Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-28244-7_41guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Listwise Explanations for Ranking Models Using Multiple Explainers

Published: 02 April 2023 Publication History

Abstract

This paper proposes a novel approach towards better interpretability of a trained text-based ranking model in a post-hoc manner. A popular approach for post-hoc interpretability text ranking models are based on locally approximating the model behavior using a simple ranker. Since rankings have multiple relevance factors and are aggregations of predictions, existing approaches that use a single ranker might not be sufficient to approximate a complex model, resulting in low fidelity. In this paper, we overcome this problem by considering multiple simple rankers to better approximate the entire ranking list from a black-box ranking model. We pose the problem of local approximation as a Generalized Preference Coverage (GPC) problem that incorporates multiple simple rankers towards the listwise explanation of ranking models. Our method Multiplex uses a linear programming approach to judiciously extract the explanation terms, so that to explain the entire ranking list. We conduct extensive experiments on a variety of ranking models and report fidelity improvements of 37%–54% over existing competitors. We finally compare explanations in terms of multiple relevance factors and topic aspects to better understand the logic of ranking decisions, showcasing our explainers’ practical utility.

References

[1]
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 23:1–23:27 (2008).
[2]
Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4), 357–389 (2002)., http://doi.acm.org/10.1145/582415.582416
[3]
Anand, A., Lyu, L., Idahl, M., Wang, Y., Wallat, J., Zhang, Z.: Explainable information retrieval: a survey. CoRR abs/2211.02405 (2022).
[4]
Câmara A, Hauff C, et al. Jose JM et al. Diagnosing BERT with retrieval heuristics Advances in Information Retrieval 2020 Cham Springer 605-618
[5]
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019).
[6]
Diamond, S., Boyd, S.P.: CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17, 83:1–83:5 (2016). http://jmlr.org/papers/v17/15-408.html
[7]
Fernando, Z.T., Singh, J., Anand, A.: A study on the interpretability of neural retrieval models using deepshap. In: Proceedings of the 42Nd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2019, pp. 1005–1008. ACM, New York (2019)., http://doi.acm.org/10.1145/3331184.3331312
[8]
Fetahu, B., Markert, K., Anand, A.: Automated news suggestions for populating Wikipedia entity pages. In: Bailey, J., et al. (eds.) Proceedings of the 24th ACM International Conference on Information and Knowledge Management. CIKM 2015, Melbourne, VIC, Australia, 19–23 October 2015, pp. 323–332. ACM (2015).
[9]
Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-hoc retrieval. In: Mukhopadhyay, S., et al. (eds.) Proceedings of the 25th ACM International Conference on Information and Knowledge Management. CIKM 2016, Indianapolis, IN, USA, 24–28 October 2016, pp. 55–64. ACM (2016).
[10]
Hofstätter, S., Mitra, B., Zamani, H., Craswell, N., Hanbury, A.: Intra-document cascading: learning to select passages for neural document ranking. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2021, pp. 1349–1358. Association for Computing Machinery, New York (2021).
[11]
Jaleel, N.A., et al.: Umass at TREC 2004: novelty and HARD. In: Voorhees, E.M., Buckland, L.P. (eds.) Proceedings of the Thirteenth Text REtrieval Conference, TREC 2004, Gaithersburg, Maryland, USA, 16–19 November 2004. NIST Special Publication, vol. 500-261. National Institute of Standards and Technology (NIST) (2004). http://trec.nist.gov/pubs/trec13/papers/umass.novelty.hard.pdf
[12]
Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 6769–6781. Association for Computational Linguistics (2020).
[13]
Laue, S., Mitterreiter, M., Giesen, J.: GENO - generic optimization for classical machine learning. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019. NeurIPS 2019, 8–14 December 2019. Vancouver, BC, Canada, pp. 2187–2198 (2019). https://proceedings.neurips.cc/paper/2019/hash/84438b7aae55a0638073ef798e50b4ef-Abstract.html
[14]
Leonhardt, J., Rudra, K., Anand, A.: Extractive explanations for interpretable text ranking. ACM Trans. Inf. Syst. (2022).
[15]
Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 4765–4774 (2017). https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
[16]
McDonald, R.T., Brokos, G., Androutsopoulos, I.: Deep relevance ranking using enhanced document-query interactions. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018, pp. 1849–1860. Association for Computational Linguistics (2018).
[17]
Nogueira, R.F., Cho, K.: Passage re-ranking with BERT. CoRR abs/1901.04085 (2019). http://arxiv.org/abs/1901.04085
[18]
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, 25–29 October 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1532–1543. ACL (2014).
[19]
Rennings D, Moraes F, and Hauff C Azzopardi L, Stein B, Fuhr N, Mayr P, Hauff C, and Hiemstra D An axiomatic approach to diagnosing neural IR models Advances in Information Retrieval 2019 Cham Springer 489-503
[20]
Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: Explaining the predictions of any classifier. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144. ACM (2016).
[21]
Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 3145–3153. PMLR (2017), http://proceedings.mlr.press/v70/shrikumar17a.html
[22]
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Workshop Track Proceedings (2014). http://arxiv.org/abs/1312.6034
[23]
Singh, J., Anand, A.: Posthoc interpretability of learning to rank models using secondary training data. In: Workshop on ExplainAble Recommendation and Search (EARS 2018) at SIGIR 2018 (2018). https://ears2018.github.io/ears18-singh.pdf
[24]
Singh, J., Anand, A.: Exs: explainable search using local model agnostic interpretability. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. WSDM 2019, pp. 770–773. ACM, New York (2019)., http://doi.acm.org/10.1145/3289600.3290620
[25]
Singh, J., Anand, A.: Model agnostic interpretability of rankers via intent modelling. In: Hildebrandt, M., Castillo, C., Celis, L.E., Ruggieri, S., Taylor, L., Zanfir-Fortuna, G. (eds.) FAT* ’20: Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020, pp. 618–628. ACM (2020).
[26]
Singh, J., Khosla, M., Wang, Z., Anand, A.: Extracting per query valid explanations for blackbox learning-to-rank models. In: Hasibi, F., Fang, Y., Aizawa, A. (eds.) ICTIR 2021: The 2021 ACM SIGIR International Conference on the Theory of Information Retrieval, Virtual Event, Canada, 11 July 2021, pp. 203–210. ACM (2021).
[27]
Singh, J., Wallat, J., Anand, A.: BERTnesia: investigating the capture and forgetting of knowledge in BERT. In: Alishahi, A., Belinkov, Y., Chrupala, G., Hupkes, D., Pinter, Y., Sajjad, H. (eds.) Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2020, Online, November 2020, pp. 174–183. Association for Computational Linguistics (2020).
[28]
Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017). http://proceedings.mlr.press/v70/sundararajan17a.html
[29]
Verma, M., Ganguly, D.: LIRME: locally interpretable ranking model explanation. In: Piwowarski, B., Chevalier, M., Gaussier, É., Maarek, Y., Nie, J., Scholer, F. (eds.) Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, 21–25 July 2019, pp. 1281–1284. ACM (2019).
[30]
Völske, M., et al.: Towards axiomatic explanations for neural ranking models. In: Hasibi, F., Fang, Y., Aizawa, A. (eds.) ICTIR 2021: The 2021 ACM SIGIR International Conference on the Theory of Information Retrieval, Virtual Event, Canada, 11 July 2021, pp. 13–22. ACM (2021).
[31]
Wallat, J., Beringer, F., Anand, A., Anand, A.: Probing BERT for ranking abilities. In: Advances in Information Retrieval - 45th European Conference on IR Research, ECIR 2023, Dublin, Ireland. LNCS. Springer, Cham (2023)
[32]
Wang, Y., Lyu, L., Anand, A.: BERT rankers are brittle: a study using adversarial document perturbations. In: Crestani, F., Pasi, G., Gaussier, É. (eds.) ICTIR 2022: The 2022 ACM SIGIR International Conference on the Theory of Information Retrieval, Madrid, Spain, 11–12 July 2022, pp. 115–120. ACM (2022).
[33]
Yu, P., Rahimi, R., Allan, J.: Towards explainable search results: a listwise explanation generator. In: Amigó, E., Castells, P., Gonzalo, J., Carterette, B., Culpepper, J.S., Kazai, G. (eds.) SIGIR 2022: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022, pp. 669–680. ACM (2022).
[34]
Zhang, Z., Rudra, K., Anand, A.: Explain and predict, and then predict again. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 418–426 (2021)

Cited By

View all
  • (2024)eval-rationales: An End-to-End Toolkit to Explain and Evaluate Transformers-Based ModelsAdvances in Information Retrieval10.1007/978-3-031-56069-9_20(212-217)Online publication date: 24-Mar-2024
  • (2024)Evaluating the Explainability of Neural RankersAdvances in Information Retrieval10.1007/978-3-031-56066-8_28(369-383)Online publication date: 24-Mar-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part I
Apr 2023
780 pages
ISBN:978-3-031-28243-0
DOI:10.1007/978-3-031-28244-7

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 02 April 2023

Author Tags

  1. Explanation
  2. Neural
  3. Ranking
  4. Post-hoc
  5. List-wise

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)eval-rationales: An End-to-End Toolkit to Explain and Evaluate Transformers-Based ModelsAdvances in Information Retrieval10.1007/978-3-031-56069-9_20(212-217)Online publication date: 24-Mar-2024
  • (2024)Evaluating the Explainability of Neural RankersAdvances in Information Retrieval10.1007/978-3-031-56066-8_28(369-383)Online publication date: 24-Mar-2024

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media