Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Caruccio L, Cirillo S, Deufemia V and Polese G. (2025). Non-blocking functional dependency discovery from data streams. Information Sciences. 10.1016/j.ins.2024.121531. 690. (121531). Online publication date: 1-Feb-2025.

    https://linkinghub.elsevier.com/retrieve/pii/S0020025524014452

  • Li Z, Wang J and Hou Y. (2024). Online prediction of extreme conditional quantiles via B-spline interpolation. Statistics and Computing. 34:6. Online publication date: 1-Dec-2024.

    https://doi.org/10.1007/s11222-024-10515-4

  • Jha V and Tripathi P. (2024). Data Aestheticization: A Cognitively-Inspired Method for Knowledge Discovery in Cognitive IoT Sensor Network. Wireless Personal Communications: An International Journal. 139:2. (1039-1070). Online publication date: 1-Nov-2024.

    https://doi.org/10.1007/s11277-024-11653-8

  • Jha V and Tripathi P. (2024). Conscious points and patterns extraction: a high-performance computing model for knowledge discovery in cognitive IoT. The Journal of Supercomputing. 80:17. (24871-24907). Online publication date: 1-Nov-2024.

    https://doi.org/10.1007/s11227-024-06348-7

  • Ustunboyacioglu I, Kumara I, Di Nucci D, Tamburri D and van den Heuvel W. Integrating Data Quality in Industrial Big Data Architectures: An Action Design Research Study. Software Architecture. (3-19).

    https://doi.org/10.1007/978-3-031-70797-1_1

  • Yin H, Wen D, Li J, Wei Z, Zhang X, Huang Z and Li F. (2024). Optimal Matrix Sketching over Sliding Windows. Proceedings of the VLDB Endowment. 17:9. (2149-2161). Online publication date: 1-May-2024.

    https://doi.org/10.14778/3665844.3665847

  • Quan M. (2024). Mean and covariance estimation of functional data streams. Communications in Statistics - Simulation and Computation. 10.1080/03610918.2024.2329991. (1-18).

    https://www.tandfonline.com/doi/full/10.1080/03610918.2024.2329991

  • Eskandari M and Khotanlou H. (2024). Data stream classification using a deep transfer learning method based on extreme learning machine and recurrent neural network. Multimedia Tools and Applications. 10.1007/s11042-023-18075-x. 83:23. (63213-63241).

    https://link.springer.com/10.1007/s11042-023-18075-x

  • Downar B and Fischer D. (2024). Wirtschaftsprüfung im Zeitalter der Digitalisierung. Handbuch Industrie 4.0 und Digitale Transformation. 10.1007/978-3-658-36874-6_39-1. (1-29).

    https://link.springer.com/10.1007/978-3-658-36874-6_39-1

  • Pàmies-Estrems D and Garcia-Alfaro J. (2023). On the self-adjustment of privacy safeguards for query log streams. Computers and Security. 134:C. Online publication date: 1-Nov-2023.

    https://doi.org/10.1016/j.cose.2023.103450

  • Nunez-del-Prado M and Nin J. (2019). Revisiting online anonymization algorithms to ensure location privacy. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-019-01371-6. 14:11. (15097-15108). Online publication date: 1-Nov-2023.

    https://link.springer.com/10.1007/s12652-019-01371-6

  • Zhang S, Wen L, Torrisi G and Li J. (2023). Identifying “sloppy” users in TMS through operation logs. International Journal of Information Technology. 10.1007/s41870-023-01489-z.

    https://link.springer.com/10.1007/s41870-023-01489-z

  • Ngo H, Kaddoum E, Cabecauer M, Jenelius E and Goursolle A. (2023). Considering Multi-Scale Data for Continuous Traffic Prediction Using Adaptive Multi-Agent System 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). 10.1109/ITSC57777.2023.10422536. 979-8-3503-9946-2. (1835-1842).

    https://ieeexplore.ieee.org/document/10422536/

  • Qi C, Shi Y, Li J and Li H. (2023). The causality analysis of incipient fault in industrial processes using dynamic data stream transfer entropy. Journal of Process Control. 10.1016/j.jprocont.2023.103022. 128. (103022). Online publication date: 1-Aug-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0959152423001099

  • Gomes H, Grzenda M, Mello R, Read J, Le Nguyen M and Bifet A. (2022). A Survey on Semi-supervised Learning for Delayed Partially Labelled Data Streams. ACM Computing Surveys. 55:4. (1-42). Online publication date: 30-Apr-2023.

    https://doi.org/10.1145/3523055

  • He J, Zhu J and Huang Q. (2023). HistSketch: A Compact Data Structure for Accurate Per-Key Distribution Monitoring 2023 IEEE 39th International Conference on Data Engineering (ICDE). 10.1109/ICDE55515.2023.00156. 979-8-3503-2227-9. (2008-2021).

    https://ieeexplore.ieee.org/document/10184829/

  • Mohanapriya K, Sangavi N, Kanimozhi A, Kiruthika V and Dhivya P. (2023). Optimized Feed Forward Neural Network for Fake and Clone Account Detection in Online Social Networks 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). 10.1109/ICSCDS56580.2023.10104616. 978-1-6654-9199-0. (476-481).

    https://ieeexplore.ieee.org/document/10104616/

  • Wakefield B, Lin Y, Sarathy R and Muralidhar K. (2023). Moment-based density estimation of confidential micro-data: a computational statistics approach. Statistics and Computing. 33:1. Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s11222-022-10203-1

  • Zhang J and Dassios A. (2023). Truncated Poisson–Dirichlet approximation for Dirichlet process hierarchical models. Statistics and Computing. 33:1. Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s11222-022-10201-3

  • Yi S and Zhou Y. (2022). Model-free global likelihood subsampling for massive data. Statistics and Computing. 33:1. Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s11222-022-10185-0

  • Alexopoulos A, Dellaportas P and Titsias M. (2022). Variance reduction for Metropolis–Hastings samplers. Statistics and Computing. 33:1. Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s11222-022-10183-2

  • Capó M, Pérez A and Lozano J. (2022). LASSO for streaming data with adaptative filtering. Statistics and Computing. 33:1. Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s11222-022-10181-4

  • Grabchak M and Sabino P. (2022). Efficient simulation of p-tempered -stable OU processes. Statistics and Computing. 33:1. Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s11222-022-10165-4

  • Vo-Thanh N and Piepho H. (2022). Bayesian A-optimal two-phase designs with a single blocking factor in each phase. Statistics and Computing. 33:1. Online publication date: 1-Feb-2023.

    https://doi.org/10.1007/s11222-022-10126-x

  • Muhammad Zaly Shah M, Zainal A, Elfadil Eisa T, Albasheer H and Ghaleb F. (2023). A Semisupervised Concept Drift Adaptation via Prototype-Based Manifold Regularization Approach with Knowledge Transfer. Mathematics. 10.3390/math11020355. 11:2. (355).

    https://www.mdpi.com/2227-7390/11/2/355

  • Li Y, Li Y, Sun B and Chen Y. (2023). Zinc ore supplier evaluation and recommendation method based on nonlinear adaptive online transfer learning. Journal of Industrial and Management Optimization. 10.3934/jimo.2021193. 19:1. (472).

    https://www.aimsciences.org/article/doi/10.3934/jimo.2021193

  • Weinberg A and Last M. (2023). EnHAT — Synergy of a tree-based Ensemble with Hoeffding Adaptive Tree for dynamic data streams mining. Information Fusion. 89:C. (397-404). Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.inffus.2022.08.026

  • Garcia-Alvarado C and Ordonez C. (2022). In-DBMS K-means Clustering for Binary Streams 2022 IEEE International Conference on Big Data (Big Data). 10.1109/BigData55660.2022.10020322. 978-1-6654-8045-1. (1987-1996).

    https://ieeexplore.ieee.org/document/10020322/

  • Zheng X, Li P and Wu X. (2022). Data Stream Classification Based on Extreme Learning Machine: A Review. Big Data Research. 10.1016/j.bdr.2022.100356. 30. (100356). Online publication date: 1-Nov-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S2214579622000508

  • Arunkumar K and Vasundra S. (2022). Robust multifocus deep neural network for progression prediction on patient trajectory data. International Journal of Intelligent Computing and Cybernetics. 10.1108/IJICC-09-2021-0202. 15:4. (589-598). Online publication date: 22-Sep-2022.

    https://www.emerald.com/insight/content/doi/10.1108/IJICC-09-2021-0202/full/html

  • Han X, Zhu Y, Ting K, Zhan D and Li G. Streaming Hierarchical Clustering Based on Point-Set Kernel. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (525-533).

    https://doi.org/10.1145/3534678.3539323

  • Wu J, Wang Y, Fan X, Ye K and Xu C. (2022). Toward fast theta‐join: A prefiltering and amalgamated partitioning approach. Concurrency and Computation: Practice and Experience. 10.1002/cpe.6996. 34:17. Online publication date: 1-Aug-2022.

    https://onlinelibrary.wiley.com/doi/10.1002/cpe.6996

  • Helal A and Otero F. (2022). Data stream classification with ant colony optimisation. International Journal of Intelligent Systems. 37:9. (5725-5751). Online publication date: 30-Jul-2022.

    https://doi.org/10.1002/int.22809

  • Ceravolo P, Tavares G, Junior S and Damiani E. Evaluation Goals for Online Process Mining: A Concept Drift Perspective. IEEE Transactions on Services Computing. 10.1109/TSC.2020.3004532. 15:4. (2473-2489).

    https://ieeexplore.ieee.org/document/9124702/

  • AYKURT Ö and ORMAN Z. (2022). Akan Verinin Makine Öğrenme Algoritmaları Kullanılarak Ölçeklenmesi. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi. 10.54525/tbbmd.1051177. 15:1. (24-32).

    http://dergipark.org.tr/tr/doi/10.54525/tbbmd.1051177

  • Jain P, Jain S, Zaiane O and Srivastava A. Anomaly Detection in Resource Constrained Environments With Streaming Data. IEEE Transactions on Emerging Topics in Computational Intelligence. 10.1109/TETCI.2021.3070660. 6:3. (649-659).

    https://ieeexplore.ieee.org/document/9410461/

  • Aykurt Ö and Orman Z. (2022). Scaling of Streaming Data Using Machine Learning Algorithms. Analyzing Multidisciplinary Uses and Impact of Innovative Technologies. 10.4018/978-1-6684-6015-3.ch008. (172-186).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-6015-3.ch008

  • Shahraki A, Abbasi M, Taherkordi A and Jurcut A. (2022). A comparative study on online machine learning techniques for network traffic streams analysis. Computer Networks. 10.1016/j.comnet.2022.108836. 207. (108836). Online publication date: 1-Apr-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S1389128622000512

  • Djeziri M, Djedidi O, Morati N, Seguin J, Bendahan M and Contaret T. (2022). A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture. Applied Intelligence. 52:6. (6065-6078). Online publication date: 1-Apr-2022.

    https://doi.org/10.1007/s10489-021-02761-0

  • Tieppo E, Santos R, Barddal J and Nievola J. (2022). Hierarchical classification of data streams: a systematic literature review. Artificial Intelligence Review. 55:4. (3243-3282). Online publication date: 1-Apr-2022.

    https://doi.org/10.1007/s10462-021-10087-z

  • Nagwani N. (2022). Stream Mining: Introduction, Tools & Techniques and Applications. Data Mining and Machine Learning Applications. 10.1002/9781119792529.ch4. (99-124). Online publication date: 24-Feb-2022.

    https://onlinelibrary.wiley.com/doi/10.1002/9781119792529.ch4

  • Yang S, Xiong H, Zhang Y, Ling Y, Wang L, Xu K and Sun Z. (2022). OGM: Online gaussian graphical models on the fly. Applied Intelligence. 52:3. (3103-3117). Online publication date: 1-Feb-2022.

    https://doi.org/10.1007/s10489-021-02563-4

  • Sasaki Y. A Survey on IoT Big Data Analytic Systems: Current and Future. IEEE Internet of Things Journal. 10.1109/JIOT.2021.3131724. 9:2. (1024-1036).

    https://ieeexplore.ieee.org/document/9631963/

  • Dittmann S, Glodde A and Dietrich F. (2022). Manufacturing improvement capabilities of machine learning algorithms: Evaluation using an electrode-separator compound handling demonstrator. Procedia CIRP. 10.1016/j.procir.2022.02.170. 106. (150-155).

    https://linkinghub.elsevier.com/retrieve/pii/S2212827122001718

  • Vanamala S, Sree L and Bhavani S. (2022). Rare Pattern Mining from Data Stream Using Hash-Based Search and Vertical Mining. Intelligent Systems and Sustainable Computing. 10.1007/978-981-19-0011-2_48. (543-552).

    https://link.springer.com/10.1007/978-981-19-0011-2_48

  • Burattin A. (2022). Streaming Process Discovery and Conformance Checking. Encyclopedia of Big Data Technologies. 10.1007/978-3-319-63962-8_103-2. (1-9).

    https://link.springer.com/10.1007/978-3-319-63962-8_103-2

  • Burattin A. (2022). Streaming Process Mining. Process Mining Handbook. 10.1007/978-3-031-08848-3_11. (349-372).

    https://link.springer.com/10.1007/978-3-031-08848-3_11

  • Avelino M, Macketanz V, Avramidis E and Möller S. (2022). A Test Suite for the Evaluation of Portuguese-English Machine Translation. Computational Processing of the Portuguese Language. 10.1007/978-3-030-98305-5_2. (15-25).

    https://link.springer.com/10.1007/978-3-030-98305-5_2

  • Shastry K, Sanjay H and Sushma V. (2022). Machine Learning for Business Analytics: Case Studies and Open Research Problems. Artificial Intelligence for Data Science in Theory and Practice. 10.1007/978-3-030-92245-0_1. (1-26).

    https://link.springer.com/10.1007/978-3-030-92245-0_1

  • Sànchez-Marrè M. (2022). Advanced IDSS Topics and Applications. Intelligent Decision Support Systems. 10.1007/978-3-030-87790-3_9. (583-766).

    https://link.springer.com/10.1007/978-3-030-87790-3_9

  • Mollá N, Rabasa A, Rodríguez-Sala J, Sánchez-Soriano J and Ferrándiz A. (2021). Incremental Decision Rules Algorithm: A Probabilistic and Dynamic Approach to Decisional Data Stream Problems. Mathematics. 10.3390/math10010016. 10:1. (16).

    https://www.mdpi.com/2227-7390/10/1/16

  • Jain S, Jain P and Srivastava A. An Efficient Anomaly Detection Approach Using Cube Sampling with Streaming Data. Pattern Recognition and Machine Intelligence. (498-505).

    https://doi.org/10.1007/978-3-031-12700-7_51

  • Ramírez A, Moreno N and Vallecillo A. (2021). Rule‐based preprocessing for data stream mining using complex event processing. Expert Systems. 10.1111/exsy.12762. 38:8. Online publication date: 1-Dec-2021.

    https://onlinelibrary.wiley.com/doi/10.1111/exsy.12762

  • Melgar-García L, Gutiérrez-Avilés D, Rubio-Escudero C and Troncoso A. Nearest Neighbors-Based Forecasting for Electricity Demand Time Series in Streaming. Advances in Artificial Intelligence. (185-195).

    https://doi.org/10.1007/978-3-030-85713-4_18

  • Giacometti A and Soulet A. Reservoir Pattern Sampling in Data Streams. Machine Learning and Knowledge Discovery in Databases. Research Track. (337-352).

    https://doi.org/10.1007/978-3-030-86486-6_21

  • Xiang S and Tang B. CSLM: Convertible Short-Term and Long-Term Memory in Differential Neural Computers. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2020.3016632. 32:9. (4026-4038).

    https://ieeexplore.ieee.org/document/9177290/

  • Viniski A, Barddal J, Britto Jr. A, Enembreck F and Campos H. (2022). A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start. Expert Systems with Applications: An International Journal. 176:C. Online publication date: 15-Aug-2021.

    https://doi.org/10.1016/j.eswa.2021.114890

  • Oyekan J, Hutabarat W, Turner C, Tiwari A, He H and Gompelman R. (2021). A Knowledge-Based Cognitive Architecture Supported by Machine Learning Algorithms for Interpretable Monitoring of Large-Scale Satellite Networks. Sensors. 10.3390/s21134267. 21:13. (4267).

    https://www.mdpi.com/1424-8220/21/13/4267

  • Hou B, Zhang L and Zhou Z. Learning With Feature Evolvable Streams. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2019.2954090. 33:6. (2602-2615).

    https://ieeexplore.ieee.org/document/8906138/

  • Khezri S, Tanha J, Ahmadi A and Sharifi A. (2021). A novel semi-supervised ensemble algorithm using a performance-based selection metric to non-stationary data streams. Neurocomputing. 10.1016/j.neucom.2021.02.031. 442. (125-145). Online publication date: 1-Jun-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231221002770

  • Bahri M, Bifet A, Gama J, Gomes H and Maniu S. (2021). Data stream analysis: Foundations, major tasks and tools. WIREs Data Mining and Knowledge Discovery. 10.1002/widm.1405. 11:3. Online publication date: 1-May-2021.

    https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1405

  • Ilbeigipour S, Albadvi A, Akhondzadeh Noughabi E and Chen X. (2021). Real-Time Heart Arrhythmia Detection Using Apache Spark Structured Streaming. Journal of Healthcare Engineering. 10.1155/2021/6624829. 2021. (1-13). Online publication date: 22-Apr-2021.

    https://www.hindawi.com/journals/jhe/2021/6624829/

  • Ahmad W, Porter M and Beguerisse-Diaz M. Tie-Decay Networks in Continuous Time and Eigenvector-Based Centralities. IEEE Transactions on Network Science and Engineering. 10.1109/TNSE.2021.3071429. 8:2. (1759-1771).

    https://ieeexplore.ieee.org/document/9397347/

  • Chen W, Chang C, Mutuku J, Lam S and Lee W. (2021). Analysis of microparticle deposition in the human lung by Taguchi method and response surface methodology. Environmental Research. 10.1016/j.envres.2021.110975. (110975). Online publication date: 1-Mar-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S0013935121002693

  • Mahan F, Mohammadzad M, Rozekhani S and Pedrycz W. (2021). Chi-MFlexDT: Chi-square-based multi flexible fuzzy decision tree for data stream classification. Applied Soft Computing. 10.1016/j.asoc.2021.107301. (107301). Online publication date: 1-Mar-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S1568494621002246

  • de Sa J, Rossi A, Batista G and Garcia L. (2021). Algorithm Recommendation for Data Streams 2020 25th International Conference on Pattern Recognition (ICPR). 10.1109/ICPR48806.2021.9411923. 978-1-7281-8808-9. (6073-6080).

    https://ieeexplore.ieee.org/document/9411923/

  • Wankhade K, Jondhale K and Dongre S. (2021). A clustering and ensemble based classifier for data stream classification. Applied Soft Computing. 10.1016/j.asoc.2020.107076. (107076). Online publication date: 1-Jan-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S1568494620310140

  • Luna J. (2021). Introduction to Data Mining. Periodic Pattern Mining. 10.1007/978-981-16-3964-7_1. (1-22).

    https://link.springer.com/10.1007/978-981-16-3964-7_1

  • Jaworski M, Rutkowski L, Staszewski P and Najgebauer P. (2021). Monitoring of Changes in Data Stream Distribution Using Convolutional Restricted Boltzmann Machines. Artificial Intelligence and Soft Computing. 10.1007/978-3-030-87986-0_30. (338-346).

    https://link.springer.com/10.1007/978-3-030-87986-0_30

  • Esteve M, Mollá-Campello N, Rodríguez-Sala J and Rabasa A. (2021). The Effects of Abrupt Changing Data in CART Inference Models. Trends and Applications in Information Systems and Technologies. 10.1007/978-3-030-72651-5_21. (214-223).

    http://link.springer.com/10.1007/978-3-030-72651-5_21

  • Koo J, Faseeh Qureshi N, Siddiqui I, Abbas A and Bashir A. (2020). IoT-enabled directed acyclic graph in spark cluster. Journal of Cloud Computing: Advances, Systems and Applications. 9:1. Online publication date: 22-Dec-2020.

    https://doi.org/10.1186/s13677-020-00195-6

  • Akbarzadeh O, Khosravi M and Shadloo-Jahromi M. Combination of Pattern Classifiers Based on Naive Bayes and Fuzzy Integral Method for Biological Signal Applications. Current Signal Transduction Therapy. 10.2174/1574362414666190320163953. 15:2. (136-143).

    https://www.eurekaselect.com/170887/article

  • Kotte V, Rajavelu S and Rajsingh E. (2019). A Similarity Function for Feature Pattern Clustering and High Dimensional Text Document Classification. Foundations of Science. 10.1007/s10699-019-09592-w. 25:4. (1077-1094). Online publication date: 1-Dec-2020.

    http://link.springer.com/10.1007/s10699-019-09592-w

  • Mehrotra P. (2020). Applications of Artificial Intelligence in the Realm of Business Intelligence. Research Anthology on Artificial Intelligence Applications in Security. 10.4018/978-1-7998-7705-9.ch018. (358-386).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-7705-9.ch018

  • Masegosa A, Ramos-López D, Salmerón A, Langseth H and Nielsen T. (2020). Variational Inference over Nonstationary Data Streams for Exponential Family Models. Mathematics. 10.3390/math8111942. 8:11. (1942).

    https://www.mdpi.com/2227-7390/8/11/1942

  • Jaworski M, Rutkowski L and Angelov P. Concept Drift Detection Using Autoencoders in Data Streams Processing. Artificial Intelligence and Soft Computing. (124-133).

    https://doi.org/10.1007/978-3-030-61401-0_12

  • Schäfer P and Leser U. (2020). TEASER: early and accurate time series classification. Data Mining and Knowledge Discovery. 34:5. (1336-1362). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s10618-020-00690-z

  • Althabiti M and Abdullah M. (2020). CLASSIFICATION OF CONCEPT DRIFT IN EVOLVING DATA STREAM. Emerging Extended Reality Technologies For Industry 4.0. 10.1002/9781119654674.ch11. (189-205). Online publication date: 18-Aug-2020.

    https://onlinelibrary.wiley.com/doi/10.1002/9781119654674.ch11

  • Li M, Croitoru A and Yue S. (2020). GeoDenStream: An improved DenStream clustering method for managing entity data within geographical data streams. Computers & Geosciences. 10.1016/j.cageo.2020.104563. (104563). Online publication date: 1-Aug-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0098300420305537

  • Kokate U, Deshpande A and Mahalle P. (2020). Density-Based Clustering Method for Trends Analysis Using Evolving Data Stream. International Journal of Synthetic Emotions. 11:2. (19-36). Online publication date: 1-Jul-2020.

    https://doi.org/10.4018/IJSE.2020070102

  • Navarin N, Cambiaso M, Burattin A, Maggi F, Oneto L and Sperduti A. (2020). Towards Online Discovery of Data-Aware Declarative Process Models from Event Streams 2020 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN48605.2020.9207500. 978-1-7281-6926-2. (1-8).

    https://ieeexplore.ieee.org/document/9207500/

  • Godahewa R, Yann T, Bergmeir C and Petitjean F. (2020). Seasonal Averaged One-Dependence Estimators: A Novel Algorithm to Address Seasonal Concept Drift in High-Dimensional Stream Classification 2020 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN48605.2020.9207303. 978-1-7281-6926-2. (1-8).

    https://ieeexplore.ieee.org/document/9207303/

  • Babüroğlu E, Durmuşoğlu A and Dereli T. (2020). Novel hybrid pair recommendations based on a large-scale comparative study of concept drift detection. Expert Systems with Applications. 10.1016/j.eswa.2020.113786. (113786). Online publication date: 1-Jul-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417420306102

  • Zhu Y and Chen S. (2020). Growing neural gas with random projection method for high-dimensional data stream clustering. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 24:13. (9789-9807). Online publication date: 1-Jul-2020.

    https://doi.org/10.1007/s00500-019-04492-4

  • Lange M, Koschel A and Astrova I. Dealing with Data Streams: Complex Event Processing vs. Data Stream Mining. Computational Science and Its Applications – ICCSA 2020. (3-14).

    https://doi.org/10.1007/978-3-030-58811-3_1

  • Wankhade K, Dongre S and Jondhale K. (2020). Data stream classification: a review. Iran Journal of Computer Science. 10.1007/s42044-020-00061-3.

    http://link.springer.com/10.1007/s42044-020-00061-3

  • Elworth R, Wang Q, Kota P, Barberan C, Coleman B, Balaji A, Gupta G, Baraniuk R, Shrivastava A and Treangen T. (2020). To Petabytes and beyond: recent advances in probabilistic and signal processing algorithms and their application to metagenomics. Nucleic Acids Research. 10.1093/nar/gkaa265.

    https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa265/5825624

  • Xu S, Feng L, Liu S and Qiao H. (2020). Self-adaption neighborhood density clustering method for mixed data stream with concept drift. Engineering Applications of Artificial Intelligence. 10.1016/j.engappai.2019.103451. 89. (103451). Online publication date: 1-Mar-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0952197619303434

  • Xiao J, Li X, Lin H and Qiu K. (2019). Pulsar candidate selection using pseudo-nearest centroid neighbour classifier. Monthly Notices of the Royal Astronomical Society. 10.1093/mnras/stz3539. 492:2. (2119-2127). Online publication date: 21-Feb-2020.

    https://academic.oup.com/mnras/article/492/2/2119/5681396

  • Cano A. (2020). Introductory Chapter: Data Streams and Online Learning in Social Media. Social Media and Machine Learning. 10.5772/intechopen.90826.

    https://www.intechopen.com/books/social-media-and-machine-learning/introductory-chapter-data-streams-and-online-learning-in-social-media

  • Luo L and Song P. (2019). Renewable Estimation and Incremental Inference in Generalized Linear Models with Streaming Data Sets. Journal of the Royal Statistical Society Series B: Statistical Methodology. 10.1111/rssb.12352. 82:1. (69-97). Online publication date: 1-Feb-2020.

    https://academic.oup.com/jrsssb/article/82/1/69/7056000

  • Khezri S, Tanha J, Ahmadi A and Sharifi A. (2020). STDS: self-training data streams for mining limited labeled data in non-stationary environment. Applied Intelligence. 10.1007/s10489-019-01585-3.

    http://link.springer.com/10.1007/s10489-019-01585-3

  • Seng K, Ang L and Shing O. (2020). Customer Satisfaction through Technological Integration. Cognitive Analytics. 10.4018/978-1-7998-2460-2.ch094. (1824-1858).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-2460-2.ch094

  • Eyupoglu C. (2020). Big Data Processing. Applications and Approaches to Object-Oriented Software Design. 10.4018/978-1-7998-2142-7.ch005. (111-132).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-2142-7.ch005

  • Yu H, Lu J and Zhang G. An Online Robust Support Vector Regression for Data Streams. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.2979967. (1-1).

    https://ieeexplore.ieee.org/document/9034023/

  • Pamies-Estrems D, Castella-Roca J and Garcia-Alfaro J. A Real-Time Query Log Protection Method for Web Search Engines. IEEE Access. 10.1109/ACCESS.2020.2992012. 8. (87393-87413).

    https://ieeexplore.ieee.org/document/9085377/

  • Jie R, Gao J, Vasnev A and Tran M. HyperTube: A Framework for Population-Based Online Hyperparameter Optimization with Resource Constraints. IEEE Access. 10.1109/ACCESS.2020.2986456. 8. (69038-69057).

    https://ieeexplore.ieee.org/document/9060908/

  • Appice A, Gel Y, Iliev I, Lyubchich V and Malerba D. A Multi-Stage Machine Learning Approach to Predict Dengue Incidence: A Case Study in Mexico. IEEE Access. 10.1109/ACCESS.2020.2980634. 8. (52713-52725).

    https://ieeexplore.ieee.org/document/9035432/

  • Zheng X, Li P, Chu Z and Hu X. A Survey on Multi-Label Data Stream Classification. IEEE Access. 10.1109/ACCESS.2019.2962059. 8. (1249-1275).

    https://ieeexplore.ieee.org/document/8941052/

  • Meera S and Jeetha B. (2020). Enhanced Particle Swarm Optimization with Genetic Algorithm and Modified Artificial Neural Network for Efficient Feature Selection in Big Data Stream Mining. Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications. 10.1007/978-3-030-24051-6_85. (909-923).

    http://link.springer.com/10.1007/978-3-030-24051-6_85

  • Azari D, Hu Y, Miller B, Le B and Radwin R. (2019). Using Surgeon Hand Motions to Predict Surgical Maneuvers. Human Factors: The Journal of the Human Factors and Ergonomics Society. 10.1177/0018720819838901. 61:8. (1326-1339). Online publication date: 1-Dec-2019.

    https://journals.sagepub.com/doi/10.1177/0018720819838901

  • Casalino G, Castellano G and Mencar C. (2019). Data Stream Classification by Dynamic Incremental Semi-Supervised Fuzzy Clustering. International Journal on Artificial Intelligence Tools. 10.1142/S0218213019600091. 28:08. (1960009). Online publication date: 1-Dec-2019.

    https://www.worldscientific.com/doi/abs/10.1142/S0218213019600091

  • Gomes H, Read J, Bifet A, Barddal J and Gama J. (2019). Machine learning for streaming data. ACM SIGKDD Explorations Newsletter. 21:2. (6-22). Online publication date: 26-Nov-2019.

    https://doi.org/10.1145/3373464.3373470

  • Cardenal A, Aguilar-Paredes C, Cristancho C and Majó-Vázquez S. (2019). Echo-chambers in online news consumption: Evidence from survey and navigation data in Spain. European Journal of Communication. 10.1177/0267323119844409. 34:4. (360-376). Online publication date: 1-Aug-2019.

    https://journals.sagepub.com/doi/10.1177/0267323119844409

  • Firuzi K, Vakilian M, Phung B and Blackburn T. A Hybrid Transformer PD Monitoring Method Using Simultaneous IEC60270 and RF Data. IEEE Transactions on Power Delivery. 10.1109/TPWRD.2019.2900322. 34:4. (1374-1382).

    https://ieeexplore.ieee.org/document/8643983/

  • Yu Y, Yi D, Tang Z, Ou D, Zeng A and Li J. (2019). A Regression Prediction Model Based on Incremental Iteration for Big Industrial Data 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 10.1109/HPCC/SmartCity/DSS.2019.00260. 978-1-7281-2058-4. (1886-1893).

    https://ieeexplore.ieee.org/document/8855568/

  • Zhang C, Zhang Y, Shi X, Almpanidis G, Fan G and Shen X. (2019). On Incremental Learning for Gradient Boosting Decision Trees. Neural Processing Letters. 50:1. (957-987). Online publication date: 1-Aug-2019.

    https://doi.org/10.1007/s11063-019-09999-3

  • Ke G, Xu Z, Zhang J, Bian J and Liu T. DeepGBM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (384-394).

    https://doi.org/10.1145/3292500.3330858

  • Radhakrishnan S, Lee Y, Rachuri S, Kamarthi S and Rosso O. (2019). Complexity and entropy representation for machine component diagnostics. PLOS ONE. 10.1371/journal.pone.0217919. 14:7. (e0217919).

    http://dx.plos.org/10.1371/journal.pone.0217919

  • Whittaker M, Edmonds N, Tata S, Wendt J and Najork M. (2019). Online template induction for machine-generated emails. Proceedings of the VLDB Endowment. 12:11. (1235-1248). Online publication date: 1-Jul-2019.

    https://doi.org/10.14778/3342263.3342264

  • Casalino G, Castellano G and Mencar C. (2019). Incremental and Adaptive Fuzzy Clustering for Virtual Learning Environments Data Analysis 2019 23rd International Conference Information Visualisation (IV). 10.1109/IV.2019.00071. 978-1-7281-2838-2. (382-387).

    https://ieeexplore.ieee.org/document/8811924/

  • Anderson R, Sing Koh Y, Dobbie G and Bifet A. (2019). Recurring Concept Meta-learning for Evolving Data Streams. Expert Systems with Applications. 10.1016/j.eswa.2019.112832. (112832). Online publication date: 1-Jul-2019.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417419305342

  • Camara C, Warwick K, Bruña R, Aziz T and Pereda E. (2019). Closed-loop deep brain stimulation based on a stream-clustering system. Expert Systems with Applications. 10.1016/j.eswa.2019.02.024. 126. (187-199). Online publication date: 1-Jul-2019.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417419301290

  • Teng S, Ou C and Chuang K. (2018). On the discovery of spatial-temporal fluctuating patterns. International Journal of Data Science and Analytics. 10.1007/s41060-018-0159-1. 8:1. (57-75). Online publication date: 1-Jul-2019.

    https://link.springer.com/10.1007/s41060-018-0159-1

  • Prati R, Luengo J and Herrera F. (2019). Emerging topics and challenges of learning from noisy data in nonstandard classification. Knowledge and Information Systems. 60:1. (63-97). Online publication date: 1-Jul-2019.

    https://doi.org/10.1007/s10115-018-1244-4

  • Sweetlin Hemalatha C, Pathak R and Vaidehi V. (2019). Hybrid decision trees for data streams based on Incremental Flexible Naive Bayes prediction at leaf nodes. Evolutionary Intelligence. 10.1007/s12065-019-00252-3.

    http://link.springer.com/10.1007/s12065-019-00252-3

  • Abu-Alsaad H. (2019). Agent Applications In E-Learning Systems And Current Development And Challenges Of Adaptive E-Learning Systems 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). 10.1109/ECAI46879.2019.9042015. 978-1-7281-1624-2. (1-6).

    https://ieeexplore.ieee.org/document/9042015/

  • Ceci M, Corizzo R, Malerba D and Rashkovska A. (2019). Spatial autocorrelation and entropy for renewable energy forecasting. Data Mining and Knowledge Discovery. 33:3. (698-729). Online publication date: 1-May-2019.

    https://doi.org/10.1007/s10618-018-0605-7

  • Kenda K, Kažič B, Novak E and Mladenić D. (2019). Streaming Data Fusion for the Internet of Things. Sensors. 10.3390/s19081955. 19:8. (1955).

    https://www.mdpi.com/1424-8220/19/8/1955

  • Cano A and Leonard J. Interpretable Multiview Early Warning System Adapted to Underrepresented Student Populations. IEEE Transactions on Learning Technologies. 10.1109/TLT.2019.2911079. 12:2. (198-211).

    https://ieeexplore.ieee.org/document/8691619/

  • Viegas E, Santin A, Bessani A and Neves N. (2019). BigFlow: Real-time and reliable anomaly-based intrusion detection for high-speed networks. Future Generation Computer Systems. 10.1016/j.future.2018.09.051. 93. (473-485). Online publication date: 1-Apr-2019.

    https://linkinghub.elsevier.com/retrieve/pii/S0167739X18307635

  • UTKU A and AKCAYOL M. (2019). Akan Veri Karakterizasyonu, Üretimi Ve Analitiği Üzerine Kapsamlı Bir İnceleme. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 10.18185/erzifbed.473008. 12:1. (379-410).

    http://dergipark.org.tr/tr/doi/10.18185/erzifbed.473008

  • Ippel L, Kaptein M and Vermunt J. (2025). Estimating Multilevel Models on Data Streams. Psychometrika. 10.1007/s11336-018-09656-z. 84:1. (41-64). Online publication date: 15-Mar-2019.

    https://www.cambridge.org/core/product/identifier/S0033312300006724/type/journal_article

  • Carvajal Soto J, Tavakolizadeh F and Gyulai D. (2019). An online machine learning framework for early detection of product failures in an Industry 4.0 context. International Journal of Computer Integrated Manufacturing. 10.1080/0951192X.2019.1571238. (1-14).

    https://www.tandfonline.com/doi/full/10.1080/0951192X.2019.1571238

  • Zhang Z, Chen X, Ma J and Tao X. (2019). New efficient constructions of verifiable data streaming with accountability. Annals of Telecommunications. 10.1007/s12243-018-0687-7.

    http://link.springer.com/10.1007/s12243-018-0687-7

  • Namiot D and Sneps-Sneppe M. On Internet of Things and Big Data in University Courses. Smart Cities and Smart Spaces. 10.4018/978-1-5225-7030-1.ch062. (1393-1406).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7030-1.ch062

  • Kompalli P. (2019). Mining Data Streams. Sentiment Analysis and Knowledge Discovery in Contemporary Business. 10.4018/978-1-5225-4999-4.ch014. (251-278).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-4999-4.ch014

  • Mehrotra P. (2019). Applications of Artificial Intelligence in the Realm of Business Intelligence. Utilizing Big Data Paradigms for Business Intelligence. 10.4018/978-1-5225-4963-5.ch001. (1-38).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-4963-5.ch001

  • Yan X, Razeghi-Jahromi M, Homaifar A, Erol B, Girma A and Tunstel E. A Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing. IEEE Access. 10.1109/ACCESS.2019.2922162. 7. (184985-185000).

    https://ieeexplore.ieee.org/document/8734059/

  • Bertini Junior J and Nicoletti M. (2019). An iterative boosting-based ensemble for streaming data classification. Information Fusion. 10.1016/j.inffus.2018.01.003. 45. (66-78). Online publication date: 1-Jan-2019.

    https://linkinghub.elsevier.com/retrieve/pii/S156625351630183X

  • Prabhu C, Chivukula A, Mogadala A, Ghosh R and Livingston L. (2019). Intelligent Systems. Big Data Analytics: Systems, Algorithms, Applications. 10.1007/978-981-15-0094-7_2. (25-46).

    http://link.springer.com/10.1007/978-981-15-0094-7_2

  • Downar B and Fischer D. (2019). Wirtschaftsprüfung im Zeitalter der Digitalisierung. Handbuch Industrie 4.0 und Digitale Transformation. 10.1007/978-3-658-24576-4_32. (753-779).

    http://link.springer.com/10.1007/978-3-658-24576-4_32

  • Burattin A. (2019). Streaming Process Discovery and Conformance Checking. Encyclopedia of Big Data Technologies. 10.1007/978-3-319-77525-8_103. (1636-1643).

    http://link.springer.com/10.1007/978-3-319-77525-8_103

  • Zgraja J, Gama J and Woźniak M. (2019). Active Learning by Clustering for Drifted Data Stream Classification. ECML PKDD 2018 Workshops. 10.1007/978-3-030-14880-5_7. (80-90).

    https://link.springer.com/10.1007/978-3-030-14880-5_7

  • Casalino G, Castellano G, Fanelli A and Mencar C. (2019). Enhancing the DISSFCM Algorithm for Data Stream Classification. . 10.1007/978-3-030-12544-8_9. (109-122).

    http://link.springer.com/10.1007/978-3-030-12544-8_9

  • Chao C, Chen P, Yang S and Yen C. (2019). An Efficient MapReduce-Based Apriori-Like Algorithm for Mining Frequent Itemsets from Big Data. Wireless Internet. 10.1007/978-3-030-06158-6_8. (76-85).

    http://link.springer.com/10.1007/978-3-030-06158-6_8

  • Firuzi K, Vakilian M, Phung B and Blackburn T. (2018). Online monitoring of transformer through stream clustering of partial discharge signals. IET Science, Measurement & Technology. 10.1049/iet-smt.2018.5389. Online publication date: 3-Dec-2018.

    https://digital-library.theiet.org/content/journals/10.1049/iet-smt.2018.5389

  • Tomes E, Rush E and Altiparmak N. (2018). Towards Adaptive Parallel Storage Systems. IEEE Transactions on Computers. 67:12. (1840-1848). Online publication date: 1-Dec-2018.

    https://doi.org/10.1109/TC.2018.2836426

  • Cunha D, Xavier R, Ferrari D, Vilasbôas F and de Castro L. (2018). Bacterial Colony Algorithms for Association Rule Mining in Static and Stream Data. Mathematical Problems in Engineering. 10.1155/2018/4676258. 2018. (1-14). Online publication date: 11-Nov-2018.

    https://www.hindawi.com/journals/mpe/2018/4676258/

  • Kokate U, Deshpande A, Mahalle P and Patil P. (2018). Data Stream Clustering Techniques, Applications, and Models: Comparative Analysis and Discussion. Big Data and Cognitive Computing. 10.3390/bdcc2040032. 2:4. (32).

    https://www.mdpi.com/2504-2289/2/4/32

  • Kumar K, Srinivasan R and Singh E. An efficient approach for dimensionality reduction and classification of high dimensional text documents. Proceedings of the First International Conference on Data Science, E-learning and Information Systems. (1-5).

    https://doi.org/10.1145/3279996.3281364

  • Adhikari U, Morris T and Pan S. Applying Hoeffding Adaptive Trees for Real-Time Cyber-Power Event and Intrusion Classification. IEEE Transactions on Smart Grid. 10.1109/TSG.2017.2647778. 9:5. (4049-4060).

    https://ieeexplore.ieee.org/document/7805317/

  • Webb G, Lee L, Goethals B and Petitjean F. (2018). Analyzing concept drift and shift from sample data. Data Mining and Knowledge Discovery. 32:5. (1179-1199). Online publication date: 1-Sep-2018.

    https://doi.org/10.1007/s10618-018-0554-1

  • Razmjoo A, Xanthopoulos P and Zheng Q. (2018). Feature importance ranking for classification in mixed online environments. Annals of Operations Research. 10.1007/s10479-018-2972-2.

    http://link.springer.com/10.1007/s10479-018-2972-2

  • da Cunha D and de Castro L. Evolutionary and Immune Algorithms Applied to Association Rule Mining in Static and Stream Data. 2018 IEEE Congress on Evolutionary Computation (CEC). (1-8).

    https://doi.org/10.1109/CEC.2018.8477978

  • Benabderrahmane S, Mellouli N and Lamolle M. (2018). On the predictive analysis of behavioral massive job data using embedded clustering and deep recurrent neural networks. Knowledge-Based Systems. 10.1016/j.knosys.2018.03.025. 151. (95-113). Online publication date: 1-Jul-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0950705118301576

  • Bartolini I and Patella M. (2018). A general framework for real-time analysis of massive multimedia streams. Multimedia Systems. 24:4. (391-406). Online publication date: 1-Jul-2018.

    https://doi.org/10.1007/s00530-017-0566-5

  • Jaworski M, Duda P and Rutkowski L. New Splitting Criteria for Decision Trees in Stationary Data Streams. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2017.2698204. 29:6. (2516-2529).

    https://ieeexplore.ieee.org/document/7924344/

  • Chi L, Li B, Zhu X, Pan S and Chen L. Hashing for Adaptive Real-Time Graph Stream Classification With Concept Drifts. IEEE Transactions on Cybernetics. 10.1109/TCYB.2017.2708979. 48:5. (1591-1604).

    http://ieeexplore.ieee.org/document/8016599/

  • Casalino G, Castellano G and Mencar C. (2018). Incremental adaptive semi-supervised fuzzy clustering for data stream classification 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). 10.1109/EAIS.2018.8397172. 978-1-5386-1376-4. (1-7).

    https://ieeexplore.ieee.org/document/8397172/

  • Suthaharan S and Shen W. (2018). Elliptical modeling and pattern analysis for perturbation models and classification. International Journal of Data Science and Analytics. 10.1007/s41060-018-0117-y.

    http://link.springer.com/10.1007/s41060-018-0117-y

  • Andrisano O, Bartolini I, Bellavista P, Boeri A, Bononi L, Borghetti A, Brath A, Corazza G, Corradi A, de Miranda S, Fava F, Foschini L, Leoni G, Longo D, Milano M, Napolitano F, Nucci C, Pasolini G, Patella M, Salmon Cinotti T, Tarchi D, Ubertini F and Vigo D. The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm. Proceedings of the IEEE. 10.1109/JPROC.2018.2812836. 106:4. (738-760).

    https://ieeexplore.ieee.org/document/8326770/

  • Nedungadi P, Iyer A, Gutjahr G, Bhaskar J and Pillai A. (2018). Data-Driven Methods for Advancing Precision Oncology. Current Pharmacology Reports. 10.1007/s40495-018-0127-4. 4:2. (145-156). Online publication date: 1-Apr-2018.

    http://link.springer.com/10.1007/s40495-018-0127-4

  • Kaptein M. (2018). Customizing persuasive messages; the value of operative measures. Journal of Consumer Marketing. 10.1108/JCM-11-2016-1996. 35:2. (208-217). Online publication date: 19-Mar-2018.

    http://www.emeraldinsight.com/doi/10.1108/JCM-11-2016-1996

  • Dasgupta A, Arendt D, Franklin L, Wong P and Cook K. (2017). Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization. Computer Graphics Forum. 10.1111/cgf.13264. 37:1. (254-272). Online publication date: 1-Feb-2018.

    https://onlinelibrary.wiley.com/doi/10.1111/cgf.13264

  • Mohamad S, Sayed-Mouchaweh M and Bouchachia A. (2018). Active learning for classifying data streams with unknown number of classes. Neural Networks. 10.1016/j.neunet.2017.10.004. 98. (1-15). Online publication date: 1-Feb-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0893608017302435

  • Appice A. (2018). Towards mining the organizational structure of a dynamic event scenario. Journal of Intelligent Information Systems. 50:1. (165-193). Online publication date: 1-Feb-2018.

    https://doi.org/10.1007/s10844-017-0451-x

  • Losing V, Hammer B and Wersing H. (2018). Incremental on-line learning. Neurocomputing. 275:C. (1261-1274). Online publication date: 31-Jan-2018.

    https://doi.org/10.1016/j.neucom.2017.06.084

  • Kompalli P. (2018). Knowledge Discovery Using Data Stream Mining. Social Network Analytics for Contemporary Business Organizations. 10.4018/978-1-5225-5097-6.ch012. (231-258).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5097-6.ch012

  • Friso H, Richard C, Visser H, Vincent T and Bruno D. (2018). Predicting Abnormal Runway Occupancy Times and Observing Related Precursors. Journal of Aerospace Information Systems. 10.2514/1.I010548. 15:1. (10-21). Online publication date: 1-Jan-2018.

    https://arc.aiaa.org/doi/10.2514/1.I010548

  • Tidke B, Mehta R and Dhanani J. (2018). Real-Time Bigdata Analytics: A Stream Data Mining Approach. Recent Findings in Intelligent Computing Techniques. 10.1007/978-981-10-8636-6_36. (345-351).

    http://link.springer.com/10.1007/978-981-10-8636-6_36

  • Ganatra J and Thacker C. (2018). Enhancement of Data Streaming in Clustering for Uncertain Data. Proceedings of the International Conference on Intelligent Systems and Signal Processing. 10.1007/978-981-10-6977-2_13. (155-162).

    http://link.springer.com/10.1007/978-981-10-6977-2_13

  • Tidke B and Mehta R. (2018). A Comprehensive Review and Open Challenges of Stream Big Data. Soft Computing: Theories and Applications. 10.1007/978-981-10-5699-4_10. (89-99).

    http://link.springer.com/10.1007/978-981-10-5699-4_10

  • Arostegi M, Torre-Bastida A, Lobo J, Bilbao M and Del Ser J. (2018). Concept Tracking and Adaptation for Drifting Data Streams under Extreme Verification Latency. Intelligent Distributed Computing XII. 10.1007/978-3-319-99626-4_2. (11-25).

    http://link.springer.com/10.1007/978-3-319-99626-4_2

  • da Cunha D, Xavier R, Ferrari D and de Castro L. (2018). Bacterial Colony Algorithms Applied to Association Rule Mining in Static Data and Streams. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. 10.1007/978-3-319-94779-2_45. (525-533).

    https://link.springer.com/10.1007/978-3-319-94779-2_45

  • Burattin A and Carmona J. (2018). A Framework for Online Conformance Checking. Business Process Management Workshops. 10.1007/978-3-319-74030-0_12. (165-177).

    http://link.springer.com/10.1007/978-3-319-74030-0_12

  • Eydi E, Medjedovic D, Mekic E and Selmanovic E. (2018). Buffered Count-Min Sketch. Advanced Technologies, Systems, and Applications II. 10.1007/978-3-319-71321-2_22. (249-255).

    http://link.springer.com/10.1007/978-3-319-71321-2_22

  • Burattin A. (2018). Streaming Process Discovery and Conformance Checking. Encyclopedia of Big Data Technologies. 10.1007/978-3-319-63962-8_103-1. (1-8).

    http://link.springer.com/10.1007/978-3-319-63962-8_103-1

  • Buccafurri F, Lax G, Nicolazzo S and Nocera A. (2018). Not Only Databases: Social Data and Cybersecurity Perspective. A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years. 10.1007/978-3-319-61893-7_26. (441-456).

    http://link.springer.com/10.1007/978-3-319-61893-7_26

  • Appice A, Ceci M and Malerba D. (2018). Relational Data Mining in the Era of Big Data. A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years. 10.1007/978-3-319-61893-7_19. (323-339).

    http://link.springer.com/10.1007/978-3-319-61893-7_19

  • Namiot D, Sneps-Sneppe M and Pauliks R. (2018). On Data Stream Processing in IoT Applications. Internet of Things, Smart Spaces, and Next Generation Networks and Systems. 10.1007/978-3-030-01168-0_5. (41-51).

    http://link.springer.com/10.1007/978-3-030-01168-0_5

  • Hou B, Zhang L and Zhou Z. Learning with feature evolvable streams. Proceedings of the 31st International Conference on Neural Information Processing Systems. (1416-1426).

    /doi/10.5555/3294771.3294906

  • Vasconcelos I, Vasconcelos R, Olivieri B, Roriz M, Endler M and Junior M. (2017). Smartphone-based outlier detection: a complex event processing approach for driving behavior detection. Journal of Internet Services and Applications. 10.1186/s13174-017-0065-0. 8:1. Online publication date: 1-Dec-2017.

    http://jisajournal.springeropen.com/articles/10.1186/s13174-017-0065-0

  • Bina O and Yanhua Y. (2017). Scalable stream Bayes classification based on Dirichlet prior 2017 International Conference on Progress in Informatics and Computing (PIC). 10.1109/PIC.2017.8359593. 978-1-5386-1978-0. (466-470).

    https://ieeexplore.ieee.org/document/8359593/

  • Costa F, Duarte F, Vallim R and Mello R. (2017). Multidimensional surrogate stability to detect data stream concept drift. Expert Systems with Applications: An International Journal. 87:C. (15-29). Online publication date: 30-Nov-2017.

    https://doi.org/10.1016/j.eswa.2017.06.005

  • Le T, Stahl F, Gaber M, Gomes J and Fatta G. (2017). On expressiveness and uncertainty awareness in rule-based classification for data streams. Neurocomputing. 265:C. (127-141). Online publication date: 22-Nov-2017.

    https://doi.org/10.1016/j.neucom.2017.05.081

  • Jaworski M, Duda P and Rutkowski L. (2017). On applying the Restricted Boltzmann Machine to active concept drift detection 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI.2017.8285409. 978-1-5386-2726-6. (1-8).

    http://ieeexplore.ieee.org/document/8285409/

  • Benabderrahmane S, Mellouli N, Lamolle M and Mimouni N. (2017). When Deep Neural Networks Meet Job Offers Recommendation 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). 10.1109/ICTAI.2017.00044. 978-1-5386-3876-7. (223-230).

    https://ieeexplore.ieee.org/document/8371947/

  • Tanujaya W, Candra M and Akbar S. (2017). Rapid data stream application development framework 2017 International Conference on Data and Software Engineering (ICoDSE). 10.1109/ICODSE.2017.8285865. 978-1-5386-1449-5. (1-6).

    http://ieeexplore.ieee.org/document/8285865/

  • Ahmad S, Lavin A, Purdy S and Agha Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing. 10.1016/j.neucom.2017.04.070. 262. (134-147). Online publication date: 1-Nov-2017.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231217309864

  • Nooralishahi P, Seera M and Loo C. (2017). Online semi-supervised multi-channel time series classifier based on growing neural gas. Neural Computing and Applications. 28:11. (3491-3505). Online publication date: 1-Nov-2017.

    https://doi.org/10.1007/s00521-016-2247-2

  • Chamberlain R. Assessing user preferences in programming language design. Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. (18-29).

    https://doi.org/10.1145/3133850.3133851

  • Lan K, Fong S, Song W, Vasilakos A and Millham R. (2017). Self-Adaptive Pre-Processing Methodology for Big Data Stream Mining in Internet of Things Environmental Sensor Monitoring. Symmetry. 10.3390/sym9100244. 9:10. (244).

    https://www.mdpi.com/2073-8994/9/10/244

  • Tennant M, Stahl F, Rana O and Gomes J. (2017). Scalable real-time classification of data streams with concept drift. Future Generation Computer Systems. 10.1016/j.future.2017.03.026. 75. (187-199). Online publication date: 1-Oct-2017.

    https://linkinghub.elsevier.com/retrieve/pii/S0167739X17304685

  • Ding Z, Fei M, Du D and Yang F. (2017). Streaming data anomaly detection method based on hyper-grid structure and online ensemble learning. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 21:20. (5905-5917). Online publication date: 1-Oct-2017.

    https://doi.org/10.1007/s00500-016-2258-z

  • Endler M, Briot J, de Almeida V, dos Reis R and Silva e Silva F. (2017). Stream-Based Reasoning for IoT Applications — Proposal of Architecture and Analysis of Challenges. International Journal of Semantic Computing. 10.1142/S1793351X1740013X. 11:03. (325-344). Online publication date: 1-Sep-2017.

    http://www.worldscientific.com/doi/abs/10.1142/S1793351X1740013X

  • Endler M, Briot J, Silva e Silva F, de Almeida V and Haeusler E. (2017). Towards stream-based reasoning and machine learning for IoT applications 2017 Intelligent Systems Conference (IntelliSys). 10.1109/IntelliSys.2017.8324292. 978-1-5090-6435-9. (202-209).

    http://ieeexplore.ieee.org/document/8324292/

  • Martínez Rodríguez D, Nin J and Nuñez-del-Prado M. (2017). Towards the adaptation of SDC methods to stream mining. Computers & Security. 10.1016/j.cose.2017.08.011. 70. (702-722). Online publication date: 1-Sep-2017.

    https://linkinghub.elsevier.com/retrieve/pii/S0167404817301761

  • Jain V. (2017). Perspective analysis of telecommunication fraud detection using data stream analytics and neural network classification based data mining. International Journal of Information Technology. 10.1007/s41870-017-0036-5. 9:3. (303-310). Online publication date: 1-Sep-2017.

    http://link.springer.com/10.1007/s41870-017-0036-5

  • Teng S, Ku W and Chuang K. (2017). Toward Mining Stop-by Behaviors in Indoor Space. ACM Transactions on Spatial Algorithms and Systems. 3:2. (1-38). Online publication date: 29-Aug-2017.

    https://doi.org/10.1145/3106736

  • Yao Y, Tong H, Xu F and Lu J. (2017). Scalable Algorithms for CQA Post Voting Prediction. IEEE Transactions on Knowledge and Data Engineering. 29:8. (1723-1736). Online publication date: 1-Aug-2017.

    https://doi.org/10.1109/TKDE.2017.2696535

  • Aslanci E, Coskun K, Schuller P and Tumer B. (2017). Detection of regime switching points in non-stationary sequences using stochastic learning based weak estimation method 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). 10.1109/INDIN.2017.8104873. 978-1-5386-0837-1. (787-792).

    http://ieeexplore.ieee.org/document/8104873/

  • Levin M. (2017). On dynamic combinatorial clustering. Journal of Communications Technology and Electronics. 10.1134/S1064226917060122. 62:6. (718-730). Online publication date: 1-Jun-2017.

    http://link.springer.com/10.1134/S1064226917060122

  • Ceci M, Corizzo R, Fumarola F, Malerba D and Rashkovska A. Predictive Modeling of PV Energy Production: How to Set Up the Learning Task for a Better Prediction?. IEEE Transactions on Industrial Informatics. 10.1109/TII.2016.2604758. 13:3. (956-966).

    http://ieeexplore.ieee.org/document/7556989/

  • Hu G, Zhang X, Duan N and Gao P. (2017). Towards Reliable Online Services Analyzing Mobile Sensor Big Data 2017 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS.2017.104. 978-1-5386-0752-7. (849-852).

    http://ieeexplore.ieee.org/document/8029847/

  • Papavasileiou I, Zhang W and Han S. (2017). Real-time data-driven gait phase detection using ground contact force measurements: Algorithms, platform design and performance. Smart Health. 10.1016/j.smhl.2017.03.001. 1-2. (34-49). Online publication date: 1-Jun-2017.

    https://linkinghub.elsevier.com/retrieve/pii/S2352648317300156

  • Feldkamp N, Bergmann S and Strassburger S. Online Analysis of Simulation Data with Stream-based Data Mining. Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. (241-248).

    https://doi.org/10.1145/3064911.3064915

  • Sasikala S and Devi D. (2017). A review of traditional and swarm search based feature selection algorithms for handling data stream classification 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). 10.1109/SSPS.2017.8071650. 978-1-5090-4929-5. (514-520).

    http://ieeexplore.ieee.org/document/8071650/

  • Correa D, Enembreck F and Silla C. (2017). An investigation of the hoeffding adaptive tree for the problem of network intrusion detection 2017 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2017.7966369. 978-1-5090-6182-2. (4065-4072).

    http://ieeexplore.ieee.org/document/7966369/

  • Grossi V and Sperduti A. (2017). A kernel-based ensemble classifier for evolving stream of trees with double concept drifting reaction 2017 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2017.7966357. 978-1-5090-6182-2. (3975-3982).

    http://ieeexplore.ieee.org/document/7966357/

  • Koylu F. (2017). Online ABC miner: An online rule learning algorithm based on Artificial Bee Colony algorithm 2017 8th International Conference on Information Technology (ICIT). 10.1109/ICITECH.2017.8079922. 978-1-5090-6332-1. (653-657).

    http://ieeexplore.ieee.org/document/8079922/

  • Zhou X and Jin Q. (2017). A heuristic approach to discovering user correlations from organized social stream data. Multimedia Tools and Applications. 76:9. (11487-11507). Online publication date: 1-May-2017.

    https://doi.org/10.1007/s11042-014-2153-5

  • Namiot D, Ventspils M and Daradkeh Y. On Internet of Things Education. Proceedings of the 20th Conference of Open Innovations Association FRUCT. (309-315).

    https://doi.org/10.23919/FRUCT.2017.8071327

  • da Silva V and Winck A. Video popularity prediction in data streams based on context-independent features. Proceedings of the Symposium on Applied Computing. (95-100).

    https://doi.org/10.1145/3019612.3019638

  • Xu J, Wang G, Li T, Deng W and Gou G. (2017). Fat node leading tree for data stream clustering with density peaks. Knowledge-Based Systems. 120:C. (99-117). Online publication date: 15-Mar-2017.

    https://doi.org/10.1016/j.knosys.2016.12.025

  • Bandaru S, Ng A and Deb K. (2017). Data mining methods for knowledge discovery in multi-objective optimization. Expert Systems with Applications: An International Journal. 70:C. (139-159). Online publication date: 15-Mar-2017.

    https://doi.org/10.1016/j.eswa.2016.10.015

  • Wang H, Li F, Tang D and Wang Z. (2017). Research on data stream mining algorithm for frequent itemsets based on sliding window model 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA). 10.1109/ICBDA.2017.8078820. 978-1-5090-3618-9. (259-263).

    http://ieeexplore.ieee.org/document/8078820/

  • (2017). Towards next-generation heterogeneous mobile data stream mining applications. Journal of Network and Computer Applications. 79:C. (1-24). Online publication date: 1-Feb-2017.

    https://doi.org/10.1016/j.jnca.2016.11.031

  • Altomare A, Cesario E and Talia D. (2016). Mining frequent items and itemsets from distributed data streams for emergency detection and management. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-016-0344-9. 8:1. (47-55). Online publication date: 1-Feb-2017.

    http://link.springer.com/10.1007/s12652-016-0344-9

  • Namiot D and Sneps-Sneppe M. (2017). On Internet of Things and Big Data in University Courses. International Journal of Embedded and Real-Time Communication Systems. 8:1. (18-30). Online publication date: 1-Jan-2017.

    https://doi.org/10.4018/IJERTCS.2017010102

  • Leung C, Carmichael C, Johnstone P, Xing R and Yuen D. Interactive Visual Analytics of Big Data. Ontologies and Big Data Considerations for Effective Intelligence. 10.4018/978-1-5225-2058-0.ch001. (1-26).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-2058-0.ch001

  • Turkay C, Kaya E, Balcisoy S and Hauser H. (2017). Designing Progressive and Interactive Analytics Processes for High-Dimensional Data Analysis. IEEE Transactions on Visualization and Computer Graphics. 23:1. (131-140). Online publication date: 1-Jan-2017.

    https://doi.org/10.1109/TVCG.2016.2598470

  • Shameer K, Badgeley M, Miotto R, Glicksberg B, Morgan J and Dudley J. (2016). Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Briefings in Bioinformatics. 10.1093/bib/bbv118. 18:1. (105-124). Online publication date: 1-Jan-2017.

    https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbv118

  • Osekowska E, Johnson H and Carlsson B. (2017). Maritime vessel traffic modeling in the context of concept drift. Transportation Research Procedia. 10.1016/j.trpro.2017.05.173. 25. (1457-1476).

    https://linkinghub.elsevier.com/retrieve/pii/S2352146517304660

  • Janardan and Mehta S. (2017). Concept drift in Streaming Data Classification: Algorithms, Platforms and Issues. Procedia Computer Science. 10.1016/j.procs.2017.11.440. 122. (804-811).

    https://linkinghub.elsevier.com/retrieve/pii/S1877050917326881

  • Malek S, Canavera K and Esfahani N. (2017). Automated Inference Techniques to Assist With the Construction of Self-Adaptive Software. Managing Trade-Offs in Adaptable Software Architectures. 10.1016/B978-0-12-802855-1.00006-X. (131-154).

    https://linkinghub.elsevier.com/retrieve/pii/B978012802855100006X

  • Rakshit S, Manna S, Biswas S, Kundu R, Gupta P, Maitra S and Barman S. (2017). Prediction of Diabetes Type-II Using a Two-Class Neural Network. Computational Intelligence, Communications, and Business Analytics. 10.1007/978-981-10-6430-2_6. (65-71).

    http://link.springer.com/10.1007/978-981-10-6430-2_6

  • Richter F, Hartkopp O and Mattfeld D. (2017). Automatic Defect Detection by Classifying Aggregated Vehicular Behavior. Foundations of Intelligent Systems. 10.1007/978-3-319-60438-1_21. (205-214).

    http://link.springer.com/10.1007/978-3-319-60438-1_21

  • Teng S, Ou C and Chuang K. (2017). Mining Temporal Fluctuating Patterns. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-57454-7_60. (773-785).

    https://link.springer.com/10.1007/978-3-319-57454-7_60

  • Garcia-Martin E, Lavesson N and Grahn H. (2017). Energy Efficiency Analysis of the Very Fast Decision Tree Algorithm. Trends in Social Network Analysis. 10.1007/978-3-319-53420-6_10. (229-252).

    http://link.springer.com/10.1007/978-3-319-53420-6_10

  • Queiroz J, Leitão P and Oliveira E. (2017). Industrial Cyber Physical Systems Supported by Distributed Advanced Data Analytics. Service Orientation in Holonic and Multi-Agent Manufacturing. 10.1007/978-3-319-51100-9_5. (47-59).

    http://link.springer.com/10.1007/978-3-319-51100-9_5

  • Grobelnik M, Mladenić D and Witbrock M. (2017). Text Mining for the Semantic Web. Encyclopedia of Machine Learning and Data Mining. 10.1007/978-1-4899-7687-1_835. (1262-1263).

    http://link.springer.com/10.1007/978-1-4899-7687-1_835

  • Sammut C and Harries M. (2017). Concept Drift. Encyclopedia of Machine Learning and Data Mining. 10.1007/978-1-4899-7687-1_153. (253-256).

    http://link.springer.com/10.1007/978-1-4899-7687-1_153

  • Khalilian M, Mustapha N and Sulaiman N. (2016). Data stream clustering by divide and conquer approach based on vector model. Journal of Big Data. 10.1186/s40537-015-0036-x. 3:1. Online publication date: 1-Dec-2016.

    http://www.journalofbigdata.com/content/3/1/1

  • Cao M, Ganesamoorthy D, Elliott A, Zhang H, Cooper M and Coin L. (2016). Streaming algorithms for identification pathogens and antibiotic resistance potential from real-time MinION™ sequencing. Gigascience. 10.1186/s13742-016-0137-2. 5:1. Online publication date: 1-Dec-2016.

    https://academic.oup.com/gigascience/article/doi/10.1186/s13742-016-0137-2/2720992

  • Nutakki G and Nasraoui O. (2016). Compartmentalized adaptive topic mining on social media streams 2016 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2016.7840698. 978-1-4673-9005-7. (992-997).

    http://ieeexplore.ieee.org/document/7840698/

  • Pàmies-Estrems D, Castellà-Roca J and Viejo A. (2016). Working at the web search engine side to generate privacy-preserving user profiles. Expert Systems with Applications: An International Journal. 64:C. (523-535). Online publication date: 1-Dec-2016.

    https://doi.org/10.1016/j.eswa.2016.08.033

  • Ippel L, Kaptein M and Vermunt J. (2016). Estimating random-intercept models on data streams. Computational Statistics & Data Analysis. 104:C. (169-182). Online publication date: 1-Dec-2016.

    https://doi.org/10.1016/j.csda.2016.06.008

  • Kaptein M, Van Emden R and Iannuzzi D. (2016). Tracking the decoy: maximizing the decoy effect through sequential experimentation. Palgrave Communications. 10.1057/palcomms.2016.82. 2:1.

    https://www.nature.com/articles/palcomms201682

  • Soto J, Jentsch M, Preuveneers D and Ilie-Zudor E. CEML. Proceedings of the 6th International Conference on the Internet of Things. (103-110).

    https://doi.org/10.1145/2991561.2991575

  • Cui Y, Ahmad S and Hawkins J. (2016). Continuous online sequence learning with an unsupervised neural network model. Neural Computation. 28:11. (2474-2504). Online publication date: 1-Nov-2016.

    https://doi.org/10.1162/NECO_a_00893

  • Jźdrzejowicz J and Jźdrzejowicz P. (2016). Distance-based online classifiers. Expert Systems with Applications: An International Journal. 60:C. (249-257). Online publication date: 30-Oct-2016.

    https://doi.org/10.1016/j.eswa.2016.05.015

  • Manco G, Rullo P, Gallucci L and Paturzo M. (2016). Rialto. Expert Systems with Applications: An International Journal. 59:C. (145-164). Online publication date: 15-Oct-2016.

    https://doi.org/10.1016/j.eswa.2016.04.022

  • Muthumanickam P, Vrotsou K, Cooper M and Johansson J. (2016). Shape grammar extraction for efficient query-by-sketch pattern matching in long time series 2016 IEEE Conference on Visual Analytics Science and Technology (VAST). 10.1109/VAST.2016.7883518. 978-1-5090-5661-3. (121-130).

    http://ieeexplore.ieee.org/document/7883518/

  • Ippel L, Kaptein M and Vermunt J. (2016). Dealing With Data Streams. Methodology. 10.1027/1614-2241/a000116. 12:4. (124-138). Online publication date: 1-Oct-2016.

    https://econtent.hogrefe.com/doi/10.1027/1614-2241/a000116

  • Fong S, Liu K, Cho K, Wong R, Mohammed S and Fiaidhi J. (2016). Improvised methods for tackling big data stream mining challenges. The Journal of Supercomputing. 72:10. (3927-3959). Online publication date: 1-Oct-2016.

    https://doi.org/10.1007/s11227-016-1639-5

  • Uriarte R, Tiezzi F and Tsaftaris S. (2016). Supporting Autonomic Management of Clouds. IEEE Transactions on Network and Service Management. 13:3. (595-607). Online publication date: 1-Sep-2016.

    https://doi.org/10.1109/TNSM.2016.2569000

  • Amoualian H, Clausel M, Gaussier E and Amini M. Streaming-LDA. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (695-704).

    https://doi.org/10.1145/2939672.2939781

  • Anagnostopoulos C and Kolomvatsos K. (2016). A delay-resilient and quality-aware mechanism over incomplete contextual data streams. Information Sciences: an International Journal. 355:C. (90-109). Online publication date: 10-Aug-2016.

    https://doi.org/10.1016/j.ins.2016.03.020

  • Bendre M and Thool V. (2016). Analytics, challenges and applications in big data environment: a survey. Journal of Management Analytics. 10.1080/23270012.2016.1186578. 3:3. (206-239). Online publication date: 2-Jul-2016.

    https://www.tandfonline.com/doi/full/10.1080/23270012.2016.1186578

  • Seng K, Ang L and Shing O. (2016). Customer Satisfaction through Technological Integration. International Journal of Technology and Educational Marketing. 10.4018/IJTEM.2016070104. 6:2. (49-78). Online publication date: 1-Jul-2016.

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJTEM.2016070104

  • Bondia-Barcelo J, Castella-Roca J and Viejo A. (2016). Building Privacy-Preserving Search Engine Query Logs for Data Monetization 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0074. 978-1-5090-2771-2. (390-397).

    http://ieeexplore.ieee.org/document/7816870/

  • Cui Y, Surpur C, Ahmad S and Hawkins J. (2016). A comparative study of HTM and other neural network models for online sequence learning with streaming data 2016 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2016.7727380. 978-1-5090-0620-5. (1530-1538).

    http://ieeexplore.ieee.org/document/7727380/

  • Webb G, Hyde R, Cao H, Nguyen H and Petitjean F. (2016). Characterizing concept drift. Data Mining and Knowledge Discovery. 30:4. (964-994). Online publication date: 1-Jul-2016.

    https://doi.org/10.1007/s10618-015-0448-4

  • Shi X, Cui B, Shao Y and Tong Y. Tornado. Proceedings of the 2016 International Conference on Management of Data. (417-430).

    https://doi.org/10.1145/2882903.2882950

  • Lyon R, Stappers B, Cooper S, Brooke J and Knowles J. (2016). Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach. Monthly Notices of the Royal Astronomical Society. 10.1093/mnras/stw656. 459:1. (1104-1123). Online publication date: 11-Jun-2016.. Online publication date: 11-Jun-2016.

    https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw656

  • Kulin M, Fortuna C, De Poorter E, Deschrijver D and Moerman I. (2016). Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial. Sensors. 10.3390/s16060790. 16:6. (790).

    https://www.mdpi.com/1424-8220/16/6/790

  • Sun Y, Tang K, Minku L, Wang S and Yao X. (2016). Online Ensemble Learning of Data Streams with Gradually Evolved Classes. IEEE Transactions on Knowledge and Data Engineering. 28:6. (1532-1545). Online publication date: 1-Jun-2016.

    https://doi.org/10.1109/TKDE.2016.2526675

  • Sasu L, Puiu D and Nechifor S. (2016). Fault recovery mechanism for smart city environments 2016 IEEE 20th Jubilee International Conference on Intelligent Engineering Systems (INES). 10.1109/INES.2016.7555093. 978-1-5090-1216-9. (57-62).

    http://ieeexplore.ieee.org/document/7555093/

  • Papavasileiou I, Zhang W and Han S. (2016). Real-Time Data-Driven Gait Phase Detection Using Infinite Gaussian Mixture Model and Parallel Particle Filter 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). 10.1109/CHASE.2016.25. 978-1-5090-0943-5. (302-311).

    http://ieeexplore.ieee.org/document/7545845/

  • Guo B, Chen H, Yu Z, Xie X and Zhang D. (2016). PicPick. Personal and Ubiquitous Computing. 20:3. (325-335). Online publication date: 1-Jun-2016.

    https://doi.org/10.1007/s00779-016-0924-x

  • Gousios G, Safaric D and Visser J. Streaming software analytics. Proceedings of the 2nd International Workshop on BIG Data Software Engineering. (8-11).

    https://doi.org/10.1145/2896825.2896832

  • Yoo S, Huang H and Kasiviswanathan S. (2016). Streaming spectral clustering 2016 IEEE 32nd International Conference on Data Engineering (ICDE). 10.1109/ICDE.2016.7498277. 978-1-5090-2020-1. (637-648).

    http://ieeexplore.ieee.org/document/7498277/

  • Luo J, Fan L, Li Z and Tsu C. (2016). A new big data storage architecture with intrinsic search engines. Neurocomputing. 181:C. (147-152). Online publication date: 12-Mar-2016.

    https://doi.org/10.1016/j.neucom.2015.06.103

  • Esfahani N, Yuan E, Canavera K and Malek S. (2016). Inferring Software Component Interaction Dependencies for Adaptation Support. ACM Transactions on Autonomous and Adaptive Systems. 10:4. (1-32). Online publication date: 3-Feb-2016.

    https://doi.org/10.1145/2856035

  • Faria E, Gonçalves I, Carvalho A and Gama J. (2016). Novelty detection in data streams. Artificial Intelligence Review. 45:2. (235-269). Online publication date: 1-Feb-2016.

    https://doi.org/10.1007/s10462-015-9444-8

  • Preuveneers D, Berbers Y, Joosen W, Shen L, Muñoz A and Zhang T. (2016). SAMURAI. Journal of Ambient Intelligence and Smart Environments. 8:1. (63-78). Online publication date: 7-Jan-2016.

    https://doi.org/10.3233/AIS-150357

  • Shin S and Hwang I. (2016). Helicopter Cockpit Video Data Analysis for Attitude Estimation using DBSCAN Clustering AIAA Infotech @ Aerospace. 10.2514/6.2016-0920. 978-1-62410-388-9. Online publication date: 4-Jan-2016.

    http://arc.aiaa.org/doi/10.2514/6.2016-0920

  • Nabilah R, Othman Z and Azuraliza B. (2016). Approaches of Handling Uncertain Time Series Data towards Prediction. International Journal of Future Computer and Communication. 10.18178/ijfcc.2016.5.6.477. 5:6. (233-236).

    http://www.ijfcc.org/show-68-806-1.html

  • Shukla U and Nanda S. (2016). Cluster analysis of evolving data streams using centroid initialization methods 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON). 10.1109/UPCON.2016.7894727. 978-1-5090-5384-1. (624-629).

    http://ieeexplore.ieee.org/document/7894727/

  • Fong S, Wong R and Vasilakos A. Accelerated PSO Swarm Search Feature Selection for Data Stream Mining Big Data. IEEE Transactions on Services Computing. 10.1109/TSC.2015.2439695. 9:1. (33-45).

    https://ieeexplore.ieee.org/document/7115942/

  • Rao D and Sucharita V. (2016). Maximum Utility Item Sets for Transactional Databases Using GUIDE. Procedia Computer Science. 10.1016/j.procs.2016.07.352. 92. (244-252).

    https://linkinghub.elsevier.com/retrieve/pii/S187705091631599X

  • Hussain A, Hameed M and Fatima S. (2016). A Proposal: High-Throughput Robust Architecture for Log Analysis and Data Stream Mining. Innovations in Computer Science and Engineering. 10.1007/978-981-10-0419-3_36. (305-314).

    http://link.springer.com/10.1007/978-981-10-0419-3_36

  • Atkinson K, Coenen F, Goddard P, Payne T and Riley L. (2016). nDrites: Enabling Laboratory Resource Multi-agent Systems. Engineering Multi-Agent Systems. 10.1007/978-3-319-50983-9_1. (1-21).

    http://link.springer.com/10.1007/978-3-319-50983-9_1

  • Appice A, Di Pietro M, Greco C and Malerba D. (2016). Discovering and Tracking Organizational Structures in Event Logs. New Frontiers in Mining Complex Patterns. 10.1007/978-3-319-39315-5_4. (46-60).

    http://link.springer.com/10.1007/978-3-319-39315-5_4

  • Berlanga R and Nebot V. (2016). Context-Aware Business Intelligence. Business Intelligence. 10.1007/978-3-319-39243-1_4. (87-110).

    http://link.springer.com/10.1007/978-3-319-39243-1_4

  • Ortega J, Han L and Bowring N. (2016). Modelling and Detection of User Activity Patterns for Energy Saving in Buildings. Emerging Trends and Advanced Technologies for Computational Intelligence. 10.1007/978-3-319-33353-3_9. (165-185).

    http://link.springer.com/10.1007/978-3-319-33353-3_9

  • Fong S, Fang C, Tian N, Wong R and Yap B. (2016). Self-Adaptive Parameters Optimization for Incremental Classification in Big Data Using Neural Network. Big Data Applications and Use Cases. 10.1007/978-3-319-30146-4_8. (175-196).

    http://link.springer.com/10.1007/978-3-319-30146-4_8

  • Japkowicz N and Stefanowski J. (2016). A Machine Learning Perspective on Big Data Analysis. Big Data Analysis: New Algorithms for a New Society. 10.1007/978-3-319-26989-4_1. (1-31).

    http://link.springer.com/10.1007/978-3-319-26989-4_1

  • Czarnecki W and Tabor J. (2016). Online Extreme Entropy Machines for Streams Classification and Active Learning. Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. 10.1007/978-3-319-26227-7_35. (371-381).

    http://link.springer.com/10.1007/978-3-319-26227-7_35

  • Grobelnik M, Mladenić D and Witbrock M. (2016). Text Mining for the Semantic Web. Encyclopedia of Machine Learning and Data Mining. 10.1007/978-1-4899-7502-7_835-1. (1-3).

    http://link.springer.com/10.1007/978-1-4899-7502-7_835-1

  • Madhavan K and Richey M. (2015). Problems in Big Data Analytics in Learning. Journal of Engineering Education. 10.1002/jee.20113. 105:1. (6-14). Online publication date: 1-Jan-2016.

    https://onlinelibrary.wiley.com/doi/10.1002/jee.20113

  • Lutu P. (2015). Naïve Bayes Classification Ensembles to Support Modeling Decisions in Data Stream Mining 2015 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI.2015.57. 978-1-4799-7560-0. (335-340).

    http://ieeexplore.ieee.org/document/7376630/

  • Chandra S, Karande V and Khan L. (2015). A Comparative Study of Markov Network Structure Learning Methods Over Data Streams 2015 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI.2015.118. 978-1-4799-7560-0. (795-802).

    http://ieeexplore.ieee.org/document/7376693/

  • Nguyen H, Woon Y and Ng W. (2015). A survey on data stream clustering and classification. Knowledge and Information Systems. 45:3. (535-569). Online publication date: 1-Dec-2015.

    https://doi.org/10.1007/s10115-014-0808-1

  • Oliveira L and Batista G. IGMM-CD. Proceedings of the 2015 Brazilian Conference on Intelligent Systems (BRACIS). (55-61).

    https://doi.org/10.1109/BRACIS.2015.61

  • Burattin A, Cimitile M, Maggi F and Sperduti A. Online Discovery of Declarative Process Models from Event Streams. IEEE Transactions on Services Computing. 10.1109/TSC.2015.2459703. 8:6. (833-846).

    http://ieeexplore.ieee.org/document/7164336/

  • Wu M, Cao H, Cao J, Nguyen H, Gomes J and Krishnaswamy S. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electrical Insulation Magazine. 10.1109/MEI.2015.7303259. 31:6. (22-35).

    http://ieeexplore.ieee.org/document/7303259/

  • Huang P, Li X and Yuan B. A Parallel GPU-Based Approach to Clustering Very Fast Data Streams. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (23-32).

    https://doi.org/10.1145/2806416.2806545

  • Garcia-Alvarado C and Ordonez C. (2015). Clustering binary cube dimensions to compute relaxed GROUP BY aggregations. Information Systems. 53:C. (41-59). Online publication date: 1-Oct-2015.

    https://doi.org/10.1016/j.is.2014.12.008

  • Jabbarifar M, Dagenais M and Shameli-Sendi A. (2015). Online Incremental Clock Synchronization. Journal of Network and Systems Management. 23:4. (1034-1066). Online publication date: 1-Oct-2015.

    https://doi.org/10.1007/s10922-014-9331-7

  • Codecasa D and Stella F. (2015). Classification and clustering with continuous time Bayesian network models. Journal of Intelligent Information Systems. 45:2. (187-220). Online publication date: 1-Oct-2015.

    https://doi.org/10.1007/s10844-014-0345-0

  • Wrobel S, Voss H, Köhler J, Beyer U and Auer S. (2014). Big Data, Big Opportunities. Informatik-Spektrum. 10.1007/s00287-014-0806-4. 38:5. (370-378). Online publication date: 1-Oct-2015.

    http://link.springer.com/10.1007/s00287-014-0806-4

  • Appice A, Di Pietro M, Greco C and Malerba D. Discovering and tracking organizational structures in event logs. Proceedings of the 4th International Conference on New Frontiers in Mining Complex Patterns. (46-60).

    /doi/10.5555/3122094.3122099

  • Tennant M, Stahl F and Gomes J. Fast Adaptive Real-Time Classification for Data Streams with Concept Drift. Proceedings of the 8th International Conference on Internet and Distributed Computing Systems - Volume 9258. (265-272).

    https://doi.org/10.1007/978-3-319-23237-9_23

  • Li L, Das S, John Hansman R, Palacios R and Srivastava A. (2015). Analysis of Flight Data Using Clustering Techniques for Detecting Abnormal Operations. Journal of Aerospace Information Systems. 10.2514/1.I010329. 12:9. (587-598). Online publication date: 1-Sep-2015.

    http://arc.aiaa.org/doi/10.2514/1.I010329

  • Pan L, Meng Q, Pan W, Zhao Y and Gao H. (2015). A Feature Segment Based Time Series Classification Algorithm 2015 Fifth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). 10.1109/IMCCC.2015.286. 978-1-4673-7723-2. (1333-1338).

    http://ieeexplore.ieee.org/document/7406065/

  • Martín E, Lavesson N and Grahn H. Energy Efficiency in Data Stream Mining. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. (1125-1132).

    https://doi.org/10.1145/2808797.2808863

  • Yang J, Wei Y and Zhou F. (2015). An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). 10.1109/IHMSC.2015.226. 978-1-4799-8645-3. (444-447).

    http://ieeexplore.ieee.org/document/7335008/

  • Zhao G, Ba Z, Du J, Wang X, Li Z, Rong C and Huang C. (2015). Resource Constrained Data Stream Clustering with Concept Drifting for Processing Sensor Data. International Journal of Data Warehousing and Mining. 11:3. (49-67). Online publication date: 1-Jul-2015.

    /doi/10.5555/2795630.2795633

  • Gisdakis S, Giannetsos T and Papadimitratos P. SHIELD. Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks. (1-12).

    https://doi.org/10.1145/2766498.2766503

  • Ding Z, Fei M and Du D. (2015). An online anomaly detection method for stream data using isolation principle and statistic histogram. International Journal of Modeling, Simulation, and Scientific Computing. 10.1142/S1793962315500178. 06:02. (1550017). Online publication date: 1-Jun-2015.

    http://www.worldscientific.com/doi/abs/10.1142/S1793962315500178

  • Chevalier J, Subercaze J, Gravier C and Laforest F. Slider. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. (1081-1086).

    https://doi.org/10.1145/2723372.2735363

  • Chen P and Plale B. Big data provenance analysis and visualization. Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. (797-800).

    https://doi.org/10.1109/CCGrid.2015.85

  • Uriarte R, Tsaftaris S and Tiezzi F. Service clustering for autonomic clouds using random forest. Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. (515-524).

    https://doi.org/10.1109/CCGrid.2015.41

  • Zeng X, Li G, Zou H and Chen Q. (2015). An empirical comparison of incremental linear feature extraction methods. International Journal of Wireless and Mobile Computing. 8:3. (249-255). Online publication date: 1-May-2015.

    https://doi.org/10.1504/IJWMC.2015.069387

  • Rutkowski L, Jaworski M, Pietruczuk L and Duda P. A New Method for Data Stream Mining Based on the Misclassification Error. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2014.2333557. 26:5. (1048-1059).

    http://ieeexplore.ieee.org/document/6857351/

  • Yen N, Jin Q, Tsai J and Park J. (2015). Intelligent state machine for social ad hoc data management and reuse. Multimedia Tools and Applications. 74:10. (3521-3541). Online publication date: 1-May-2015.

    https://doi.org/10.1007/s11042-014-1941-2

  • Chen F, Zhong Q, Cannella F, Sekiyama K and Fukuda T. (2015). Hand Gesture Modeling and Recognition for Human and Robot Interactive Assembly Using Hidden Markov Models. International Journal of Advanced Robotic Systems. 10.5772/60044. 12:4. Online publication date: 1-Apr-2015.

    https://journals.sagepub.com/doi/10.5772/60044

  • Soni K, Agrawal J, Sharma S and Agrawal S. (2015). Association Rule Mining Based on Density and Regional Minimum Support 2015 Fifth International Conference on Communication Systems and Network Technologies (CSNT). 10.1109/CSNT.2015.227. 978-1-4799-1797-6. (968-975).

    http://ieeexplore.ieee.org/document/7280063/

  • Ding S, Wu F, Qian J, Jia H and Jin F. (2015). Research on data stream clustering algorithms. Artificial Intelligence Review. 43:4. (593-600). Online publication date: 1-Apr-2015.

    https://doi.org/10.1007/s10462-013-9398-7

  • Ghanbari E and Beigy H. (2015). Incremental RotBoost algorithm. Intelligent Data Analysis. 19:2. (449-468). Online publication date: 1-Mar-2015.

    /doi/10.5555/2768391.2768404

  • Hinze A and Voisard A. (2015). EVA. Information Systems. 48:C. (1-25). Online publication date: 1-Mar-2015.

    https://doi.org/10.1016/j.is.2014.07.003

  • źLiobaităź I, Bifet A, Read J, Pfahringer B and Holmes G. (2015). Evaluation methods and decision theory for classification of streaming data with temporal dependence. Machine Language. 98:3. (455-482). Online publication date: 1-Mar-2015.

    https://doi.org/10.1007/s10994-014-5441-4

  • Binder H and Blettner M. (2015). Big Data in Medical Science–a Biostatistical View. Deutsches Aerzteblatt Online. 10.3238/arztebl.2015.0137.

    https://www.aerzteblatt.de/10.3238/arztebl.2015.0137

  • Shaker A and Hüllermeier E. (2015). Recovery analysis for adaptive learning from non-stationary data streams. Neurocomputing. 150:PA. (250-264). Online publication date: 20-Feb-2015.

    https://doi.org/10.1016/j.neucom.2014.09.076

  • Caldarola E, Picariello A and Castelluccia D. (2015). Modern Enterprises in the Bubble. ACM SIGSOFT Software Engineering Notes. 40:1. (1-4). Online publication date: 6-Feb-2015.

    https://doi.org/10.1145/2693208.2693228

  • Li W, Yang J and Zhang J. (2015). Uncertain canonical correlation analysis for multi-view feature extraction from uncertain data streams. Neurocomputing. 10.1016/j.neucom.2014.08.063. 149. (1337-1347). Online publication date: 1-Feb-2015.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231214011229

  • Robinson W and Deng T. Data Mining Behavioral Transitions in Open Source Repositories. Proceedings of the 2015 48th Hawaii International Conference on System Sciences. (5280-5289).

    https://doi.org/10.1109/HICSS.2015.622

  • Tsui K, Chen N, Zhou Q, Hai Y and Wang W. (2015). Prognostics and Health Management: A Review on Data Driven Approaches. Mathematical Problems in Engineering. 10.1155/2015/793161. 2015. (1-17).

    http://www.hindawi.com/journals/mpe/2015/793161/

  • Appice A, Ciampi A and Malerba D. (2015). Summarizing numeric spatial data streams by trend cluster discovery. Data Mining and Knowledge Discovery. 29:1. (84-136). Online publication date: 1-Jan-2015.

    https://doi.org/10.1007/s10618-013-0337-7

  • Manike C and Om H. (2015). Sliding-Window Based Method to Discover High Utility Patterns from Data Streams. Computational Intelligence in Data Mining - Volume 3. 10.1007/978-81-322-2202-6_15. (173-184).

    https://link.springer.com/10.1007/978-81-322-2202-6_15

  • Patil P, Kulkarni P and Shirsath R. (2015). Sequential Decision Making Using Q Learning Algorithm for Diabetic Patients. Artificial Intelligence and Evolutionary Algorithms in Engineering Systems. 10.1007/978-81-322-2126-5_35. (313-321).

    https://link.springer.com/10.1007/978-81-322-2126-5_35

  • Cuzzocrea A, Jiang F, Leung C, Liu D, Peddle A and Tanbeer S. (2015). Mining Popular Patterns: A Novel Mining Problem and Its Application to Static Transactional Databases and Dynamic Data Streams. Transactions on Large-Scale Data- and Knowledge-Centered Systems XXI. 10.1007/978-3-662-47804-2_6. (115-139).

    https://link.springer.com/10.1007/978-3-662-47804-2_6

  • Grossmann W and Rinderle-Ma S. (2015). Data Provisioning. Fundamentals of Business Intelligence. 10.1007/978-3-662-46531-8_3. (87-118).

    https://link.springer.com/10.1007/978-3-662-46531-8_3

  • Appice A, Pravilovic S, Lanza A and Malerba D. (2015). Very Short-Term Wind Speed Forecasting Using Spatio-Temporal Lazy Learning. Discovery Science. 10.1007/978-3-319-24282-8_2. (9-16).

    http://link.springer.com/10.1007/978-3-319-24282-8_2

  • Atkinson K, Coenen F, Goddard P, Payne T and Riley L. (2015). Data Stream Mining with Limited Validation Opportunity: Towards Instrument Failure Prediction. Big Data Analytics and Knowledge Discovery. 10.1007/978-3-319-22729-0_22. (283-295).

    https://link.springer.com/10.1007/978-3-319-22729-0_22

  • Hou W, Guo P and Guo L. (2015). Networking Big Data: Definition, Key Technologies and Challenging Issues of Transmission. Big Data Computing and Communications. 10.1007/978-3-319-22047-5_9. (103-112).

    https://link.springer.com/10.1007/978-3-319-22047-5_9

  • VinayKumar K, Srinivasan R and Singh E. (2015). A Feature Clustering Approach for Dimensionality Reduction and Classification. Mendel 2015. 10.1007/978-3-319-19824-8_21. (257-268).

    https://link.springer.com/10.1007/978-3-319-19824-8_21

  • Burattin A, Cimitile M and Maggi F. (2015). Lights, Camera, Action! Business Process Movies for Online Process Discovery. Business Process Management Workshops. 10.1007/978-3-319-15895-2_34. (408-419).

    https://link.springer.com/10.1007/978-3-319-15895-2_34

  • Kaur S, Bhatnagar V and Chakravarthy S. (2015). Stream Clustering Algorithms: A Primer. Big Data in Complex Systems. 10.1007/978-3-319-11056-1_4. (105-145).

    https://link.springer.com/10.1007/978-3-319-11056-1_4

  • Benabderrahmane S. (2015). Temporal Constraints and Sub-Dimensional Clustering for Fast Similarity Search over Time Series Data. Application to Information Retrieval Tasks.. Progress in Systems Engineering. 10.1007/978-3-319-08422-0_40. (263-271).

    https://link.springer.com/10.1007/978-3-319-08422-0_40

  • Shafi K and Abbass H. Analysis of Online Signature Based Learning Classifier Systems for Noisy Environments. Proceedings of the 10th International Conference on Simulated Evolution and Learning - Volume 8886. (395-406).

    https://doi.org/10.1007/978-3-319-13563-2_34

  • Fong S, Zhuang Y, Wong R and Mohammed S. A Scalable Data Stream Mining Methodology. Proceedings of the 2014 2nd International Symposium on Computational and Business Intelligence. (110-115).

    https://doi.org/10.1109/ISCBI.2014.31

  • Lichtenwalter R and Chawla N. (2014). Vertex collocation profiles: theory, computation, and results. SpringerPlus. 10.1186/2193-1801-3-116. 3:1. Online publication date: 1-Dec-2014.

    https://springerplus.springeropen.com/articles/10.1186/2193-1801-3-116

  • Vanamala S, Padma Sree L and Durga Bhavani S. (2014). Rare association rule mining for data stream 2014 International Conference on Computer and Communications Technologies (ICCCT). 10.1109/ICCCT2.2014.7066696. 978-1-4799-8150-2. (1-6).

    http://ieeexplore.ieee.org/document/7066696/

  • Agrawal K, Maglalang J and Fineman J. (2014). Cache-conscious scheduling of streaming pipelines on parallel machines with private caches 2014 21st International Conference on High Performance Computing (HiPC). 10.1109/HiPC.2014.7116893. 978-1-4799-5976-1. (1-12).

    http://ieeexplore.ieee.org/document/7116893/

  • Shatnawi S, Gaber M and Cocea M. (2014). Text stream mining for Massive Open Online Courses: review and perspectives. Systems Science & Control Engineering. 10.1080/21642583.2014.970732. 2:1. (664-676). Online publication date: 1-Dec-2014.

    http://www.tandfonline.com/doi/abs/10.1080/21642583.2014.970732

  • JafariAsbagh M, Ferrara E, Varol O, Menczer F and Flammini A. (2014). Clustering memes in social media streams. Social Network Analysis and Mining. 10.1007/s13278-014-0237-x. 4:1. Online publication date: 1-Dec-2014.

    http://link.springer.com/10.1007/s13278-014-0237-x

  • Kárný M. (2014). Approximate Bayesian recursive estimation. Information Sciences: an International Journal. 285:C. (100-111). Online publication date: 20-Nov-2014.

    https://doi.org/10.1016/j.ins.2014.01.048

  • Chen X and Candan K. GI-NMF. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. (1119-1128).

    https://doi.org/10.1145/2661829.2662008

  • Zhou Z, Chawla N, Jin Y and Williams G. (2014). Big Data Opportunities and Challenges. IEEE Computational Intelligence Magazine. 9:4. (62-74). Online publication date: 1-Nov-2014.

    https://doi.org/10.1109/MCI.2014.2350953

  • Wang X, Zheng X, Dang Z, Wu X and Zhao B. (2014). Near-Optimal Approximate Duplicate-Detection in Data Streams Over Sliding Windows for the Uniform Query Frequency or Membership Likelihood 2014 Second International Conference on Advanced Cloud and Big Data (CBD). 10.1109/CBD.2014.54. 978-1-4799-8085-7. (122-127).

    http://ieeexplore.ieee.org/document/7176081/

  • Bader-El-Den M. (2014). Self-adaptive heterogeneous random forest 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA). 10.1109/AICCSA.2014.7073259. 978-1-4799-7100-8. (640-646).

    http://ieeexplore.ieee.org/document/7073259/

  • Zeng X and Li G. (2014). Incremental partial least squares analysis of big streaming data. Pattern Recognition. 47:11. (3726-3735). Online publication date: 1-Nov-2014.

    https://doi.org/10.1016/j.patcog.2014.05.022

  • Al-Hussaeni K, Fung B and Cheung W. (2014). Privacy-preserving trajectory stream publishing. Data & Knowledge Engineering. 94:PA. (89-109). Online publication date: 1-Nov-2014.

    https://doi.org/10.1016/j.datak.2014.09.004

  • Zhao P, Hoi S, Wang J and Li B. (2014). Online Transfer Learning. Artificial Intelligence. 216:1. (76-102). Online publication date: 1-Nov-2014.

    https://doi.org/10.1016/j.artint.2014.06.003

  • Wu Z and Zou M. (2014). 2014 Special Issue. Neural Networks. 58. (14-28). Online publication date: 1-Oct-2014.

    https://doi.org/10.1016/j.neunet.2014.05.019

  • Bhatnagar V, Kaur S and Chakravarthy S. (2014). Clustering data streams using grid-based synopsis. Knowledge and Information Systems. 41:1. (127-152). Online publication date: 1-Oct-2014.

    https://doi.org/10.1007/s10115-013-0659-1

  • Krempl G, Žliobaite I, Brzeziński D, Hüllermeier E, Last M, Lemaire V, Noack T, Shaker A, Sievi S, Spiliopoulou M and Stefanowski J. (2014). Open challenges for data stream mining research. ACM SIGKDD Explorations Newsletter. 16:1. (1-10). Online publication date: 25-Sep-2014.

    https://doi.org/10.1145/2674026.2674028

  • Baruah R and Angelov P. DEC: Dynamically Evolving Clustering and Its Application to Structure Identification of Evolving Fuzzy Models. IEEE Transactions on Cybernetics. 10.1109/TCYB.2013.2291234. 44:9. (1619-1631).

    http://ieeexplore.ieee.org/document/6678067/

  • Karray M, Chebel-Morello B and Zerhouni N. (2014). PETRA. Knowledge-Based Systems. 68:1. (21-39). Online publication date: 1-Sep-2014.

    https://doi.org/10.1016/j.knosys.2014.03.010

  • Yao Y, Tong H, Xu F and Lu J. Predicting long-term impact of CQA posts. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (1496-1505).

    https://doi.org/10.1145/2623330.2623649

  • Badanidiyuru A, Mirzasoleiman B, Karbasi A and Krause A. Streaming submodular maximization. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (671-680).

    https://doi.org/10.1145/2623330.2623637

  • Lyons T, Ni H and Oberhauser H. A feature set for streams and an application to high-frequency financial tick data. Proceedings of the 2014 International Conference on Big Data Science and Computing. (1-8).

    https://doi.org/10.1145/2640087.2644157

  • Kim S, Sung M and Chung Y. (2014). A framework to preserve the privacy of electronic health data streams. Journal of Biomedical Informatics. 10.1016/j.jbi.2014.03.015. 50. (95-106). Online publication date: 1-Aug-2014.

    https://linkinghub.elsevier.com/retrieve/pii/S1532046414000823

  • Brescia M, Cavuoti S, Longo G, Nocella A, Garofalo M, Manna F, Esposito F, Albano G, Guglielmo M, D’Angelo G, Di Guido A, George Djorgovski S, Donalek C, Mahabal A, Graham M, Fiore M and D’Abrusco R. (2014). DAMEWARE: A Web Cyberinfrastructure for Astrophysical Data Mining. Publications of the Astronomical Society of the Pacific. 10.1086/677725. (000-000).

    http://iopscience.iop.org/article/10.1086/677725

  • Ceci M, Cassavia N, Corizzo R, Dicosta P, Malerba D, Maria G, Masciari E and Pastura C. Innovative power operating center management exploiting big data techniques. Proceedings of the 18th International Database Engineering & Applications Symposium. (326-329).

    https://doi.org/10.1145/2628194.2628231

  • Masmoudi N, Azzag H, Lebbah M and Bertelle C. (2014). Incremental clustering of data stream using real ants behavior 2014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC). 10.1109/NaBIC.2014.6921889. 978-1-4799-5937-2. (262-268).

    http://ieeexplore.ieee.org/document/6921889/

  • Chen G, Luo W and Zhu T. (2014). Evolutionary clustering with differential evolution 2014 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC.2014.6900488. 978-1-4799-1488-3. (1382-1389).

    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900488

  • Burattin A, Sperduti A and van der Aalst W. (2014). Control-flow discovery from event streams 2014 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC.2014.6900341. 978-1-4799-1488-3. (2420-2427).

    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900341

  • Preuveneers D and Berbers Y. SAMURAI. Proceedings of the 2014 International Conference on Intelligent Environments. (226-233).

    https://doi.org/10.1109/IE.2014.43

  • Zhang X, Hu G, Duan N, Gao P, Dong W and Zhu J. Scalable Mobile Data Streaming with Trajectory Preserving Partitioning. Proceedings of the 2014 IEEE International Conference on Mobile Services. (16-23).

    https://doi.org/10.1109/MobServ.2014.12

  • Yamamoto Y, Iwanuma K and Fukuda S. Resource-oriented approximation for frequent itemset mining from bursty data streams. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. (205-216).

    https://doi.org/10.1145/2588555.2612171

  • Yuan E, Esfahani N and Malek S. Automated mining of software component interactions for self-adaptation. Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. (27-36).

    https://doi.org/10.1145/2593929.2593934

  • Ahmed N, Neville J and Kompella R. (2013). Network Sampling. ACM Transactions on Knowledge Discovery from Data. 8:2. (1-56). Online publication date: 1-Jun-2014.

    https://doi.org/10.1145/2601438

  • Baruah R, Angelov P and Baruah D. (2014). Dynamically evolving clustering for data streams 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). 10.1109/EAIS.2014.6867473. 978-1-4799-3347-1. (1-6).

    http://ieeexplore.ieee.org/document/6867473/

  • Elayyadi I, Benbernou S, Ouziri M and Younas M. (2014). A tensor-based distributed discovery of missing association rules on the cloud. Future Generation Computer Systems. 35. (49-56). Online publication date: 1-Jun-2014.

    https://doi.org/10.1016/j.future.2013.11.002

  • Rutkowski L, Jaworski M, Pietruczuk L and Duda P. (2014). The CART decision tree for mining data streams. Information Sciences: an International Journal. 266. (1-15). Online publication date: 1-May-2014.

    https://doi.org/10.1016/j.ins.2013.12.060

  • Sadahiro Y and Kobayashi T. (2014). Exploratory analysis of time series data: Detection of partial similarities, clustering, and visualization. Computers, Environment and Urban Systems. 10.1016/j.compenvurbsys.2014.02.001. 45. (24-33). Online publication date: 1-May-2014.

    https://linkinghub.elsevier.com/retrieve/pii/S0198971514000179

  • Dao M, Pongpaichet S, Jalali L, Kim K, Jain R and Zettsu K. A Real-time Complex Event Discovery Platform for Cyber-Physical-Social Systems. Proceedings of International Conference on Multimedia Retrieval. (201-208).

    https://doi.org/10.1145/2578726.2578755

  • Gama J, Žliobaitė I, Bifet A, Pechenizkiy M and Bouchachia A. (2014). A survey on concept drift adaptation. ACM Computing Surveys. 46:4. (1-37). Online publication date: 1-Apr-2014.

    https://doi.org/10.1145/2523813

  • Bahr M, Aydogan B, Aydin M, Khodabakhsh A, An I and Ercan A. (2014). Real-time data reconciliation solutions for big data problems observed in oil refineries 2014 22nd Signal Processing and Communications Applications Conference (SIU). 10.1109/SIU.2014.6830553. 978-1-4799-4874-1. (1612-1615).

    http://ieeexplore.ieee.org/document/6830553/

  • Chen M, Mao S and Liu Y. (2014). Big Data. Mobile Networks and Applications. 19:2. (171-209). Online publication date: 1-Apr-2014.

    https://doi.org/10.1007/s11036-013-0489-0

  • Shaker A and Hüllermeier E. (2014). Survival analysis on data streams. International Journal of Applied Mathematics and Computer Science. 24:1. (199-212). Online publication date: 1-Mar-2014.

    https://doi.org/10.2478/amcs-2014-0015

  • Woniak M, Graña M and Corchado E. (2014). A survey of multiple classifier systems as hybrid systems. Information Fusion. 16. (3-17). Online publication date: 1-Mar-2014.

    https://doi.org/10.1016/j.inffus.2013.04.006

  • Cesario E, Mastroianni C and Talia D. (2014). A Multi-Domain Architecture for Mining Frequent Items and Itemsets from Distributed Data Streams. Journal of Grid Computing. 12:1. (153-168). Online publication date: 1-Mar-2014.

    https://doi.org/10.1007/s10723-013-9277-0

  • Gaber M, Gama J, Krishnaswamy S, Gomes J and Stahl F. (2014). Data stream mining in ubiquitous environments. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 4:2. (116-138). Online publication date: 1-Mar-2014.

    https://doi.org/10.1002/widm.1115

  • Labroche N. (2014). Online fuzzy medoid based clustering algorithms. Neurocomputing. 126. (141-150). Online publication date: 1-Feb-2014.

    https://doi.org/10.1016/j.neucom.2012.07.057

  • Wöhrer A, Brezany P, Janciak I and Mehofer E. (2014). Modeling and optimizing large-scale data flows. Future Generation Computer Systems. 31. (12-27). Online publication date: 1-Feb-2014.

    https://doi.org/10.1016/j.future.2013.10.004

  • Yang Y and Jiang J. (2014). HMM-based hybrid meta-clustering ensemble for temporal data. Knowledge-Based Systems. 56:C. (299-310). Online publication date: 1-Jan-2014.

    /doi/10.5555/2842045.2842383

  • Yarlagadda A, Murthy J and Prasad M. (2014). Particle Swarm Optimized Optimal Threshold Value Selection for Clustering based on Correlation Fractal Dimension. Applied Mathematics. 10.4236/am.2014.510155. 05:10. (1615-1622).

    http://www.scirp.org/journal/doi.aspx?DOI=10.4236/am.2014.510155

  • Read J and Bifet A. Data Stream Mining. Encyclopedia of Business Analytics and Optimization. 10.4018/978-1-4666-5202-6.ch061. (664-666).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-5202-6.ch061

  • Geesen D, Appelrath H, Grawunder M and Nicklas D. Challenges for Personal Data Stream Management in Smart Buildings. Creating Personal, Social, and Urban Awareness through Pervasive Computing. 10.4018/978-1-4666-4695-7.ch009. (201-219).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-4695-7.ch009

  • Rutkowski L, Jaworski M, Pietruczuk L and Duda P. (2014). Decision Trees for Mining Data Streams Based on the Gaussian Approximation. IEEE Transactions on Knowledge and Data Engineering. 26:1. (108-119). Online publication date: 1-Jan-2014.

    https://doi.org/10.1109/TKDE.2013.34

  • Hu H, Wen Y, Chua T and Li X. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial. IEEE Access. 10.1109/ACCESS.2014.2332453. 2. (652-687).

    https://ieeexplore.ieee.org/document/6842585/

  • Yang Y and Jiang J. (2014). HMM-based hybrid meta-clustering ensemble for temporal data. Knowledge-Based Systems. 10.1016/j.knosys.2013.12.004. 56. (299-310). Online publication date: 1-Jan-2014.

    https://linkinghub.elsevier.com/retrieve/pii/S0950705113003845

  • Amini A, Wah T and Saboohi H. (2014). On Density-Based Data Streams Clustering Algorithms: A Survey. Journal of Computer Science and Technology. 10.1007/s11390-014-1416-y. 29:1. (116-141). Online publication date: 1-Jan-2014.

    http://link.springer.com/10.1007/s11390-014-1416-y

  • Le T, Stahl F, Gomes J, Gaber M and Fatta G. (2014). Computationally Efficient Rule-Based Classification for Continuous Streaming Data. Research and Development in Intelligent Systems XXXI. 10.1007/978-3-319-12069-0_2. (21-34).

    https://link.springer.com/10.1007/978-3-319-12069-0_2

  • Navarro-Arribas G and Torra V. (2014). Rank Swapping for Stream Data. Modeling Decisions for Artificial Intelligence. 10.1007/978-3-319-12054-6_19. (217-226).

    http://link.springer.com/10.1007/978-3-319-12054-6_19

  • Portela F, Santos M, Machado J, Abelha A, Silva Á and Rua F. (2014). Pervasive and Intelligent Decision Support in Intensive Medicine – The Complete Picture. Information Technology in Bio- and Medical Informatics. 10.1007/978-3-319-10265-8_9. (87-102).

    http://link.springer.com/10.1007/978-3-319-10265-8_9

  • Leung C. (2014). Uncertain Frequent Pattern Mining. Frequent Pattern Mining. 10.1007/978-3-319-07821-2_14. (339-367).

    http://link.springer.com/10.1007/978-3-319-07821-2_14

  • Manike C and Om H. (2014). Time-Fading Based High Utility Pattern Mining from Uncertain Data Streams. Advanced Computing, Networking and Informatics- Volume 1. 10.1007/978-3-319-07353-8_61. (529-536).

    https://link.springer.com/10.1007/978-3-319-07353-8_61

  • Chen M, Mao S, Zhang Y and Leung V. (2014). Big Data Applications. Big Data. 10.1007/978-3-319-06245-7_6. (59-79).

    https://link.springer.com/10.1007/978-3-319-06245-7_6

  • Jędrzejowicz J and Jędrzejowicz P. (2014). A Family of the Online Distance-Based Classifiers. Intelligent Information and Database Systems. 10.1007/978-3-319-05458-2_19. (177-186).

    http://link.springer.com/10.1007/978-3-319-05458-2_19

  • Peherstorfer B, Franzelin F, Pflüger D and Bungartz H. (2014). Classification with Probability Density Estimation on Sparse Grids. Sparse Grids and Applications - Munich 2012. 10.1007/978-3-319-04537-5_11. (255-270).

    http://link.springer.com/10.1007/978-3-319-04537-5_11

  • Appice A, Ciampi A, Fumarola F and Malerba D. (2014). Sensor Data Surveillance. Data Mining Techniques in Sensor Networks. 10.1007/978-1-4471-5454-9_4. (73-88).

    http://link.springer.com/10.1007/978-1-4471-5454-9_4

  • Appice A, Ciampi A, Fumarola F and Malerba D. (2014). Missing Sensor Data Interpolation. Data Mining Techniques in Sensor Networks. 10.1007/978-1-4471-5454-9_3. (49-71).

    http://link.springer.com/10.1007/978-1-4471-5454-9_3

  • Appice A, Ciampi A, Fumarola F and Malerba D. (2014). Sensor Networks and Data Streams: Basics. Data Mining Techniques in Sensor Networks. 10.1007/978-1-4471-5454-9_1. (1-8).

    http://link.springer.com/10.1007/978-1-4471-5454-9_1

  • Appice A, Pravilovic S, Malerba D and Lanza A. Enhancing Regression Models with Spatio-temporal Indicator Additions. Proceeding of the XIIIth International Conference on AI*IA 2013: Advances in Artificial Intelligence - Volume 8249. (433-444).

    https://doi.org/10.1007/978-3-319-03524-6_37

  • Huron S, Vuillemot R and Fekete J. (2013). Visual Sedimentation. IEEE Transactions on Visualization and Computer Graphics. 19:12. (2446-2455). Online publication date: 1-Dec-2013.

    https://doi.org/10.1109/TVCG.2013.227

  • Fujino T and Fukuta N. Utilizing Weighted Ontology Mappings on Federated SPARQL Querying. Semantic Technology. (331-347).

    https://doi.org/10.1007/978-3-319-06826-8_25

  • Compilation of References. Creating Personal, Social, and Urban Awareness through Pervasive Computing. 10.4018/978-1-4666-4695-7.chcrf. (0-0).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-4695-7.chcrf

  • Garcia-Alvarado C and Ordonez C. Clustering cubes with binary dimensions in one pass. Proceedings of the sixteenth international workshop on Data warehousing and OLAP. (71-78).

    https://doi.org/10.1145/2513190.2513192

  • Haghighi M and Musselle C. Dynamic Collaborative Change Point Detection in Wireless Sensor Networks. Proceedings of the 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. (332-339).

    https://doi.org/10.1109/CyberC.2013.64

  • Leung C, Carmichael C, Johnstone P and Yuen D. (2013). Interactive Visual Analytics of Databases and Frequent Sets. International Journal of Information Retrieval Research. 3:4. (120-140). Online publication date: 1-Oct-2013.

    https://doi.org/10.4018/ijirr.2013100107

  • Hu H, Kantardzic M and Sethi T. (2013). Selecting samples for labeling in unbalanced streaming data environments 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT). 10.1109/ICAT.2013.6684046. 978-1-4799-0431-0. (1-7).

    http://ieeexplore.ieee.org/document/6684046/

  • Simmhan Y and Noor M. (2013). Scalable prediction of energy consumption using incremental time series clustering 2013 IEEE International Conference on Big Data. 10.1109/BigData.2013.6691774. 978-1-4799-1293-3. (29-36).

    http://ieeexplore.ieee.org/document/6691774/

  • Pravilovic S, Appice A and Malerba D. Process mining to forecast the future of running cases. Proceedings of the 2nd International Conference on New Frontiers in Mining Complex Patterns. (67-81).

    https://doi.org/10.1007/978-3-319-08407-7_5

  • Jędrzejowicz J and Jęrzejowicz P. Online Classifiers Based on Fuzzy C-means Clustering. Proceedings of the 5th International Conference on Computational Collective Intelligence. Technologies and Applications - Volume 8083. (427-436).

    https://doi.org/10.1007/978-3-642-40495-5_43

  • Zhao G, Li Z, Liu F and Tang Y. A Concept Drifting Based Clustering Framework for Data Streams. Proceedings of the 2013 Fourth International Conference on Emerging Intelligent Data and Web Technologies. (122-129).

    https://doi.org/10.1109/EIDWT.2013.26

  • Bellas A, Bouveyron C, Cottrell M and Lacaille J. (2013). Model-based clustering of high-dimensional data streams with online mixture of probabilistic PCA. Advances in Data Analysis and Classification. 7:3. (281-300). Online publication date: 1-Sep-2013.

    https://doi.org/10.1007/s11634-013-0133-7

  • Lee C and Chien T. (2013). Leveraging microblogging big data with a modified density-based clustering approach for event awareness and topic ranking. Journal of Information Science. 10.1177/0165551513478738. 39:4. (523-543). Online publication date: 1-Aug-2013.

    http://journals.sagepub.com/doi/10.1177/0165551513478738

  • Zhang Y, Liu H and Deng B. (2013). Evolutionary clustering with DBSCAN 2013 9th International Conference on Natural Computation (ICNC). 10.1109/ICNC.2013.6818108. 978-1-4673-4714-3. (923-928).

    http://ieeexplore.ieee.org/document/6818108/

  • Dutta Baruah R and Angelov P. (2013). Online learning and prediction of data streams using dynamically evolving fuzzy approach 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 10.1109/FUZZ-IEEE.2013.6622517. 978-1-4799-0022-0. (1-8).

    http://ieeexplore.ieee.org/document/6622517/

  • Zhongyi Hu , Wei Liu and Hongan Wang . (2013). Mining both frequent and rare episodes in multiple data streams 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). 10.1109/FSKD.2013.6816295. 978-1-4673-5253-6. (753-761).

    http://ieeexplore.ieee.org/document/6816295/

  • GonçAlves Jr P and Barros R. (2013). RCD. Pattern Recognition Letters. 34:9. (1018-1025). Online publication date: 1-Jul-2013.

    https://doi.org/10.1016/j.patrec.2013.02.005

  • Gu S, Tan Y and He X. (2013). Recentness biased learning for time series forecasting. Information Sciences: an International Journal. 237. (29-38). Online publication date: 1-Jul-2013.

    https://doi.org/10.1016/j.ins.2010.09.004

  • Salem R, Boussaïd O and Darmont J. (2013). Active XML-based Web data integration. Information Systems Frontiers. 15:3. (371-398). Online publication date: 1-Jul-2013.

    https://doi.org/10.1007/s10796-012-9405-6

  • Stahl F, Gabrys B, Gaber M and Berendsen M. (2013). An overview of interactive visual data mining techniques for knowledge discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 3:4. (239-256). Online publication date: 1-Jul-2013.

    https://doi.org/10.1002/widm.1093

  • (2013). Data Stream. Applied Data Mining. 10.1201/b15027-14. (215-235). Online publication date: 28-Jun-2013.

    http://www.crcnetbase.com/doi/10.1201/b15027-14

  • Olmezogullari E and Ari I. Online Association Rule Mining over Fast Data. Proceedings of the 2013 IEEE International Congress on Big Data. (110-117).

    https://doi.org/10.1109/BigData.Congress.2013.77

  • Rutkowski L, Pietruczuk L, Duda P and Jaworski M. (2013). Decision Trees for Mining Data Streams Based on the McDiarmid's Bound. IEEE Transactions on Knowledge and Data Engineering. 25:6. (1272-1279). Online publication date: 1-Jun-2013.

    https://doi.org/10.1109/TKDE.2012.66

  • Noack T and Schmitt I. (2013). Monitoring mobile cyber-physical systems by means of a knowledge discovery cycle 2013 IEEE Seventh International Conference on Research Challenges in Information Science (RCIS). 10.1109/RCIS.2013.6577715. 978-1-4673-2914-9. (1-12).

    http://ieeexplore.ieee.org/document/6577715/

  • Liu Y, Chen W and Guan Y. (2013). Near-optimal approximate membership query over time-decaying windows IEEE INFOCOM 2013 - IEEE Conference on Computer Communications. 10.1109/INFCOM.2013.6566939. 978-1-4673-5946-7. (1447-1455).

    http://ieeexplore.ieee.org/document/6566939/

  • Wu J and Zhong L. (2013). A New Data Aggregation Model for Intelligent Transportation System. Advanced Materials Research. 10.4028/www.scientific.net/AMR.671-674.2855. 671-674. (2855-2859).

    https://www.scientific.net/AMR.671-674.2855

  • Zhou X, Yen N, Jin Q and Shih T. (2013). Enriching user search experience by mining social streams with heuristic stones and associative ripples. Multimedia Tools and Applications. 63:1. (129-144). Online publication date: 1-Mar-2013.

    https://doi.org/10.1007/s11042-012-1069-1

  • Mooney C and Roddick J. (2013). Sequential pattern mining -- approaches and algorithms. ACM Computing Surveys. 45:2. (1-39). Online publication date: 1-Feb-2013.

    https://doi.org/10.1145/2431211.2431218

  • Dingping L, Kaitao Z and Qiqi Y. Application of Data Stream Outlier Mining Techniques in Steam Generator Safety Early Warning System of Nuclear Power Plant. Proceedings of the 2013 Fifth International Conference on Measuring Technology and Mechatronics Automation. (287-290).

    https://doi.org/10.1109/ICMTMA.2013.74

  • Robinson W, Akhlaghi A and Deng T. Transition Discovery of Sequential Behaviors in Email Application Usage Using Hidden Markov Models. Proceedings of the 2013 46th Hawaii International Conference on System Sciences. (2656-2665).

    https://doi.org/10.1109/HICSS.2013.574

  • Wang B and Dong A. Online Clustering and Outlier Detection. Data Mining. 10.4018/978-1-4666-2455-9.ch008. (142-158).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2455-9.ch008

  • Wang B and Dong A. Online Clustering and Outlier Detection. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance. 10.4018/978-1-4666-2086-5.ch017. (529-545).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2086-5.ch017

  • Fang X, Sheng O and Goes P. (2013). When Is the Right Time to Refresh Knowledge Discovered from Data?. Operations Research. 61:1. (32-44). Online publication date: 1-Jan-2013.

    https://doi.org/10.1287/opre.1120.1148

  • Lim E, Chen H and Chen G. (2013). Business Intelligence and Analytics. ACM Transactions on Management Information Systems. 3:4. (1-10). Online publication date: 1-Jan-2013.

    https://doi.org/10.1145/2407740.2407741

  • Maggi F, Burattin A, Cimitile M and Sperduti A. (2013). Online Process Discovery to Detect Concept Drifts in LTL-Based Declarative Process Models. On the Move to Meaningful Internet Systems: OTM 2013 Conferences. 10.1007/978-3-642-41030-7_7. (94-111).

    http://link.springer.com/10.1007/978-3-642-41030-7_7

  • Leung C, Cuzzocrea A and Jiang F. (2013). Discovering Frequent Patterns from Uncertain Data Streams with Time-Fading and Landmark Models. Transactions on Large-Scale Data- and Knowledge-Centered Systems VIII. 10.1007/978-3-642-37574-3_8. (174-196).

    https://link.springer.com/10.1007/978-3-642-37574-3_8

  • Cuzzocrea A. (2013). A Theoretically-Sound Approach for OLAPing Uncertain and Imprecise Multidimensional Data Streams. Advances in Probabilistic Databases for Uncertain Information Management. 10.1007/978-3-642-37509-5_5. (109-129).

    https://link.springer.com/10.1007/978-3-642-37509-5_5

  • Mitsch S, Müller A, Retschitzegger W, Salfinger A and Schwinger W. (2013). A Survey on Clustering Techniques for Situation Awareness. Web Technologies and Applications. 10.1007/978-3-642-37401-2_78. (815-826).

    http://link.springer.com/10.1007/978-3-642-37401-2_78

  • Kenda K, Fortuna C, Moraru A, Mladenić D, Fortuna B and Grobelnik M. (2013). Mashups for the Web of Things. Semantic Mashups. 10.1007/978-3-642-36403-7_5. (145-169).

    https://link.springer.com/10.1007/978-3-642-36403-7_5

  • Cuzzocrea A. (2013). Approximation Algorithms for Massive High-Rate Data Streams. New Trends in Databases and Information Systems. 10.1007/978-3-642-32518-2_6. (59-68).

    http://link.springer.com/10.1007/978-3-642-32518-2_6

  • Grossi V and Turini F. (2013). Data Streams Classification: A Selective Ensemble with Adaptive Behavior. Agents and Artificial Intelligence. 10.1007/978-3-642-29966-7_14. (208-223).

    http://link.springer.com/10.1007/978-3-642-29966-7_14

  • Shaker A and Hüllermeier E. (2013). Recovery Analysis for Adaptive Learning from Non-stationary Data Streams. Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. 10.1007/978-3-319-00969-8_28. (289-298).

    https://link.springer.com/10.1007/978-3-319-00969-8_28

  • Zliobaite I, Bifet A, Gaber M, Gabrys B, Gama J, Minku L and Musial K. (2012). Next challenges for adaptive learning systems. ACM SIGKDD Explorations Newsletter. 14:1. (48-55). Online publication date: 10-Dec-2012.

    https://doi.org/10.1145/2408736.2408746

  • Wiens J, Guttag J and Horvitz E. Patient risk stratification for hospital-associated C. diff as a time-series classification task. Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1. (467-475).

    /doi/10.5555/2999134.2999187

  • Ari I, Celebi O and Olmezogullari E. Data stream analytics and mining in the cloud. Proceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom). (857-862).

    https://doi.org/10.1109/CloudCom.2012.6427563

  • Senthamilarasu S and Hemalatha M. (2012). Load shedding techniques based on windows in data stream systems 2012 International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET). 10.1109/INCOSET.2012.6513883. 978-1-4673-5144-7. (68-73).

    http://ieeexplore.ieee.org/document/6513883/

  • Lee C. (2012). Unsupervised and supervised learning to evaluate event relatedness based on content mining from social-media streams. Expert Systems with Applications: An International Journal. 39:18. (13338-13356). Online publication date: 1-Dec-2012.

    https://doi.org/10.1016/j.eswa.2012.05.068

  • Shie B, Yu P and Tseng V. (2012). Efficient algorithms for mining maximal high utility itemsets from data streams with different models. Expert Systems with Applications: An International Journal. 39:17. (12947-12960). Online publication date: 1-Dec-2012.

    https://doi.org/10.1016/j.eswa.2012.05.035

  • Shaker A and Hüllermeier E. (2012). IBLStreams: a system for instance-based classification and regression on data streams. Evolving Systems. 10.1007/s12530-012-9059-0. 3:4. (235-249). Online publication date: 1-Dec-2012.

    http://link.springer.com/10.1007/s12530-012-9059-0

  • Basalamah A, Ahmad M, Elidrisi M, Basalamah S and Mokbel M. Streaming driving behavior data. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on GeoStreaming. (116-119).

    https://doi.org/10.1145/2442968.2442983

  • Esling P and Agon C. (2012). Time-series data mining. ACM Computing Surveys. 45:1. (1-34). Online publication date: 1-Nov-2012.

    https://doi.org/10.1145/2379776.2379788

  • Giannotti F, Pedreschi D, Pentland A, Lukowicz P, Kossmann D, Crowley J and Helbing D. (2012). A planetary nervous system for social mining and collective awareness. The European Physical Journal Special Topics. 10.1140/epjst/e2012-01688-9. 214:1. (49-75). Online publication date: 1-Nov-2012.

    http://www.springerlink.com/index/10.1140/epjst/e2012-01688-9

  • BEYER O and CIMIANO P. (2012). ONLINE SEMI-SUPERVISED GROWING NEURAL GAS. International Journal of Neural Systems. 10.1142/S0129065712500232. 22:05. (1250023). Online publication date: 1-Oct-2012.

    http://www.worldscientific.com/doi/abs/10.1142/S0129065712500232

  • Lamirel J. (2012). A new approach for automatizing the analysis of research topics dynamics. Scientometrics. 93:1. (151-166). Online publication date: 1-Oct-2012.

    https://doi.org/10.1007/s11192-012-0771-0

  • Soylu A, Mödritscher F, Wild F, De Causmaecker P and Desmet P. (2012). Mashups by orchestration and widget‐based personal environments. Program. 10.1108/00330331211276486. 46:4. (383-428). Online publication date: 21-Sep-2012.

    https://www.emeraldinsight.com/doi/10.1108/00330331211276486

  • Buhler J, Agrawal K, Li P and Chamberlain R. (2012). Efficient deadlock avoidance for streaming computation with filtering. ACM SIGPLAN Notices. 47:8. (235-246). Online publication date: 11-Sep-2012.

    https://doi.org/10.1145/2370036.2145846

  • Rajesh P, Narisimha G and Rupa C. Fuzzy based privacy preserving classification of data streams. Proceedings of the CUBE International Information Technology Conference. (784-788).

    https://doi.org/10.1145/2381716.2381865

  • Bijlsma D, Correia J and Visser J. Automatic Event Detection for Software Product Quality Monitoring. Proceedings of the 2012 Eighth International Conference on the Quality of Information and Communications Technology. (30-37).

    https://doi.org/10.1109/QUATIC.2012.22

  • Namadchian A and Esfandani G. DSCLU. Proceedings of the 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. (83-88).

    https://doi.org/10.1109/SNPD.2012.119

  • Krishnaswamy S, Gama J and Gaber M. Mobile Data Stream Mining. Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management (mdm 2012). (360-363).

    https://doi.org/10.1109/MDM.2012.37

  • Kim Y, Park D, Kim H and Kim U. (2012). A sliding window-based false-negative approach for ubiquitous data stream analysis. International Journal of Communication Systems. 25:6. (691-716). Online publication date: 1-Jun-2012.

    https://doi.org/10.1002/dac.1211

  • Safia A and Aghbari Z. (2012). Detection of variable length anomalous subsequences in data streams. International Journal of Intelligent Information and Database Systems. 6:3. (273-288). Online publication date: 1-May-2012.

    https://doi.org/10.1504/IJIIDS.2012.047005

  • Karimian S, Kelarestaghi M and Hashemi S. (2012). I-IncLOF: Improved incremental local outlier detection for data streams 2012 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP). 10.1109/AISP.2012.6313711. 978-1-4673-1479-4. (023-028).

    http://ieeexplore.ieee.org/document/6313711/

  • Alzghoul A, Löfstrand M and Backe B. (2012). Data stream forecasting for system fault prediction. Computers and Industrial Engineering. 62:4. (972-978). Online publication date: 1-May-2012.

    https://doi.org/10.1016/j.cie.2011.12.023

  • Robinson W, Akhlaghi A, Deng T and Syed A. (2012). Discovery and diagnosis of behavioral transitions in patient event streams. ACM Transactions on Management Information Systems. 3:1. (1-28). Online publication date: 1-Apr-2012.

    https://doi.org/10.1145/2151163.2151167

  • Zia-Ur Rehman M, Li T and Li T. (2012). Exploiting empirical variance for data stream classification. Journal of Shanghai Jiaotong University (Science). 10.1007/s12204-012-1261-5. 17:2. (245-250). Online publication date: 1-Apr-2012.

    http://link.springer.com/10.1007/s12204-012-1261-5

  • Buhler J, Agrawal K, Li P and Chamberlain R. Efficient deadlock avoidance for streaming computation with filtering. Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming. (235-246).

    https://doi.org/10.1145/2145816.2145846

  • Grossi V and Turini F. (2012). Stream mining. Knowledge and Information Systems. 30:2. (247-281). Online publication date: 1-Feb-2012.

    /doi/10.5555/3225657.3225943

  • Amphawan K, Lenca P and Surarerks A. (2012). Mining top-k regular-frequent itemsets using database partitioning and support estimation. Expert Systems with Applications: An International Journal. 39:2. (1924-1936). Online publication date: 1-Feb-2012.

    https://doi.org/10.1016/j.eswa.2011.08.055

  • Grossi V and Turini F. (2011). Stream mining: a novel architecture for ensemble-based classification. Knowledge and Information Systems. 10.1007/s10115-011-0378-4. 30:2. (247-281). Online publication date: 1-Feb-2012.

    http://link.springer.com/10.1007/s10115-011-0378-4

  • Robinson W, Syed A, Akhlaghi A and Deng T. Pattern Discovery of User Interface Sequencing by Rehabilitation Clients with Cognitive Impairments. Proceedings of the 2012 45th Hawaii International Conference on System Sciences. (3001-3010).

    https://doi.org/10.1109/HICSS.2012.467

  • Stahl F, Gaber M, Aldridge P, May D, Liu H, Bramer M and Yu P. Homogeneous and heterogeneous distributed classification for pocket data mining. Transactions on Large-Scale Data- and Knowledge-Centered Systems V. (183-205).

    /doi/10.5555/2184170.2184178

  • Guccione P, Appice A, Ciampi A and Malerba D. (2012). Trend Cluster Based Kriging Interpolation in Sensor Data Networks. Modeling and Mining Ubiquitous Social Media. 10.1007/978-3-642-33684-3_7. (118-137).

    http://link.springer.com/10.1007/978-3-642-33684-3_7

  • Appice A, Malerba D and Ciampi A. (2012). Continuously Mining Sliding Window Trend Clusters in a Sensor Network. Database and Expert Systems Applications. 10.1007/978-3-642-32597-7_22. (248-255).

    http://link.springer.com/10.1007/978-3-642-32597-7_22

  • Wu J. (2012). Cluster Analysis and K-means Clustering: An Introduction. Advances in K-means Clustering. 10.1007/978-3-642-29807-3_1. (1-16).

    https://link.springer.com/10.1007/978-3-642-29807-3_1

  • Stahl F, Gaber M, Aldridge P, May D, Liu H, Bramer M and Yu P. (2012). Homogeneous and Heterogeneous Distributed Classification for Pocket Data Mining. Transactions on Large-Scale Data- and Knowledge-Centered Systems V. 10.1007/978-3-642-28148-8_8. (183-205).

    http://link.springer.com/10.1007/978-3-642-28148-8_8

  • Geesen D, Brell M, Grawunder M, Nicklas D and Appelrath H. (2012). Data Stream Management in the AAL: Universal and Flexible Preprocessing of Continuous Sensor Data. Ambient Assisted Living. 10.1007/978-3-642-27491-6_16. (213-228).

    http://link.springer.com/10.1007/978-3-642-27491-6_16

  • Wilhelm A. (2012). Data and Knowledge Mining. Handbook of Computational Statistics. 10.1007/978-3-642-21551-3_28. (825-852).

    http://link.springer.com/10.1007/978-3-642-21551-3_28

  • Amini A and Wah T. (2012). A Comparative Study of Density-based Clustering Algorithms on Data Streams: Micro-clustering Approaches. Intelligent Control and Innovative Computing. 10.1007/978-1-4614-1695-1_21. (275-287).

    http://link.springer.com/10.1007/978-1-4614-1695-1_21

  • Stahl F, Gaber M and Salvador M. (2012). eRules: A Modular Adaptive Classification Rule Learning Algorithm for Data Streams. Research and Development in Intelligent Systems XXIX. 10.1007/978-1-4471-4739-8_5. (65-78).

    https://link.springer.com/10.1007/978-1-4471-4739-8_5

  • Shaker A and Hüllermeier E. (2012). Instance-Based Classification and Regression on Data Streams. Learning in Non-Stationary Environments. 10.1007/978-1-4419-8020-5_8. (185-201).

    https://link.springer.com/10.1007/978-1-4419-8020-5_8

  • Gaber M. (2011). Advances in data stream mining. WIREs Data Mining and Knowledge Discovery. 10.1002/widm.52. 2:1. (79-85). Online publication date: 1-Jan-2012.

    https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.52

  • Magdy A, Yousri N and El-Makky N. Discovering Clusters with Arbitrary Shapes and Densities in Data Streams. Proceedings of the 2011 10th International Conference on Machine Learning and Applications and Workshops - Volume 01. (279-282).

    https://doi.org/10.1109/ICMLA.2011.56

  • Ristanoski G and Bailey J. Distribution based data filtering for financial time series forecasting. Proceedings of the 24th international conference on Advances in Artificial Intelligence. (122-131).

    https://doi.org/10.1007/978-3-642-25832-9_13

  • CHANG S, COLACE F, ZHAO L and SUN Y. (2011). PROCESSING CONTINUOUS QUERIES ON SENSOR-BASED MULTIMEDIA DATA STREAMS BY MULTIMEDIA DEPENDENCY ANALYSIS AND ONTOLOGICAL FILTERING. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194011005669. 21:08. (1169-1208). Online publication date: 1-Dec-2011.

    http://www.worldscientific.com/doi/abs/10.1142/S0218194011005669

  • Haifeng Li . (2011). A stream sequential pattern mining model 2011 International Conference on Computer Science and Network Technology (ICCSNT). 10.1109/ICCSNT.2011.6182063. 978-1-4577-1587-7. (704-707).

    http://ieeexplore.ieee.org/document/6182063/

  • Wozniak M. (2011). A hybrid decision tree training method using data streams. Knowledge and Information Systems. 29:2. (335-347). Online publication date: 1-Nov-2011.

    https://doi.org/10.1007/s10115-010-0345-5

  • Guccione P, Appice A, Ciampi A and Malerba D. Trend cluster based kriging interpolation in sensor data networks. Proceedings of the 2011th International Conference on Modeling and Mining Ubiquitous Social Media - 2011 International Workshop on Modeling Social Media and 2011 International Workshop on Mining Ubiquitous and Social Environments. (118-137).

    /doi/10.5555/3120657.3120664

  • Yan Z, Hui Q and Dong Z. Summary of Biological Information Mining. Proceedings of the 2011 International Conference of Information Technology, Computer Engineering and Management Sciences - Volume 01. (351-354).

    https://doi.org/10.1109/ICM.2011.290

  • Leung C, Jiang F and Hayduk Y. A landmark-model based system for mining frequent patterns from uncertain data streams. Proceedings of the 15th Symposium on International Database Engineering & Applications. (249-250).

    https://doi.org/10.1145/2076623.2076659

  • Salem R, Darmont J and Boussaïd O. Efficient incremental breadth-depth XML event mining. Proceedings of the 15th Symposium on International Database Engineering & Applications. (197-203).

    https://doi.org/10.1145/2076623.2076649

  • Sobolewski P and Woźniak M. Artificial recurrence for classification of streaming data with concept shift. Proceedings of the Second international conference on Adaptive and intelligent systems. (76-87).

    /doi/10.5555/2045295.2045308

  • Leung C and Jiang F. Frequent pattern mining from time-fading streams of uncertain data. Proceedings of the 13th international conference on Data warehousing and knowledge discovery. (252-264).

    /doi/10.5555/2033616.2033642

  • Beretta D, Quintarelli E and Rabosio E. Mining Context-Aware Preferences on Relational and Sensor Data. Proceedings of the 2011 22nd International Workshop on Database and Expert Systems Applications. (116-120).

    https://doi.org/10.1109/DEXA.2011.52

  • Wang J, Wang Y and Zhang Z. Visual Saliency Based Aerial Video Summarization by Online Scene Classification. Proceedings of the 2011 Sixth International Conference on Image and Graphics. (777-782).

    https://doi.org/10.1109/ICIG.2011.43

  • Wei J, Jiang H, Zhou K, Feng D and Wang H. Detecting Duplicates over Sliding Windows with RAM-Efficient Detached Counting Bloom Filter Arrays. Proceedings of the 2011 IEEE Sixth International Conference on Networking, Architecture, and Storage. (382-391).

    https://doi.org/10.1109/NAS.2011.37

  • Hua-Fu Li and Hsuan-Sheng Chen . Discovering emerging melody patterns from customer query data streams of music service. Proceedings of the 2011 IEEE International Conference on Multimedia and Expo. (1-4).

    https://doi.org/10.1109/ICME.2011.6012052

  • Stahl F, Gaber M, Bramer M and Yu P. (2011). Distributed hoeffding trees for pocket data mining Simulation (HPCS). 10.1109/HPCSim.2011.5999893. 978-1-61284-380-3. (686-692).

    http://ieeexplore.ieee.org/document/5999893/

  • Ouyang Z, Gao Y, Zhao Z and Wang T. (2011). Study on the classification of data streams with concept drift 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2011). 10.1109/FSKD.2011.6019889. 978-1-61284-180-9. (1673-1677).

    http://ieeexplore.ieee.org/document/6019889/

  • Leung C. (2011). Mining uncertain data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1:4. (316-329). Online publication date: 1-Jul-2011.

    https://doi.org/10.1002/widm.31

  • Stahl F, Gaber M, Liu H, Bramer M and Yu P. Distributed classification for pocket data mining. Proceedings of the 19th international conference on Foundations of intelligent systems. (336-345).

    /doi/10.5555/2029759.2029804

  • Jeung H. Mobile Sensor Databases. Proceedings of the 2011 IEEE 12th International Conference on Mobile Data Management - Volume 02. (1-2).

    https://doi.org/10.1109/MDM.2011.34

  • Li H. (2011). MEMSA. Multimedia Systems. 17:3. (237-245). Online publication date: 1-Jun-2011.

    https://doi.org/10.1007/s00530-010-0226-5

  • Cesario E, Grillo A, Mastroianni C and Talia D. A Sketch-Based Architecture for Mining Frequent Items and Itemsets from Distributed Data Streams. Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. (245-253).

    https://doi.org/10.1109/CCGrid.2011.45

  • Helbing D and Balietti S. (2011). From social data mining to forecasting socio-economic crises. The European Physical Journal Special Topics. 10.1140/epjst/e2011-01401-8. 195:1. (3-68). Online publication date: 1-May-2011.

    http://www.springerlink.com/index/10.1140/epjst/e2011-01401-8

  • Guo X, Feng L and Guo P. (2011). Research on Mining Frequent Itemsets Based on Bitwise AND Algorithm 2011 3rd International Workshop on Intelligent Systems and Applications (ISA). 10.1109/ISA.2011.5873398. 978-1-4244-9855-0. (1-4).

    http://ieeexplore.ieee.org/document/5873398/

  • Boettcher M. (2011). Contrast and change mining. WIREs Data Mining and Knowledge Discovery. 10.1002/widm.27. 1:3. (215-230). Online publication date: 1-May-2011.

    https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.27

  • Abu Safia A and Al Aghbari Z. (2011). Searching data streams for variable length anomalies 2011 International Conference on Innovations in Information Technology (IIT). 10.1109/INNOVATIONS.2011.5893836. 978-1-4577-0311-9. (297-302).

    http://ieeexplore.ieee.org/document/5893836/

  • (2011). Bibliography. Data Clustering in C++. 10.1201/b10814-28. (469-486). Online publication date: 28-Mar-2011.

    http://www.crcnetbase.com/doi/abs/10.1201/b10814-28

  • Leung C and Jiang F. Frequent itemset mining of uncertain data streams using the damped window model. Proceedings of the 2011 ACM Symposium on Applied Computing. (950-955).

    https://doi.org/10.1145/1982185.1982393

  • Alzghoul A and Löfstrand M. (2011). Increasing availability of industrial systems through data stream mining. Computers and Industrial Engineering. 60:2. (195-205). Online publication date: 1-Mar-2011.

    https://doi.org/10.1016/j.cie.2010.10.008

  • Zhou X, Chen H, Jin Q and Yong J. Generating associative ripples of relevant information from a variety of data streams by throwing a heuristic stone. Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication. (1-7).

    https://doi.org/10.1145/1968613.1968685

  • Abadia R, Stranieri A, Quinn A and Seifollahi S. Real time processing of data from patient biodevices. Proceedings of the Fourth Australasian Workshop on Health Informatics and Knowledge Management - Volume 120. (25-30).

    /doi/10.5555/2483212.2483216

  • Stranieri A, Kulkarni S, Macfadyen A, Love A and Vaughan S. Decision support based needs assessment for cancer patients. Proceedings of the Fourth Australasian Workshop on Health Informatics and Knowledge Management - Volume 120. (3-8).

    /doi/10.5555/2483212.2483213

  • Robinson W, Akhlaghi A, Deng T and Syed A. Diagnosing Stream-Mined Model Changes of Monitored Requirements for Cognitive Rehabilitation. Proceedings of the 2011 44th Hawaii International Conference on System Sciences. (1-11).

    https://doi.org/10.1109/HICSS.2011.164

  • Liu H, Lin Y and Han J. (2011). Methods for mining frequent items in data streams. Knowledge and Information Systems. 26:1. (1-30). Online publication date: 1-Jan-2011.

    /doi/10.5555/3225627.3225720

  • Chong S, Gaber M, Krishnaswamy S and Loke S. Energy-aware data processing techniques for wireless sensor networks. Transactions on large-scale data- and knowledge-centered systems III. (117-137).

    /doi/10.5555/2028190.2028195

  • Leung C and Carmichael C. iVAS. Visual Analytics and Interactive Technologies. 10.4018/978-1-60960-102-7.ch013. (213-231).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-102-7.ch013

  • Moraru A, Fortuna C and Mladenic D. (2011). A System for Publishing Sensor Data on the Semantic Web. Journal of Computing and Information Technology. 10.2498/cit.1002030. 19:4.

    http://cit.srce.unizg.hr/index.php/CIT/article/view/2030

  • Sawant N, Li J and Wang J. (2011). Automatic image semantic interpretation using social action and tagging data. Multimedia Tools and Applications. 51:1. (213-246). Online publication date: 1-Jan-2011.

    https://doi.org/10.1007/s11042-010-0650-8

  • Liu H, Lin Y and Han J. (2009). Methods for mining frequent items in data streams: an overview. Knowledge and Information Systems. 10.1007/s10115-009-0267-2. 26:1. (1-30). Online publication date: 1-Jan-2011.

    http://link.springer.com/10.1007/s10115-009-0267-2

  • Sobolewski P and Woźniak M. (2011). Artificial Recurrence for Classification of Streaming Data with Concept Shift. Adaptive and Intelligent Systems. 10.1007/978-3-642-23857-4_11. (76-87).

    http://link.springer.com/10.1007/978-3-642-23857-4_11

  • Leung C and Jiang F. (2011). Frequent Pattern Mining from Time-Fading Streams of Uncertain Data. Data Warehousing and Knowledge Discovery. 10.1007/978-3-642-23544-3_19. (252-264).

    http://link.springer.com/10.1007/978-3-642-23544-3_19

  • Chong S, Gaber M, Krishnaswamy S and Loke S. (2011). Energy-Aware Data Processing Techniques for Wireless Sensor Networks: A Review. Transactions on Large-Scale Data- and Knowledge-Centered Systems III. 10.1007/978-3-642-23074-5_5. (117-137).

    http://link.springer.com/10.1007/978-3-642-23074-5_5

  • Chandrika and Kumar K. (2011). An Adaptive Framework for Clustering Data Streams. Advances in Computing and Communications. 10.1007/978-3-642-22709-7_68. (704-711).

    http://link.springer.com/10.1007/978-3-642-22709-7_68

  • Pereira C and de Mello R. (2011). A Comparison of Clustering Algorithms for Data Streams. Integrated Computing Technology. 10.1007/978-3-642-22247-4_6. (59-74).

    http://link.springer.com/10.1007/978-3-642-22247-4_6

  • Stahl F, Gaber M, Liu H, Bramer M and Yu P. (2011). Distributed Classification for Pocket Data Mining. Foundations of Intelligent Systems. 10.1007/978-3-642-21916-0_37. (336-345).

    http://link.springer.com/10.1007/978-3-642-21916-0_37

  • Alzghoul A, Löfstrand M, Karlsson L and Karlberg M. (2011). Data Stream Mining for Increased Functional Product Availability Awareness. Functional Thinking for Value Creation. 10.1007/978-3-642-19689-8_42. (237-241).

    https://link.springer.com/10.1007/978-3-642-19689-8_42

  • Grobelnik M, Mladenić D and Witbrock M. (2011). Text Mining for the Semantic Web. Encyclopedia of Machine Learning. 10.1007/978-0-387-30164-8_829. (978-980).

    https://link.springer.com/10.1007/978-0-387-30164-8_829

  • Sammut C and Harries M. (2011). Concept Drift. Encyclopedia of Machine Learning. 10.1007/978-0-387-30164-8_153. (202-205).

    https://link.springer.com/10.1007/978-0-387-30164-8_153

  • Lamirel J, Safi G, Priyankar N and Cuxac P. Mining Research Topics Evolving Over Time Using a Diachronic Multi-source Approach. Proceedings of the 2010 IEEE International Conference on Data Mining Workshops. (17-24).

    https://doi.org/10.1109/ICDMW.2010.198

  • Dai B, Jiang H and Chung C. Mining Top-K Sequential Patterns in the Data Stream Environment. Proceedings of the 2010 International Conference on Technologies and Applications of Artificial Intelligence. (142-149).

    https://doi.org/10.1109/TAAI.2010.33

  • Xiong G and Zhang M. A Novel Method of Outliers within Data Streams Based on Clustering Evolving Model for Detecting Intrusion Attacks of Unknown Type. Proceedings of the 2010 International Conference on Multimedia Information Networking and Security. (579-583).

    https://doi.org/10.1109/MINES.2010.127

  • Stahl F, Gaber M, Bramer M and Yu P. Pocket Data Mining. Proceedings of the 2010 22nd IEEE International Conference on Tools with Artificial Intelligence - Volume 02. (323-330).

    https://doi.org/10.1109/ICTAI.2010.118

  • Gaber M, Krishnaswamy S, Gillick B, Nicoloudis N, Liono J, AlTaiar H and Zaslavsky A. Adaptive Clutter-Aware Visualization for Mobile Data Stream Mining. Proceedings of the 2010 22nd IEEE International Conference on Tools with Artificial Intelligence - Volume 02. (304-311).

    https://doi.org/10.1109/ICTAI.2010.116

  • Liu C, Guo F and Faloutsos C. (2010). Bayesian Browsing Model. ACM Transactions on Knowledge Discovery from Data. 4:4. (1-26). Online publication date: 1-Oct-2010.

    https://doi.org/10.1145/1857947.1857951

  • Arnautovic E, Vallee M, Mulvenna M, Baumgarten M, Hadjiantonis A, Rehm S, Muthel M, Karyotis V, Papavassiliou S and Stathis K. (2010). Towards self-managing systems inspired by economic organizations 2010 IEEE International Conference on Systems, Man and Cybernetics - SMC. 10.1109/ICSMC.2010.5641875. 978-1-4244-6586-6. (888-895).

    http://ieeexplore.ieee.org/document/5641875/

  • Cheng X and Xie J. (2010). Two-Dimension Pilot-Symbol Channel Estimation Method for MIMO-OFDM System 2010 International Conference on Multimedia Technology (ICMT). 10.1109/ICMULT.2010.5631100. 978-1-4244-7871-2. (1-3).

    http://ieeexplore.ieee.org/document/5631100/

  • Tsai P. (2010). Mining top-k frequent closed itemsets over data streams using the sliding window model. Expert Systems with Applications: An International Journal. 37:10. (6968-6973). Online publication date: 1-Oct-2010.

    https://doi.org/10.1016/j.eswa.2010.03.023

  • Hüllermeier E. Uncertainty in clustering and classification. Proceedings of the 4th international conference on Scalable uncertainty management. (16-19).

    /doi/10.5555/1926791.1926799

  • Qi J, Zhang S, Sun Y, Sun Y and Tan L. (2010). Challenges for Cognitive Network 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). 10.1109/WICOM.2010.5601254. 978-1-4244-3708-5. (1-4).

    http://ieeexplore.ieee.org/document/5601254/

  • Zhang Z and Zhou J. (2010). Transfer estimation of evolving class priors in data stream classification. Pattern Recognition. 43:9. (3151-3161). Online publication date: 1-Sep-2010.

    https://doi.org/10.1016/j.patcog.2010.03.021

  • Buccafurri F and Lax G. (2010). Approximating sliding windows by cyclic tree-like histograms for efficient range queries. Data & Knowledge Engineering. 69:9. (979-997). Online publication date: 1-Sep-2010.

    https://doi.org/10.1016/j.datak.2010.05.002

  • Yan J, Yun X, Zhang P, Tan J and Guo L. A New Weighted Ensemble Model for Detecting DoS Attack Streams. Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 03. (227-230).

    https://doi.org/10.1109/WI-IAT.2010.264

  • Qu Z, Li P and Li Y. (2010). A high-efficiency algorithm for Mining Frequent Itemsets over transaction data streams 2010 International Conference on Intelligent Control and Information Processing (ICICIP). 10.1109/ICICIP.2010.5565215. 978-1-4244-7047-1. (148-152).

    http://ieeexplore.ieee.org/document/5565215/

  • Bifet A. Adaptive Stream Mining. Proceedings of the 2010 conference on Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams. (1-212).

    /doi/10.5555/1735125.1735127

  • Wu W and Gruenwald L. Research issues in mining multiple data streams. Proceedings of the First International Workshop on Novel Data Stream Pattern Mining Techniques. (56-60).

    https://doi.org/10.1145/1833280.1833288

  • Carminati B, Ferrari E, Cao J and Tan K. (2010). A framework to enforce access control over data streams. ACM Transactions on Information and System Security. 13:3. (1-31). Online publication date: 1-Jul-2010.

    https://doi.org/10.1145/1805974.1805984

  • Labroche N. (2010). New incremental fuzzy c medoids clustering algorithms NAFIPS 2010 - 2010 Annual Meeting of the North American Fuzzy Information Processing Society. 10.1109/NAFIPS.2010.5548263. 978-1-4244-7859-0. (1-6).

    http://ieeexplore.ieee.org/document/5548263/

  • Zhang C and Gruver W. (2010). Distributed agent system for behavior pattern recognition 2010 International Conference on Machine Learning and Cybernetics (ICMLC). 10.1109/ICMLC.2010.5581067. 978-1-4244-6526-2. (204-209).

    http://ieeexplore.ieee.org/document/5581067/

  • Hang Y and Fong S. (2010). Real-time business intelligence system architecture with stream mining 2010 Fifth International Conference on Digital Information Management (ICDIM). 10.1109/ICDIM.2010.5664637. 978-1-4244-7572-8. (29-34).

    http://ieeexplore.ieee.org/document/5664637/

  • Aghakhani S and Dick S. (2010). An on-line learning algorithm for complex fuzzy logic 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 10.1109/FUZZY.2010.5584120. 978-1-4244-6919-2. (1-7).

    http://ieeexplore.ieee.org/document/5584120/

  • Wang L, Chng E and Li H. (2010). A tree-construction search approach for multivariate time series motifs discovery. Pattern Recognition Letters. 31:9. (869-875). Online publication date: 1-Jul-2010.

    https://doi.org/10.1016/j.patrec.2010.01.005

  • Cuzzocrea A and Chakravarthy S. (2010). Event-based lossy compression for effective and efficient OLAP over data streams. Data & Knowledge Engineering. 69:7. (678-708). Online publication date: 1-Jul-2010.

    https://doi.org/10.1016/j.datak.2010.02.006

  • Gomes R and Krause A. Budgeted nonparametric learning from data streams. Proceedings of the 27th International Conference on International Conference on Machine Learning. (391-398).

    /doi/10.5555/3104322.3104373

  • Ciampi A, Appice A and Malerba D. Online and offline trend cluster discovery in spatially distributed data streams. Proceedings of the 2010 international conference on Analysis of social media and ubiquitous data. (142-161).

    /doi/10.5555/2035637.2035645

  • Yamakami T. An Empirical Analysis of Weekly Behaviors of Monthly Subscription-Based Mobile Video Services. Proceedings of the 2010 Ninth International Conference on Mobile Business / 2010 Ninth Global Mobility Roundtable. (238-242).

    https://doi.org/10.1109/ICMB-GMR.2010.50

  • Ciampi A, Appice A and Malerba D. Online and offline trend cluster discovery in spatially distributed data streams. Proceedings of the 2010th International Conference on Analysis of Social Media and Ubiquitous Data. (142-161).

    https://doi.org/10.1007/978-3-642-23599-3_8

  • Snowsill T, Nicart F, Stefani M, De Bie T and Cristianini N. (2010). Finding surprising patterns in textual data streams 2010 2nd International Workshop on Cognitive Information Processing (CIP). 10.1109/CIP.2010.5604085. 978-1-4244-6459-3. (405-410).

    http://ieeexplore.ieee.org/document/5604085/

  • Mancini E, Marsh G and Panda D. An MPI-Stream Hybrid Programming Model for Computational Clusters. Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. (323-330).

    https://doi.org/10.1109/CCGRID.2010.33

  • Yamakami T. A one-seg service development model. Proceedings of the 5th international conference on Advances in Grid and Pervasive Computing. (492-501).

    https://doi.org/10.1007/978-3-642-13067-0_51

  • Yamakami T. An empirical analysis of revisit behaviors of monthly subscription-based mobile video services. Proceedings of the 5th international conference on Advances in Grid and Pervasive Computing. (482-491).

    https://doi.org/10.1007/978-3-642-13067-0_50

  • Xia W and Wei Z. (2010). Mining unusual data over data streams 2010 2nd International Conference on Future Computer and Communication. 10.1109/ICFCC.2010.5497508. 978-1-4244-5821-9. (V2-518-V2-521).

    http://ieeexplore.ieee.org/document/5497508/

  • Zhang J, Yang J, Zhang J and Yuan Y. (2010). KIDS:K-anonymization data stream base on sliding window 2010 2nd International Conference on Future Computer and Communication. 10.1109/ICFCC.2010.5497420. 978-1-4244-5821-9. (V2-311-V2-316).

    http://ieeexplore.ieee.org/document/5497420/

  • Hwang S, Yang W and Ting K. (2010). Automatic index construction for multimedia digital libraries. Information Processing and Management: an International Journal. 46:3. (295-307). Online publication date: 1-May-2010.

    https://doi.org/10.1016/j.ipm.2009.10.006

  • Magdy A and Bassiouny M. SIC-means. Proceedings of the 4th IAPR TC3 conference on Artificial Neural Networks in Pattern Recognition. (96-107).

    https://doi.org/10.1007/978-3-642-12159-3_9

  • Kim Y, Kim W and Kim U. (2010). Mining Frequent Itemsets with Normalized Weight in Continuous Data Streams. Journal of Information Processing Systems. 10.3745/JIPS.2010.6.1.079. 6:1. (79-90). Online publication date: 31-Mar-2010.

    http://koreascience.or.kr/journal/view.jsp?kj=E1JBB0&py=2010&vnc=v6n1&sp=79

  • Yu F, Oyana D, Hou W and Wainer M. (2010). Approximate Clustering on Data Streams Using Discrete Cosine Transform. Journal of Information Processing Systems. 10.3745/JIPS.2010.6.1.067. 6:1. (67-78). Online publication date: 31-Mar-2010.

    http://koreascience.or.kr/journal/view.jsp?kj=E1JBB0&py=2010&vnc=v6n1&sp=67

  • Garg M, Kim D, Turaga D and Prabhakaran B. Multimodal analysis of body sensor network data streams for real-time healthcare. Proceedings of the international conference on Multimedia information retrieval. (469-478).

    https://doi.org/10.1145/1743384.1743467

  • Shie B, Tseng V and Yu P. Online mining of temporal maximal utility itemsets from data streams. Proceedings of the 2010 ACM Symposium on Applied Computing. (1622-1626).

    https://doi.org/10.1145/1774088.1774436

  • Fischer P, Esmaili K and Miller R. Stream schema. Proceedings of the 13th International Conference on Extending Database Technology. (207-218).

    https://doi.org/10.1145/1739041.1739068

  • Leung C, Hao B and Jiang F. (2010). Constrained frequent itemset mining from uncertain data streams 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010). 10.1109/ICDEW.2010.5452736. 978-1-4244-6522-4. (120-127).

    http://ieeexplore.ieee.org/document/5452736/

  • Kim J, Kim D, Song M, Han D and Hwang B. (2010). Discovering Temporal Relation Considering the Weight of Events in Multidimensional Stream Data Environment. The Journal of the Korea Contents Association. 10.5392/JKCA.2010.10.2.099. 10:2. (99-110). Online publication date: 28-Feb-2010.

    http://koreascience.or.kr/journal/view.jsp?kj=CCTHCV&py=2010&vnc=v10n2&sp=99

  • Yamakami T. Mobile video user revisit analysis based on multi-day visiting patterns. Proceedings of the 12th international conference on Advanced communication technology. (1435-1439).

    /doi/10.5555/1833006.1833109

  • Robinson W and Akhlaghi A. Monitoring Behavioral Transitions in Cognitive Rehabilitation with Multi-Model, Multi-Window Stream Mining. Proceedings of the 2010 43rd Hawaii International Conference on System Sciences. (1-10).

    https://doi.org/10.1109/HICSS.2010.279

  • Tao Y and Özsu M. Efficient decision tree re-alignment for clustering time-changing data streams. From active data management to event-based systems and more. (20-43).

    /doi/10.5555/1985625.1985628

  • Yates D and Xu J. Sensor Field Resource Management for Sensor Network Data Mining. Intelligent Techniques for Warehousing and Mining Sensor Network Data. 10.4018/978-1-60566-328-9.ch013. (280-304).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-328-9.ch013

  • Campos M and Milenova B. Integrated Intelligence. Intelligent Techniques for Warehousing and Mining Sensor Network Data. 10.4018/978-1-60566-328-9.ch001. (1-16).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-328-9.ch001

  • Chang S, Zhao L, Guirguis S and Kulkarni R. (2010). A computation-oriented multimedia data streams model for content-based information retrieval. Multimedia Tools and Applications. 46:2-3. (399-423). Online publication date: 1-Jan-2010.

    https://doi.org/10.1007/s11042-009-0372-y

  • Tao Y and Özsu M. (2010). Efficient Decision Tree Re-alignment for Clustering Time-Changing Data Streams. From Active Data Management to Event-Based Systems and More. 10.1007/978-3-642-17226-7_2. (20-43).

    http://link.springer.com/10.1007/978-3-642-17226-7_2

  • Hüllermeier E. (2010). Uncertainty in Clustering and Classification. Scalable Uncertainty Management. 10.1007/978-3-642-15951-0_6. (16-19).

    http://link.springer.com/10.1007/978-3-642-15951-0_6

  • Dries A and De Raedt L. (2010). Towards Clausal Discovery for Stream Mining. Inductive Logic Programming. 10.1007/978-3-642-13840-9_2. (9-16).

    http://link.springer.com/10.1007/978-3-642-13840-9_2

  • Chamoni P, Beekmann F and Bley T. (2010). Ausgewählte Verfahren des Data Mining. Analytische Informationssysteme. 10.1007/978-3-642-04816-6_15. (329-356).

    http://link.springer.com/10.1007/978-3-642-04816-6_15

  • Lassnig M, Fahringer T, Garonne V, Molfetas A and Branco M. Stream Monitoring in Large-Scale Distributed Concealed Environments. Proceedings of the 2009 Fifth IEEE International Conference on e-Science. (156-163).

    https://doi.org/10.1109/e-Science.2009.30

  • Rehman Z, Shahbaz M, Shaheen M and Guergachi A. Situation-Awareness and Sensor Stream Mining for Sustainable Human Life. Proceedings of the 2009 International Conference of Soft Computing and Pattern Recognition. (616-620).

    https://doi.org/10.1109/SoCPaR.2009.121

  • Ciampi A, Fumarola F, Appice A and Malerba D. Approximate Frequent Itemset Discovery from Data Stream. Proceedings of the XIth International Conference of the Italian Association for Artificial Intelligence Reggio Emilia on Emergent Perspectives in Artificial Intelligence. (151-160).

    https://doi.org/10.1007/978-3-642-10291-2_16

  • Tao Y and Özsu M. Efficient decision tree construction for mining time-varying data streams. Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative Research. (43-57).

    https://doi.org/10.1145/1723028.1723036

  • Tao Y and Özsu M. Mining frequent itemsets in time-varying data streams. Proceedings of the 18th ACM conference on Information and knowledge management. (1521-1524).

    https://doi.org/10.1145/1645953.1646161

  • Pham Q, Raschia G, Mouaddib N, Saint-Paul R and Benatallah B. Time sequence summarization to scale up chronology-dependent applications. Proceedings of the 18th ACM conference on Information and knowledge management. (1137-1146).

    https://doi.org/10.1145/1645953.1646098

  • Liu J, Li X and Zhong W. (2009). Ambiguous decision trees for mining concept-drifting data streams. Pattern Recognition Letters. 30:15. (1347-1355). Online publication date: 1-Nov-2009.

    https://doi.org/10.1016/j.patrec.2009.07.017

  • Tanbeer S, Ahmed C, Jeong B and Lee Y. (2009). Sliding window-based frequent pattern mining over data streams. Information Sciences: an International Journal. 179:22. (3843-3865). Online publication date: 1-Nov-2009.

    https://doi.org/10.1016/j.ins.2009.07.012

  • Deng X, Ghanem M and Guo Y. Real-Time Data Mining Methodology and a Supporting Framework. Proceedings of the 2009 Third International Conference on Network and System Security. (522-527).

    https://doi.org/10.1109/NSS.2009.49

  • Zhang D, Lu J, Mao R and Nie J. Time-Sensitive Language Modelling for Online Term Recurrence Prediction. Proceedings of the 2nd International Conference on Theory of Information Retrieval: Advances in Information Retrieval Theory. (128-138).

    https://doi.org/10.1007/978-3-642-04417-5_12

  • Yamakami T. Inter-service revisit analysis of three user groups using intra-day behavior in the mobile clickstream. Proceedings of the 2009 International Conference on Hybrid Information Technology. (340-344).

    https://doi.org/10.1145/1644993.1645057

  • Ceci M, Appice A, Loglisci C, Caruso C, Fumarola F and Malerba D. Novelty Detection from Evolving Complex Data Streams with Time Windows. Proceedings of the 18th International Symposium on Foundations of Intelligent Systems. (563-572).

    https://doi.org/10.1007/978-3-642-04125-9_59

  • Falkner N and Sheng Q. Significance-Based Failure and Interference Detection in Data Streams. Proceedings of the 20th International Conference on Database and Expert Systems Applications. (645-659).

    https://doi.org/10.1007/978-3-642-03573-9_54

  • CHEN H. (2009). EFFICIENTLY MINING RECENT FREQUENT PATTERNS OVER ONLINE TRANSACTIONAL DATA STREAMS. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194009004325. 19:05. (707-725). Online publication date: 1-Aug-2009.

    http://www.worldscientific.com/doi/abs/10.1142/S0218194009004325

  • Heinz C and Greiner T. (2014). Business Activity Monitoring mit Stream Mining am Fallbeispiel TeamBank AG. HMD Praxis der Wirtschaftsinformatik. 10.1007/BF03340383. 46:4. (82-89). Online publication date: 1-Aug-2009.

    http://link.springer.com/10.1007/BF03340383

  • Ceci M, Appice A, Loglisci C, Caruso C, Fumarola F, Valente C and Malerba D. Relational Frequent Patterns Mining for Novelty Detection from Data Streams. Proceedings of the 6th International Conference on Machine Learning and Data Mining in Pattern Recognition. (427-439).

    https://doi.org/10.1007/978-3-642-03070-3_32

  • Dries A and De Raedt L. Towards clausal discovery for stream mining. Proceedings of the 19th international conference on Inductive logic programming. (9-16).

    /doi/10.5555/1893538.1893540

  • Hou W, Yang B, Xie Y and Wu C. (2009). Mining Multi-relational Frequent Patterns in Data Streams 2009 International Conference on Business Intelligence and Financial Engineering (BIFE). 10.1109/BIFE.2009.56. 978-0-7695-3705-4. (205-209).

    http://ieeexplore.ieee.org/document/5208900/

  • Wan L, Liao J and Zhu X. A frequent pattern based framework for event detection in sensor network stream data. Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data. (87-96).

    https://doi.org/10.1145/1601966.1601982

  • Liu C, Guo F and Faloutsos C. BBM. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. (537-546).

    https://doi.org/10.1145/1557019.1557081

  • Yamakami T. A Space-Optimal Month-Scale Regularity Mining Method with One-Path and Distributed Server Constraints for Mobile Internet. Proceedings of the 2009 Eighth International Conference on Mobile Business. (203-208).

    https://doi.org/10.1109/ICMB.2009.42

  • Fortuna C and Mohorcic M. (2009). Trends in the development of communication networks. Computer Networks: The International Journal of Computer and Telecommunications Networking. 53:9. (1354-1376). Online publication date: 25-Jun-2009.

    https://doi.org/10.1016/j.comnet.2009.01.002

  • Mahafzah B, Al-Badarneh A and Zakaria M. (2009). A new sampling technique for association rule mining. Journal of Information Science. 35:3. (358-376). Online publication date: 1-Jun-2009.

    https://doi.org/10.1177/0165551508100382

  • Asbagh M and Abolhassani H. Feature-Based Data Stream Clustering. Proceedings of the 2009 Eigth IEEE/ACIS International Conference on Computer and Information Science. (363-368).

    https://doi.org/10.1109/ICIS.2009.172

  • Ju C and You G. Mining Approximate Frequency Itemsets over Data Streams Based on D-Hash Table. Proceedings of the 2009 10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing. (249-254).

    https://doi.org/10.1109/SNPD.2009.29

  • Fan W, Koyanagi Y, Asakura K and Watanabe T. Clustering over Evolving Data Streams Based on Online Recent-Biased Approximation. Knowledge Acquisition: Approaches, Algorithms and Applications. (12-26).

    https://doi.org/10.1007/978-3-642-01715-5_2

  • Wang N and Wang T. An Efficient Method for Battlefield Information Data Stream Mining. Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization - Volume 01. (723-725).

    https://doi.org/10.1109/CSO.2009.477

  • Hoeglinger S, Pears R and Koh Y. CBDT. Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. (1006-1012).

    https://doi.org/10.1007/978-3-642-01307-2_107

  • Leung C and Hao B. Mining of Frequent Itemsets from Streams of Uncertain Data. Proceedings of the 2009 IEEE International Conference on Data Engineering. (1663-1670).

    https://doi.org/10.1109/ICDE.2009.157

  • Nehme R, Rundensteiner E and Bertino E. Self-tuning query mesh for adaptive multi-route query processing. Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. (803-814).

    https://doi.org/10.1145/1516360.1516452

  • Wang Y, Tang C, Li C, Chen Y, Yang N, Tang R and Zhu J. Intervention Events Detection and Prediction in Data Streams. Proceedings of the Joint International Conferences on Advances in Data and Web Management. (519-525).

    https://doi.org/10.1007/978-3-642-00672-2_45

  • Wu X, Zhang Y and Zhu X. (2009). Data Mining. Wiley Encyclopedia of Computer Science and Engineering. 10.1002/9780470050118.ecse094. (808-823).

    https://onlinelibrary.wiley.com/doi/10.1002/9780470050118.ecse094

  • Wang B, Wang T and Mikou N. An Efficient Data Streams Mining Method for Wireless Sensor Network's Data Aggregation. Proceedings of the 2009 First International Workshop on Education Technology and Computer Science - Volume 03. (1016-1020).

    https://doi.org/10.1109/ETCS.2009.765

  • Lints T. (2009). Relation learning with bar charts 2009 IEEE Symposium on Intelligent Agents (IA). 10.1109/IA.2009.4927503. 978-1-4244-2767-3. (77-83).

    http://ieeexplore.ieee.org/document/4927503/

  • Lee J, Park N and Lee W. (2009). Efficiently tracing clusters over high-dimensional on-line data streams. Data & Knowledge Engineering. 68:3. (362-379). Online publication date: 1-Mar-2009.

    https://doi.org/10.1016/j.datak.2008.11.004

  • Dorr D and Denton A. (2009). Establishing relationships among patterns in stock market data. Data & Knowledge Engineering. 68:3. (318-337). Online publication date: 1-Mar-2009.

    https://doi.org/10.1016/j.datak.2008.10.001

  • Li H. (2009). Pattern discovery and change detection of online music query streams. Multimedia Tools and Applications. 41:2. (287-304). Online publication date: 15-Jan-2009.

    https://doi.org/10.1007/s11042-008-0229-9

  • Malinowski E and Zimányi E. Temporal Extension for a Conceptual Multidimensional Model. Encyclopedia of Data Warehousing and Mining, Second Edition. 10.4018/978-1-60566-010-3.ch295. (1929-1935).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-010-3.ch295

  • Harms S. Temporal Event Sequence Rule Mining. Encyclopedia of Data Warehousing and Mining, Second Edition. 10.4018/978-1-60566-010-3.ch294. (1923-1928).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-010-3.ch294

  • Denton A. Clustering of Time Series Data. Encyclopedia of Data Warehousing and Mining, Second Edition. 10.4018/978-1-60566-010-3.ch042. (258-263).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60566-010-3.ch042

  • Yamakami T. (2009). One-path Relaxed Realtime Constraint Mobile User Classification Method in Mobile Clickstreams. Journal of Information Processing. 10.2197/ipsjjip.17.39. 17. (39-46).

    http://joi.jlc.jst.go.jp/JST.JSTAGE/ipsjjip/17.39?from=CrossRef

  • Lühr S and Lazarescu M. (2009). Incremental clustering of dynamic data streams using connectivity based representative points. Data & Knowledge Engineering. 68:1. (1-27). Online publication date: 1-Jan-2009.

    https://doi.org/10.1016/j.datak.2008.08.006

  • Gaber M. (2009). Data Stream Mining Using Granularity-Based Approach. Foundations of Computational, IntelligenceVolume 6. 10.1007/978-3-642-01091-0_3. (47-66).

    http://link.springer.com/10.1007/978-3-642-01091-0_3

  • Hofgesang P. Online Mining of Web Usage Data: An Overview. Web Mining Applications in E-commerce and E-services. 10.1007/978-3-540-88081-3_1. (1-24).

    http://link.springer.com/10.1007/978-3-540-88081-3_1

  • Chundi P and Rosenkrantz D. (2009). Efficient Algorithms for Segmentation of Item-Set Time Series. Fundamental Problems in Computing. 10.1007/978-1-4020-9688-4_10. (267-297).

    http://link.springer.com/10.1007/978-1-4020-9688-4_10

  • Li H. (2009). Pattern Discovery and Change Detection of Online Music Query Streams. Handbook of Multimedia for Digital Entertainment and Arts. 10.1007/978-0-387-89024-1_15. (327-347).

    http://link.springer.com/10.1007/978-0-387-89024-1_15

  • Tian X, Sun Q, Huang X and Ma Y. Dynamic Online Traffic Classification Using Data Stream Mining. Proceedings of the 2008 International Conference on MultiMedia and Information Technology. (104-107).

    https://doi.org/10.1109/MMIT.2008.185

  • Kwon Y, Lee W, Balazinska M and Xu G. Clustering Events on Streams Using Complex Context Information. Proceedings of the 2008 IEEE International Conference on Data Mining Workshops. (238-247).

    https://doi.org/10.1109/ICDMW.2008.138

  • Chang L, Wang T, Yang D and Luan H. SeqStream. Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. (83-92).

    https://doi.org/10.1109/ICDM.2008.36

  • Gaber M. (2008). Foundations of Adaptive Data Stream Mining for Mobile and Embedded Applications 2008 Cairo International Biomedical Engineering Conference (CIBEC). 10.1109/CIBEC.2008.4786099. 978-1-4244-2694-2. (1-6).

    http://ieeexplore.ieee.org/document/4786099/

  • Zhu X and Huang Z. (2008). Conceptual modeling rules extracting for data streams. Knowledge-Based Systems. 21:8. (934-940). Online publication date: 1-Dec-2008.

    https://doi.org/10.1016/j.knosys.2008.04.003

  • Chundi P and Rosenkrantz D. (2008). Efficient algorithms for segmentation of item-set time series. Data Mining and Knowledge Discovery. 17:3. (377-401). Online publication date: 1-Dec-2008.

    https://doi.org/10.1007/s10618-008-0095-0

  • Gao J, Ding B, Fan W, Han J and Yu P. (2008). Classifying Data Streams with Skewed Class Distributions and Concept Drifts. IEEE Internet Computing. 12:6. (37-49). Online publication date: 1-Nov-2008.

    https://doi.org/10.1109/MIC.2008.119

  • LI G and CHEN H. (2008). Mining the Frequent Patterns in an Arbitrary Sliding Window over Online Data Streams. Journal of Software. 10.3724/SP.J.1001.2008.02585. 19:10. (2585-2596). Online publication date: 20-Oct-2008.

    http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1001.2008.02585

  • Ouyang Z, Wu Q and Wang T. An Efficient Decision Tree Classification Method Based on Extended Hash Table for Data Streams Mining. Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery - Volume 05. (313-317).

    https://doi.org/10.1109/FSKD.2008.481

  • Liu S, Bai Y, Sha M, Deng Q and Qian D. (2008). CLEEP: A Novel Cross-Layer Energy-Efficient Protocol for Wireless Sensor Networks 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). 10.1109/WiCom.2008.939. 978-1-4244-2107-7. (1-4).

    http://ieeexplore.ieee.org/document/4678847/

  • Liu C, Shu Y, Li M and Yang O. (2008). Delay Modeling and Analysis of IEEE 802.11 DCF with Selfish Nodes 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). 10.1109/WiCom.2008.733. 978-1-4244-2107-7. (1-4).

    http://ieeexplore.ieee.org/document/4678641/

  • Liu X and Wang P. (2008). Data Mining Technology and its Application in Electronic Commerce 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). 10.1109/WiCom.2008.2186. 978-1-4244-2107-7. (1-5).

    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4680375

  • Park N and Lee W. Memory efficient subspace clustering for online data streams. Proceedings of the 2008 international symposium on Database engineering & applications. (199-208).

    https://doi.org/10.1145/1451940.1451968

  • Leung C, Brajczuk D and Yu J. Efficient algorithms for stream mining of constrained frequent patterns in a limited memory environment. Proceedings of the 2008 international symposium on Database engineering & applications. (189-198).

    https://doi.org/10.1145/1451940.1451967

  • Cuzzocrea A and Chakravarthy S. Event-Based Compression and Mining of Data Streams. Proceedings of the 12th international conference on Knowledge-Based Intelligent Information and Engineering Systems, Part II. (670-681).

    https://doi.org/10.1007/978-3-540-85565-1_83

  • Yamakami T. A 4+1 Bit Month-Scale Regularity Mining Algorithm with One-Path and Distributed Server Constraints for Mobile Internet. Proceedings of the 2nd international conference on Network-Based Information Systems. (232-241).

    https://doi.org/10.1007/978-3-540-85693-1_25

  • Yao-wen Chen , Lin Huang , Wei-ming Luo , Jing-xia Huang and Ren-hua Wu . (2008). A dynamic clonal selection immune clustering algorithm 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 10.1109/IEMBS.2008.4649339. 978-1-4244-1814-5. (1048-1051).

    http://ieeexplore.ieee.org/document/4649339/

  • Tang L, Tang C, Duan L, Li C, Jiang Y, Zeng C and Zhu J. (2008). MovStream: An efficient algorithm for monitoring clusters evolving in data streams 2008 IEEE International Conference on Granular Computing (GrC-2008). 10.1109/GRC.2008.4664715. 978-1-4244-2512-9. (582-587).

    http://ieeexplore.ieee.org/document/4664715/

  • Del Fiol G and Haug P. (2008). Infobuttons and classification models. Journal of Biomedical Informatics. 41:4. (655-666). Online publication date: 1-Aug-2008.

    https://doi.org/10.1016/j.jbi.2007.11.007

  • Chai D, Jin L, Bae K, Hwang B and Ryu K. Continuous Sensor Data Mining Model and System Design. Proceedings of the 2008 IEEE 8th International Conference on Computer and Information Technology Workshops. (501-506).

    https://doi.org/10.1109/CIT.2008.Workshops.108

  • Leung C and Brajczuk D. Efficient Mining of Frequent Itemsets from Data Streams. Proceedings of the 25th British national conference on Databases: Sharing Data, Information and Knowledge. (2-14).

    https://doi.org/10.1007/978-3-540-70504-8_2

  • Hill M, Campbell M, Chang Y and Iyengar V. Event detection in sensor networks for modern oil fields. Proceedings of the second international conference on Distributed event-based systems. (95-102).

    https://doi.org/10.1145/1385989.1386002

  • Heinz C and Seeger B. (2008). Cluster Kernels. IEEE Transactions on Knowledge and Data Engineering. 20:7. (880-893). Online publication date: 1-Jul-2008.

    https://doi.org/10.1109/TKDE.2008.21

  • Hung R, Lai K and Ting H. Finding Frequent Items in a Turnstile Data Stream. Proceedings of the 14th annual international conference on Computing and Combinatorics. (498-509).

    https://doi.org/10.1007/978-3-540-69733-6_49

  • Li H and Chen H. Evolving Sequential Patterns Mining Model over Click Stream with Levenshtein-Automata. Proceedings of the 2008 3rd International Conference on Innovative Computing Information and Control.

    https://doi.org/10.1109/ICICIC.2008.262

  • Hua-Fu Li , Ming-Ho Hsiao and Hsuan-Sheng Chen . (2008). Efficiently mining frequent patterns in recent music query streams 2008 IEEE International Conference on Multimedia and Expo (ICME). 10.1109/ICME.2008.4607673. 978-1-4244-2570-9. (1269-1272).

    http://ieeexplore.ieee.org/document/4607673/

  • Roddick J, Spiliopoulou M, Lister D and Ceglar A. (2008). Higher order mining. ACM SIGKDD Explorations Newsletter. 10:1. (5-17). Online publication date: 31-May-2008.

    https://doi.org/10.1145/1412734.1412736

  • Goni A, Rodriguez J, Burgos A, Illarramendi A and Dranca L. Real-Time Monitoring of Mobile Biological Sensor Data-Streams. Proceedings of the 2008 Ninth International Conference on Mobile Data Management Workshops. (97-105).

    https://doi.org/10.1109/MDMW.2008.22

  • Yamakami T. A Time Slot Count in Window Method Suitable for Long-Term Regularity-Based User Classification for Mobile Internet. Proceedings of the 2008 International Conference on Multimedia and Ubiquitous Engineering. (25-29).

    https://doi.org/10.1109/MUE.2008.107

  • Pourkashani M and Kangavari M. A cellular automata approach to detecting concept drift and dealing with noise. Proceedings of the 2008 IEEE/ACS International Conference on Computer Systems and Applications. (142-148).

    https://doi.org/10.1109/AICCSA.2008.4493528

  • Saroj S and Bharadwaj K. Distributed mining of censored production rules in data streams. Proceedings of the 7th WSEAS International Conference on Artificial intelligence, knowledge engineering and data bases. (500-505).

    /doi/10.5555/1415881.1415961

  • Yamakami T. Intraday-scale Long Interval Method of Classifying Intramonth-Scale Revisiting Mobile Users. Towards Sustainable Society on Ubiquitous Networks. 10.1007/978-0-387-85691-9_3. (27-36).

    http://link.springer.com/10.1007/978-0-387-85691-9_3

  • Park N and Lee W. (2007). An Adaptive Grid-based Clustering Algorithm over Multi-dimensional Data Streams. The KIPS Transactions:PartD. 10.3745/KIPSTD.2007.14-D.7.733. 14D:7. (733-742). Online publication date: 31-Dec-2008.

    http://koreascience.or.kr/journal/view.jsp?kj=JBCRGX&py=2007&vnc=v14Dn7&sp=733

  • Hoeglinger S and Pears R. (2007). Use of Hoeffding trees in concept based data stream mining 2007 Third International Conference on Information and Automation for Sustainability (ICIAFS). 10.1109/ICIAFS.2007.4544780. 978-1-4244-1899-2. (57-62).

    http://ieeexplore.ieee.org/document/4544780/

  • Park N and Lee W. Grid-based subspace clustering over data streams. Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. (801-810).

    https://doi.org/10.1145/1321440.1321551

  • Park N and Lee W. (2007). Cell trees. Data & Knowledge Engineering. 63:2. (528-549). Online publication date: 1-Nov-2007.

    https://doi.org/10.1016/j.datak.2007.04.003

  • Slavkovic A, Nardi Y and Tibbits M. Secure Logistic Regression of Horizontally and Vertically Partitioned Distributed Databases. Proceedings of the Seventh IEEE International Conference on Data Mining Workshops. (723-728).

    https://doi.org/10.1109/ICDMW.2007.84

  • Luhr S and Lazarescu M. (2007). A Visual Data Analysis Tool for Sport Player Performance Benchmarking, Comparison, and Change Detection 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007). 10.1109/ICTAI.2007.8. 0-7695-3015-X. (289-296).

    http://ieeexplore.ieee.org/document/4410297/

  • Kim D, Park J and Hwang B. (2007). Mining Association Rule for the Abnormal Event in Data Stream Systems. The KIPS Transactions:PartD. 10.3745/KIPSTD.2007.14-D.5.483. 14D:5. (483-490). Online publication date: 31-Aug-2007.

    http://koreascience.or.kr/journal/view.jsp?kj=JBCRGX&py=2007&vnc=v14Dn5&sp=483

  • Udommanetanakit K, Rakthanmanon T and Waiyamai K. E-Stream. Proceedings of the 3rd international conference on Advanced Data Mining and Applications. (605-615).

    https://doi.org/10.1007/978-3-540-73871-8_58

  • Lin Y and Liu H. Separator. Proceedings of the 3rd international conference on Advanced Data Mining and Applications. (170-182).

    https://doi.org/10.1007/978-3-540-73871-8_17

  • Li Z, Wang T, Wang R, Yan Y and Chen H. A new fuzzy decision tree classification method for mining high-speed data streams based on binary search trees. Proceedings of the 1st annual international conference on Frontiers in algorithmics. (216-227).

    /doi/10.5555/1776166.1776186

  • Wang T, Li Z, Yan Y and Chen H. An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams. Proceedings of the 5th international conference on Machine Learning and Data Mining in Pattern Recognition. (91-103).

    https://doi.org/10.1007/978-3-540-73499-4_8

  • Beringer J and Hüllermeier E. An efficient algorithm for instance-based learning on data streams. Proceedings of the 7th industrial conference on Advances in data mining: theoretical aspects and applications. (34-48).

    /doi/10.5555/1770770.1770776

  • Kriegel H, Borgwardt K, Kröger P, Pryakhin A, Schubert M and Zimek A. (2007). Future trends in data mining. Data Mining and Knowledge Discovery. 10.1007/s10618-007-0067-9. 15:1. (87-97). Online publication date: 5-Jul-2007.

    http://link.springer.com/10.1007/s10618-007-0067-9

  • Wang T, Li Z, Hu X, Yan Y and Chen H. A new decision tree classification method for mining high-speed data streams based on threaded binary search trees. Proceedings of the 2007 international conference on Emerging technologies in knowledge discovery and data mining. (256-267).

    /doi/10.5555/1780582.1780612

  • Park N and Lee W. Approximate trace of grid-based clusters over high dimensional data streams. Proceedings of the 11th Pacific-Asia conference on Advances in knowledge discovery and data mining. (753-760).

    /doi/10.5555/1764441.1764526

  • Phung N, Gaber M and Rohm U. (2007). Resource-aware Online Data Mining in Wireless Sensor Networks 2007 IEEE Symposium on Computational Intelligence and Data Mining. 10.1109/CIDM.2007.368865. 1-4244-0705-2. (139-146).

    http://ieeexplore.ieee.org/document/4221289/

  • Wang T, Li Z, Hu X, Yan Y and Chen H. A New Decision Tree Classification Method for Mining High-Speed Data Streams Based on Threaded Binary Search Trees. Emerging Technologies in Knowledge Discovery and Data Mining. 10.1007/978-3-540-77018-3_27. (256-267).

    http://link.springer.com/10.1007/978-3-540-77018-3_27

  • Li Z, Wang T, Wang R, Yan Y and Chen H. A New Fuzzy Decision Tree Classification Method for Mining High-Speed Data Streams Based on Binary Search Trees. Frontiers in Algorithmics. 10.1007/978-3-540-73814-5_20. (216-227).

    http://link.springer.com/10.1007/978-3-540-73814-5_20

  • Beringer J and Hüllermeier E. An Efficient Algorithm for Instance-Based Learning on Data Streams. Advances in Data Mining. Theoretical Aspects and Applications. 10.1007/978-3-540-73435-2_4. (34-48).

    http://link.springer.com/10.1007/978-3-540-73435-2_4

  • Park N and Lee W. Approximate Trace of Grid-Based Clusters over High Dimensional Data Streams. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-540-71701-0_82. (753-760).

    http://link.springer.com/10.1007/978-3-540-71701-0_82

  • Gaber M, Zaslavsky A and Krishnaswamy S. A Survey of Classification Methods in Data Streams. Data Streams. 10.1007/978-0-387-47534-9_3. (39-59).

    http://link.springer.com/10.1007/978-0-387-47534-9_3

  • Gaber M. Data Stream Processing in Sensor Networks. Learning from Data Streams. 10.1007/3-540-73679-4_4. (41-48).

    http://link.springer.com/10.1007/3-540-73679-4_4

  • Gama J and Gaber M. Introduction. Learning from Data Streams. 10.1007/3-540-73679-4_1. (1-5).

    http://link.springer.com/10.1007/3-540-73679-4_1

  • Yang C and Zhou J. HClustream. Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops. (682-688).

    https://doi.org/10.1109/ICDMW.2006.89

  • Leung C and Khan Q. DSTree. Proceedings of the Sixth International Conference on Data Mining. (928-932).

    https://doi.org/10.1109/ICDM.2006.62

  • Leung C and Khan Q. Efficient Mining of Constrained Frequent Patterns from Streams. Proceedings of the 10th International Database Engineering and Applications Symposium. (61-68).

    https://doi.org/10.1109/IDEAS.2006.20

  • Li H, Ho C, Shan M and Lee S. (2006). Online Mining of Recent Music Query Streams 2006 IEEE International Conference on Multimedia and Expo. 10.1109/ICME.2006.262948. 1-4244-0366-7. (1985-1988).

    http://ieeexplore.ieee.org/document/4037017/

  • Li H, Shan M and Lee S. (2006). Detecting Changes in User-Centered Music Query Streams 2006 IEEE International Conference on Multimedia and Expo. 10.1109/ICME.2006.262946. 1-4244-0366-7. (1977-1980).

    http://ieeexplore.ieee.org/document/4037015/

  • Heinz C and Seeger B. Resource-aware kernel density estimators over streaming data. Proceedings of the 15th ACM international conference on Information and knowledge management. (870-871).

    https://doi.org/10.1145/1183614.1183772

  • Mooney C and Roddick J. Marking time in sequence mining. Proceedings of the fifth Australasian conference on Data mining and analystics - Volume 61. (129-134).

    /doi/10.5555/1273808.1273826

  • Gaber M and Yu P. (2006). A Holistic Approach for Resource-aware Adaptive Data Stream Mining. New Generation Computing. 25:1. (95-115). Online publication date: 1-Nov-2006.

    https://doi.org/10.1007/s00354-006-0005-1

  • Kim D, Park J, Kim H and Hwang B. (2006). Mining Association Rules in Multidimensional Stream Data. The KIPS Transactions:PartD. 10.3745/KIPSTD.2006.13D.6.765. 13D:6. (765-774). Online publication date: 31-Oct-2006.

    http://koreascience.or.kr/journal/view.jsp?kj=JBCRGX&py=2006&vnc=v13Dn6s109&sp=765

  • Grossman R, Gu Y, Hanley D, Sabala M, Mambretti J, Szalay A, Thakar A, Kumazoe K, Yuji O, Lee M, Kwon Y and Seok W. (2006). Data mining middleware for wide-area high-performance networks. Future Generation Computer Systems. 22:8. (940-948). Online publication date: 1-Oct-2006.

    https://doi.org/10.1016/j.future.2006.03.024

  • Kerdprasop N and Kerdprasop K. Density Estimation Technique for Data Stream Classification. Proceedings of the 17th International Conference on Database and Expert Systems Applications. (662-666).

    https://doi.org/10.1109/DEXA.2006.49

  • Marketos G and Theodoridis Y. Measuring performance in the retail industry (position paper). Proceedings of the 2006 international conference on Business Process Management Workshops. (129-140).

    https://doi.org/10.1007/11837862_14

  • Gu H and Rong G. Mining delay in streaming time series of industrial process. Proceedings of the Second international conference on Advanced Data Mining and Applications. (723-730).

    https://doi.org/10.1007/11811305_79

  • Heinz C and Seeger B. Exploring Data Streams with Nonparametric Estimators. Proceedings of the 18th International Conference on Scientific and Statistical Database Management. (261-264).

    https://doi.org/10.1109/SSDBM.2006.25

  • Han K and Giordano J. Intrusion Detection System Modeling. Proceedings of the HPCMP Users Group Conference. (229-235).

    https://doi.org/10.1109/HPCMP-UGC.2006.41

  • Patist J, Kowalczyk W and Marchiori E. Maintaining gaussian mixture models of data streams under block evolution. Proceedings of the 6th international conference on Computational Science - Volume Part I. (1071-1074).

    https://doi.org/10.1007/11758501_175

  • Gaber M and Yu P. A framework for resource-aware knowledge discovery in data streams. Proceedings of the 2006 ACM symposium on Applied computing. (649-656).

    https://doi.org/10.1145/1141277.1141427

  • Jiang N and Gruenwald L. (2006). Research issues in data stream association rule mining. ACM SIGMOD Record. 35:1. (14-19). Online publication date: 1-Mar-2006.

    https://doi.org/10.1145/1121995.1121998

  • Chong Z, Yu J, Zhang Z, Lin X, Wang W and Zhou A. (2006). Efficient Computation of k-Medians over Data Streams Under Memory Constraints. Journal of Computer Science and Technology. 10.1007/s11390-006-0284-5. 21:2. (284-296). Online publication date: 1-Mar-2006.

    http://link.springer.com/10.1007/s11390-006-0284-5

  • Grobelnik M, Brank J, Mladenic D, Novak B and Fortuna B. (2006). Using DMoz for constructing ontology from data stream 28th International Conference on Information Technology Interfaces, 2006.. 10.1109/ITI.2006.1708521. 953-7138-05-4. (439-444).

    http://ieeexplore.ieee.org/document/1708521/

  • Zaniolo C. Mining databases and data streams with query languages and rules. Proceedings of the 4th international conference on Knowledge Discovery in Inductive Databases. (24-37).

    https://doi.org/10.1007/11733492_2

  • Chen F and Chen Y. (2004). Stream Mining (Time Series, Sequence, Data Stream, Data Flow). Dictionary of Bioinformatics and Computational Biology. 10.1002/9780471650126.dob1099. Online publication date: 15-Oct-2004.

    https://onlinelibrary.wiley.com/doi/10.1002/9780471650126.dob1099

  • Chen F and Chen Y. (2004). Association Rule Mining (Frequent Itemset, Association Rule, Support, Confidence, Correlation Analysis). Dictionary of Bioinformatics and Computational Biology. 10.1002/9780471650126.dob0810. Online publication date: 15-Oct-2004.

    https://onlinelibrary.wiley.com/doi/10.1002/9780471650126.dob0810