Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/11550518_38guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Rapid online learning of objects in a biologically motivated recognition architecture

Published: 31 August 2005 Publication History

Abstract

We present an approach for the supervised online learning of object representations based on a biologically motivated architecture of visual processing. We use the output of a recently developed topographical feature hierarchy to provide a view-based representation of three-dimensional objects using a dynamical vector quantization approach. For a simple short-term object memory model we demonstrate real-time online learning of 50 complex-shaped objects within three hours. Additionally we propose some modifications of learning vector quantization algorithms that are especially adapted to the task of online learning and capable of effectively reducing the representational effort in a transfer from short-term to long-term memory.

References

[1]
Arsenio, A.: Developmental learning on a humanoid robot. Proc. Int. Joint Conf. Neur. Netw. (2004), Budapest 3167-3172.
[2]
Bekel, H., Bax I., Heidemann G., Ritter H.: Adaptive Computer Vision: Online Learning for Object Recognition. Proc. DAGM, (2004) 447-454.
[3]
Fritzke, B.: A growing neural gas network learns topologies. In G. Tesauro et. al., eds., Adv. Neur. Inf. Proc. Systems. 7. MIT Press, Cambridge MA (1995) 625-632.
[4]
Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4) (1980) 193-202.
[5]
Guedalia, I. D., London, M., Werman, M. An on-line agglomerative clustering method for non-stationary data. Neural Computation, 11(2) (1999) 521-540.
[6]
Kalinke T., von Seelen, W.: Entropie als Mass des lokalen Informationsgehalts in Bildern zur Realisierung einer Aufmerksamkeitssteuerung. Mustererkennung (1996), Jähne et al., 627-634.
[7]
Kohonen, T.: Self-Organizing and Associative Memory. Springer Series in Information Sciences, Springer-Verlag, third edition (1989).
[8]
Steels, L., Kaplan, F.: AIBO's first words: The social learning of language and meaning. Evolution of Communication, vol. 4, no. 1 (2001) 3-32.
[9]
Wersing, H., Körner, E.: Learning Optimized Features for Hierarchical Models of Invariant Object Recognition. Neural Computation 15(7) (2003) 1559-1588.

Cited By

View all
  • (2022)Interactive continual learning for robots: a neuromorphic approachProceedings of the International Conference on Neuromorphic Systems 202210.1145/3546790.3546791(1-10)Online publication date: 27-Jul-2022
  • (2018)Interactive Incremental Online Learning of Objects Onboard of a Cooperative Autonomous Mobile RobotNeural Information Processing10.1007/978-3-030-04239-4_25(279-290)Online publication date: 13-Dec-2018
  • (2006)A biologically motivated system for unconstrained online learning of visual objectsProceedings of the 16th international conference on Artificial Neural Networks - Volume Part II10.1007/11840930_53(508-517)Online publication date: 10-Sep-2006
  1. Rapid online learning of objects in a biologically motivated recognition architecture

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    PR'05: Proceedings of the 27th DAGM conference on Pattern Recognition
    August 2005
    510 pages
    ISBN:3540287035
    • Editors:
    • Walter G. Kropatsch,
    • Robert Sablatnig,
    • Allan Hanbury

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 31 August 2005

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Interactive continual learning for robots: a neuromorphic approachProceedings of the International Conference on Neuromorphic Systems 202210.1145/3546790.3546791(1-10)Online publication date: 27-Jul-2022
    • (2018)Interactive Incremental Online Learning of Objects Onboard of a Cooperative Autonomous Mobile RobotNeural Information Processing10.1007/978-3-030-04239-4_25(279-290)Online publication date: 13-Dec-2018
    • (2006)A biologically motivated system for unconstrained online learning of visual objectsProceedings of the 16th international conference on Artificial Neural Networks - Volume Part II10.1007/11840930_53(508-517)Online publication date: 10-Sep-2006

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media