Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-04749-7_1guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Unsupervised Integration of Single-Cell Multi-omics Datasets with Disproportionate Cell-Type Representation

Published: 22 May 2022 Publication History

Abstract

Integrated analysis of multi-omics data allows the study of how different molecular views in the genome interact to regulate cellular processes; however, with a few exceptions, applying multiple sequencing assays on the same single cell is not possible. While recent unsupervised algorithms align single-cell multi-omic datasets, these methods have been primarily benchmarked on co-assay experiments rather than the more common single-cell experiments taken from separately sampled cell populations. Therefore, most existing methods perform subpar alignments on such datasets. Here, we improve our previous work Single Cell alignment using Optimal Transport (SCOT) by using unbalanced optimal transport to handle disproportionate cell-type representation and differing sample sizes across single-cell measurements. We show that our proposed method, SCOTv2, consistently yields quality alignments on five real-world single-cell datasets with varying cell-type proportions and is computationally tractable. Additionally, we extend SCOTv2 to integrate multiple (M2) single-cell measurements and present a self-tuning heuristic process to select hyperparameters in the absence of any orthogonal correspondence information.

References

[1]
Bonora G et al. Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and x inactivation Genome Biol. 2021 22 1 279
[2]
Alvarez-Melis, D., Jaakkola, T.S.: Gromov-wasserstein alignment of word embedding spaces. arXiv preprint arXiv:1809.00013 (2018)
[3]
Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani CA, et al. Multi-omics profiling of mouse gastrulation at single-cell resolution Nature 2019 576 7787 487-491
[4]
Cao, K., Bai, X., Hong, Y., Wan, L.: Unsupervised topological alignment for single-cell multi-omics integration. Bioinformatics 36(Suppl._1), i48–i56 (2020)
[5]
Cao K, Hong Y, and Wan L Manifold alignment for heterogeneous single-cell multi-omics data integration using Pamona Bioinformatics 2021 38 1 211-219
[6]
Chen S, Lake BB, and Zhang K High-throughput sequencing of transcriptome and chromatin accessibility in the same cell Nat. Biotechnol. 2019 37 12 1452-1457
[7]
Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ, et al. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity Nat. Methods 2016 13 10 833-836
[8]
Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells Nat. Commun. 2018 9 1 1-9
[9]
Demetci, P., Santorella, R., Sandstede, B., Noble, W.S., Singh, R.: Gromov-wasserstein optimal transport to align single-cell multi-omics data. BioRxiv (2020)
[10]
Dou, J., Liang, S., Mohanty, V., Cheng, X., Kim, S., Choi, J., et al.: Unbiased integration of single cell multi-omics data. bioRxiv (2020). https://www.biorxiv.org/content/early/2020/12/11/2020.12.11.422014
[11]
Liero M, Mielke A, and Savaré G Optimal entropy-transport problems and a new hellinger-kantorovich distance between positive measures Invent. Math. 2018 211 3 969-1117
[12]
Liu, J., Huang, Y., Singh, R., Vert, J.P., Noble, W.S.: Jointly embedding multiple single-cell omics measurements. BioRxiv, p. 644310 (2019)
[13]
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
[14]
Singh, R., Demetci, P., Bonora, G., Ramani, V., Lee, C., Fang, H., et al.: Unsupervised manifold alignment for single-cell multi-omics data. In: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 1–10 (2020)
[15]
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., III, W.M.M., et al.: Comprehensive integration of single-cell data. Cell 77(7), 1888–1902 (2019)
[16]
Séjourné, T., Vialard, F.X., Peyré, G.: The unbalanced gromov wasserstein distance: Conic formulation and relaxation. arXiv (2021)
[17]
Welch JD, Hartemink AJ, and Prins JF Matcher: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics Genome Biol. 2017 18 1 138

Cited By

View all
  • (2023)Minimax estimation of discontinuous optimal transport mapsProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619575(28128-28150)Online publication date: 23-Jul-2023

Index Terms

  1. Unsupervised Integration of Single-Cell Multi-omics Datasets with Disproportionate Cell-Type Representation
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Guide Proceedings
            Research in Computational Molecular Biology: 26th Annual International Conference, RECOMB 2022, San Diego, CA, USA, May 22–25, 2022, Proceedings
            May 2022
            412 pages
            ISBN:978-3-031-04748-0
            DOI:10.1007/978-3-031-04749-7
            • Editor:
            • Itsik Pe'er

            Publisher

            Springer-Verlag

            Berlin, Heidelberg

            Publication History

            Published: 22 May 2022

            Author Tags

            1. Single-cell sequencing
            2. Multi-omics
            3. Data integration
            4. Unsupervised learning
            5. Optimal transport
            6. Unbalanced alignment

            Qualifiers

            • Article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 01 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Minimax estimation of discontinuous optimal transport mapsProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619575(28128-28150)Online publication date: 23-Jul-2023

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media