) - [c7]Xiaobing Han, Yanfei Zhong, Lifang He, Philip S. Yu, Liangpei Zhang:
The Unsupervised Hierarchical Convolutional Sparse Auto-Encoder for Neuroimaging Data Classification. BIH 2015: 156-166 - [c6]Senzhang Wang, Lifang He, Leon Stenneth, Philip S. Yu, Zhoujun Li:
Citywide traffic congestion estimation with social media. SIGSPATIAL/GIS 2015: 34:1-34:10 - [c5]Weixiang Shao, Lifang He, Philip S. Yu:
Clustering on Multi-source Incomplete Data via Tensor Modeling and Factorization. PAKDD (2) 2015: 485-497 - [c4]Weixiang Shao, Lifang He, Philip S. Yu:
Multiple Incomplete Views Clustering via Weighted Nonnegative Matrix Factorization with L2, 1 Regularization. ECML/PKDD (1) 2015: 318-334 - 2014
- [j5]Xiaowei Yang, Liangjun Tan, Lifang He:
A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140: 41-52 (2014) - [j4]Tengjiao Guo, Le Han, Lifang He, Xiaowei Yang:
A GA-based feature selection and parameter optimization for linear support higher-order tensor machine. Neurocomputing 144: 408-416 (2014) - [c3]Bokai Cao, Lifang He, Xiangnan Kong, Philip S. Yu, Zhifeng Hao, Ann B. Ragin:
Tensor-Based Multi-view Feature Selection with Applications to Brain Diseases. ICDM 2014: 40-49 - [c2]Lifang He, Hong-Han Shuai, Xiangnan Kong, Zhifeng Hao, Xiaowei Yang, Philip S. Yu:
Low-Density Cut Based Tree Decomposition for Large-Scale SVM Problems. ICDM 2014: 839-844 - [c1]Lifang He, Xiangnan Kong, Philip S. Yu, Xiaowei Yang, Ann B. Ragin, Zhifeng Hao:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. SDM 2014: 127-135 - [i1]Lifang He, Xiangnan Kong, Philip S. Yu, Ann B. Ragin, Zhifeng Hao, Xiaowei Yang:
DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages. CoRR abs/1407.8289 (2014) - 2013
- [j3]Xiaowei Yang, Qiaozhen Yu, Lifang He, Tengjiao Guo:
The one-against-all partition based binary tree support vector machine algorithms for multi-class classification. Neurocomputing 113: 1-7 (2013) - [j2]Lifang He, Xiaowei Yang, Zhifeng Hao:
An adaptive class pairwise dimensionality reduction algorithm. Neural Comput. Appl. 23(2): 299-310 (2013) - [j1]Zhifeng Hao, Lifang He, Bingqian Chen, Xiaowei Yang:
A Linear Support Higher-Order Tensor Machine for Classification. IEEE Trans. Image Process. 22(7): 2911-2920 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-27 00:46 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint