Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3388440.3412410acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Unsupervised manifold alignment for single-cell multi-omics data

Published: 10 November 2020 Publication History

Editorial Notes

The authors have requested minor, non-substantive changes to the VoR and, in accordance with ACM policies, a Corrected VoR was published on January 30, 2022. For reference purposes the VoR may still be accessed via the Supplemental Material section on this page.

Abstract

Integrating single-cell measurements that capture different properties of the genome is vital to extending our understanding of genome biology. This task is challenging due to the lack of a shared axis across datasets obtained from different types of single-cell experiments. For most such datasets, we lack corresponding information among the cells (samples) and the measurements (features). In this scenario, unsupervised algorithms that are capable of aligning single-cell experiments are critical to learning an in silico co-assay that can help draw correspondences among the cells. Maximum mean discrepancy-based manifold alignment (MMD-MA) is such an unsupervised algorithm. Without requiring correspondence information, it can align single-cell datasets from different modalities in a common shared latent space, showing promising results on simulations and a small-scale single-cell experiment with 61 cells. However, it is essential to explore the applicability of this method to larger single-cell experiments with thousands of cells so that it can be of practical interest to the community. In this paper, we apply MMD-MA to two recent datasets that measure transcriptome and chromatin accessibility in ~2000 single cells. To scale the runtime of MMD-MA to a more substantial number of cells, we extend the original implementation to run on GPUs. We also introduce a method to automatically select one of the user-defined parameters, thus reducing the hyperparameter search space. We demonstrate that the proposed extensions allow MMD-MA to accurately align state-of-the-art single-cell experiments.

Supplementary Material

a40-singh-vor (a40-singh-vor.pdf)
Version of Record for "Unsupervised manifold alignment for single-cell multi-omics data" by Singh et al., Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (BCB '20).

References

[1]
M. Amodio and S. Krishnaswamy. 2018. MAGAN: Aligning Biological Manifolds. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stockholm Sweden, 215--223. http://proceedings.mlr.press/v80/amodio18a.html
[2]
J. Cao, J. S. Packer, V. Ramani, D. A. Cusanovich, C. Huynh, R. Daza, X. Qiu, C. Lee, S. N. Furlan, F. J. Steemers, et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 6352 (2017), 661--667.
[3]
K. Cao, X. Bai, Y. Hong, and L. Wan. 2020. Unsupervised Topological Alignment for Single-Cell Multi-Omics Integration. bioRxiv (2020). https://doi.org/10.1101/2020.02.02.931394.
[4]
S. Chen, B. B. Lake, and K. Zhang. 2019. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nature Biotechnology 37, 12 (2019), 1452--1457.
[5]
N. Cristianini and J. Shawe-Taylor. 2000. An Introduction to Support Vector Machines. Cambridge UP, Cambridge, UK.
[6]
Z. Cui, H. Chang, S. Shan, and X. Chen. 2014. Generalized Unsupervised Manifold Alignment. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., Montreal, Canada, 2429--2437. http://papers.nips.cc/paper/5620-generalized-unsupervised-manifold-alignment.pdf
[7]
D. A. Cusanovich, J. P. Reddington, D. A. Garfield, R. M. Daza, D. Aghamirzaie, R. Marco-Ferreres, H. A. Pliner, L. Christiansen, X. Qiu, F. J. Steemers, et al. 2018. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature 555, 7697 (2018), 538.
[8]
C. B. González-Blas, L. Minnoye, D. Papasokrati, S. Aibar, G. Hulselmans, V. Christiaens, K. Davie, J. Wouters, and S. Aerts. 2018. cisTopic: cis-regulatory topic modelling on single-cell ATAC-seq data. Nature Methods 16, 5 (2018), 397--400.
[9]
J. Liu, Y. Huang, R. Singh, J.-P. Vert, and W. S. Noble. 2019. Jointly Embedding Multiple Single-Cell Omics Measurements. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 143), Katharina T. Huber and Dan Gusfield (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 10:1--10:13. https://doi.org/10.4230/LIPIcs.WABI.2019.10
[10]
H. Marks, H. H. D. Kerstens, T. S. Barakat, E. Splinter, R. A. M. Dirks, G. van Mierlo, O. Joshi, S. Wang, T. Babak, C. A. Albers, T. Kalkan, A. Smith, A. Jouneau, W. de Laat, J. Gribnau, and H. G. Stunnenberg. 2015. Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biology 16, 1 (2015), 149.
[11]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32. Curran Associates, Inc., Vancouver, Canada, 8024--8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
[12]
P.J. Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53--65.
[13]
T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papelexi, W. M. Mauck III, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. 2019. Comprehensive integration of single-cell data. Cell 77, 7 (2019), 1888--1902.
[14]
T. Stuart and R. Satija. 2019. Integrative single-cell analysis. Nature Reviews Genetics 20 (2019), 252--272.
[15]
C. Wang, P. Krafft, and S. Mahadevan. 2011. Manifold alignment. In Manifold Learning: Theory and Applications, Y. Ma and Y. Fu (Eds.). CRC Press, Boca Raton, FL, USA.
[16]
J. D. Welch, A. J. Hartemink, and J. F. Prins. 2017. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome biology 18, 1 (2017), 138.
[17]
J. D. Welch, V. Kozareva, A. Ferreira, C. Vanderburg, C. Martin, and E. Z. Macosko. 2019. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 7 (2019), 1873--1887.
[18]
H. Xu, X. Fan, J. Tang, G. Zhou, L. Yang, X. Wu, S. Liu, J. Qu, and H. Yang. 2005. A modified method for generation of neural precursor cells from cultured mouse embryonic stem cells. Brain research protocols 15, 1 (2005), 52--58.

Cited By

View all
  • (2024)scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico explorationGenome Biology10.1186/s13059-024-03338-z25:1Online publication date: 29-Jul-2024
  • (2024)Deep Learning in Single-cell AnalysisACM Transactions on Intelligent Systems and Technology10.1145/364128415:3(1-62)Online publication date: 29-Mar-2024
  • (2024)Cancer Subtype Identification Through Integrating Inter and Intra Dataset Relationships in Multi-Omics DataIEEE Access10.1109/ACCESS.2024.336264712(27768-27783)Online publication date: 2024
  • Show More Cited By

Index Terms

  1. Unsupervised manifold alignment for single-cell multi-omics data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    BCB '20: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
    September 2020
    193 pages
    ISBN:9781450379649
    DOI:10.1145/3388440
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 November 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. manifold alignment
    2. single cells
    3. unsupervised learning

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    BCB '20
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 254 of 885 submissions, 29%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)71
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico explorationGenome Biology10.1186/s13059-024-03338-z25:1Online publication date: 29-Jul-2024
    • (2024)Deep Learning in Single-cell AnalysisACM Transactions on Intelligent Systems and Technology10.1145/364128415:3(1-62)Online publication date: 29-Mar-2024
    • (2024)Cancer Subtype Identification Through Integrating Inter and Intra Dataset Relationships in Multi-Omics DataIEEE Access10.1109/ACCESS.2024.336264712(27768-27783)Online publication date: 2024
    • (2024)Mosaic integration and knowledge transfer of single-cell multimodal data with MIDASNature Biotechnology10.1038/s41587-023-02040-y42:10(1594-1605)Online publication date: 23-Jan-2024
    • (2023)Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive lossBMC Bioinformatics10.1186/s12859-022-05126-724:1Online publication date: 4-Jan-2023
    • (2023)Matching single cells across modalities with contrastive learning and optimal transportBriefings in Bioinformatics10.1093/bib/bbad13024:3Online publication date: 29-Apr-2023
    • (2023)Design peptide and multi-epitope protein vaccine candidates against monkeypox virus using reverse vaccinology approach: an in-silico studyJournal of Biomolecular Structure and Dynamics10.1080/07391102.2023.220185041:23(14398-14418)Online publication date: 8-May-2023
    • (2023)Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjectionNature Communications10.1038/s41467-023-40744-614:1Online publication date: 25-Aug-2023
    • (2023)scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detectionNature Communications10.1038/s41467-023-36066-214:1Online publication date: 24-Jan-2023
    • (2022)Cross-linked unified embedding for cross-modality representation learningProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3601430(15942-15955)Online publication date: 28-Nov-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media