Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-33455-9_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A Comparative Study of Stream Reasoning Engines

Published: 28 May 2023 Publication History

Abstract

The diverse research efforts in recent years in the area of stream reasoning (SR) led to a wide range of SR engines. However, the lack of standardization and the diverse choices in SR (e.g., tuple-driven vs. time-driven engines, streaming all results vs. newly derived ones, ...) mean that real comparability among the engines is hardly given. A first step towards achieving comparability and standardization is the RSP-QL model, implemented in the RSP4J framework, which allows for describing and formalizing the semantics of SR engines. To further advance the state of the art in comparative research of stream reasoning, we present the results of a survey to quantify the in-use importance of several key performance indicators (KPIs) and features and compare SR engines along these KPIs with the CityBench and the CSRBench oracle. Our analysis shows that the two RSP4J implementations C-SPARQL2.0 and YASPER outperform the well-known C-SPARQL implementation in terms of performance and configurability. Our comparison against a naive SR extension of the incremental reasoning engine RDFox shows that SR engines still have potential for improvement. To avoid a costly integration of engines into several different benchmarking environments, we finally present a unifying interface, already aligned with the CityBench and CSRBench, for benchmarking SR engines.

References

[1]
Ali MI, Gao F, Mileo A, et al. Arenas M et al. CityBench: a configurable benchmark to evaluate RSP engines using smart city datasets The Semantic Web - ISWC 2015 2015 Cham Springer 374-389
[2]
Aranda, C.B., et al.: SPARQL 1.1 overview. W3C recommendation, W3C (2013). https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
[3]
Arasu A et al. STREAM: the Stanford data stream management system Data Stream Management 2016 Heidelberg Springer 317-336
[4]
Barbieri DF, Braga D, Ceri S, Valle ED, and Grossniklaus M C-SPARQL: a continuous query language for RDF data streams Int. J. Semant. Comput. 2010 4 01 3-25
[5]
Botan I, Derakhshan R, Dindar N, Haas L, Miller RJ, and Tatbul N Secret: a model for analysis of the execution semantics of stream processing systems Proc. VLDB Endow. 2010 3 1–2 232-243
[6]
Calbimonte J-P, Corcho O, Gray AJG, et al. Patel-Schneider PF et al. Enabling ontology-based access to streaming data sources The Semantic Web – ISWC 2010 2010 Heidelberg Springer 96-111
[7]
Dao-Tran M, Beck H, and Eiter T Qi G, Kozaki K, Pan JZ, and Yu S Contrasting RDF stream processing semantics Semantic Technology 2016 Cham Springer 289-298
[8]
Dell’Aglio D, Della Valle E, Calbimonte JP, and Corcho O RSP-QL semantics: a unifying query model to explain heterogeneity of RDF stream processing systems Int. J. Semant. Web Inf. Syst. 2014 10 17-44
[9]
Dell’Aglio D, Calbimonte JP, Balduini M, Corcho O, Della Valle E, et al. Alani H et al. On correctness in RDF stream processor benchmarking Semantic Web Conference 2013 Heidelberg Springer 326-342
[10]
Dell’Aglio D, Della Valle E, van Harmelen F, and Bernstein A Stream reasoning: a survey and outlook Data Sci. 2017 1 1–2 59-83
[11]
D’Aniello, G., Gaeta, M., Orciuoli, F.: An approach based on semantic stream reasoning to support decision processes in smart cities. Telemat. Inform. 35(1), 68–81 (2018). https://www.sciencedirect.com/science/article/pii/S0736585317304768
[12]
Giustozzi, F., Saunier, J., Zanni-Merk, C.: Abnormal situations interpretation in industry 4.0 using stream reasoning. Procedia Comput. Sci. 159, 620–629 (2019). https://www.sciencedirect.com/science/article/pii/S1877050919314012. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019
[13]
Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C recommendation, W3C (2013). https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
[14]
Kolchin M, Wetz P, Kiesling E, and Tjoa AM Bozzon A, Cudre-Maroux P, and Pautasso C YABench: a comprehensive framework for RDF stream processor correctness and performance assessment Web Engineering 2016 Cham Springer 280-298
[15]
Lachhab F, Bakhouya M, Ouladsine R, and Essaaidi M Performance evaluation of linked stream data processing engines for situational awareness applications Concurr. Comput. Pract. Exp. 2018 30 12
[16]
Le-Phuoc D, Dao-Tran M, Xavier Parreira J, Hauswirth M, et al. Aroyo L et al. A native and adaptive approach for unified processing of linked streams and linked data The Semantic Web – ISWC 2011 2011 Heidelberg Springer 370-388
[17]
Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J, et al. Arenas M et al. RDFox: a highly-scalable RDF store The Semantic Web - ISWC 2015 2015 Cham Springer 3-20
[18]
Pérez J, Arenas M, Gutierrez C, et al. Cruz I et al. Semantics and complexity of SPARQL The Semantic Web - ISWC 2006 2006 Heidelberg Springer 30-43
[19]
Raimond, Y., Schreiber, G.: RDF 1.1 primer. W3C note, W3C (2014). https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
[20]
Ren, X., Khrouf, H., Kazi-Aoul, Z., Chabchoub, Y., Curé, O.: On measuring performances of C-SPARQL and CQELS. arXiv preprint arXiv:1611.08269 (2016)
[21]
Scharrenbach T, Urbani J, Margara A, Della Valle E, and Bernstein A Cimiano P, Corcho O, Presutti V, Hollink L, and Rudolph S Seven commandments for benchmarking semantic flow processing systems The Semantic Web: Semantics and Big Data 2013 Heidelberg Springer 305-319
[22]
Su, X., Gilman, E., Wetz, P., Riekki, J., Zuo, Y., Leppänen, T.: Stream reasoning for the internet of things: challenges and gap analysis. In: Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016. Association for Computing Machinery, New York (2016).
[23]
Tommasini R, Bonte P, Ongenae F, Della Valle E, et al. Verborgh R et al. RSP4J: an API for RDF stream processing The Semantic Web 2021 Cham Springer 565-581
[24]
Tommasini, R., Della Valle, E.: Yasper 1.0: towards an RSP-QL engine. In: International Semantic Web Conference (Posters, Demos & Industry Tracks) (2017)
[25]
Tommasini R, Della Valle E, Balduini M, and Dell’Aglio D Sack H, Blomqvist E, d’Aquin M, Ghidini C, Ponzetto SP, and Lange C Heaven: a framework for systematic comparative research approach for RSP engines The Semantic Web. Latest Advances and New Domains 2016 Cham Springer 250-265
[26]
Tommasini R, Della Valle E, Mauri A, Brambilla M, et al. d’Amato C et al. RSPLab: RDF stream processing benchmarking made easy The Semantic Web – ISWC 2017 2017 Cham Springer 202-209

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
The Semantic Web: 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28–June 1, 2023, Proceedings
May 2023
741 pages
ISBN:978-3-031-33454-2
DOI:10.1007/978-3-031-33455-9

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 28 May 2023

Author Tags

  1. Stream Reasoning
  2. RSP4J
  3. RDFox
  4. C-SPARQL
  5. CityBench
  6. CSRBech
  7. Benchmarking Interface

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media