Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-43999-5_45guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

RESToring Clarity: Unpaired Retina Image Enhancement Using Scattering Transform

Published: 08 October 2023 Publication History

Abstract

Retina images are non-invasive and highly effective in the diagnosis of various diseases such as cardiovascular and ophthalmological diseases. Accurate diagnosis depends on the quality of the retina images, however, obtaining high-quality images can be challenging due to various factors, such as noise, artifacts, and eye movement. Methods for enhancing retina images are therefore in high demand for clinical purposes, yet the problem remains challenging as there is a natural trade-off between preserving anatomical details (e.g., vessels) and increasing overall image quality other than the content in it. Moreover, training an enhancement model often requires paired images that map low-quality images to high-quality images, which may not be available in practice. In this regime, we propose a novel Retina image Enhancement framework using Scattering Transform (REST). REST uses unpaired retina image sets and does not require prior knowledge of the degraded factors. The generator in REST enhances retina images by utilizing the Anatomy Preserving Branch (APB) and the Tone Transferring Branch (TTB) with different roles. Our model successfully enhances low-quality retina images demonstrating commendable results on two independent datasets.

References

[1]
Ancuti, C.O., Ancuti, C., Vasluianu, F.A., Timofte, R.: Ntire 2021 nonhomogeneous dehazing challenge report. In: CVPR. pp. 627–646 (2021)
[2]
Andreux M, Angles T, Exarchakisgeo G, et al. Kymatio: Scattering transforms in python The Journal of Machine Learning Research 2020 21 1 2256-2261
[3]
Bruna J and Mallat S Invariant scattering convolution networks IEEE Transactions on Pattern Analysis and Machine Intelligence 2013 35 8 1872-1886
[4]
Cheng J, Li Z, Gu Z, Fu H, Wong DWK, and Liu J Structure-preserving guided retinal image filtering and its application for optic disk analysis IEEE Transactions on Medical Imaging 2018 37 11 2536-2546
[5]
Cheng, P., Lin, L., Huang, Y., Lyu, J., Tang, X.: I-secret: Importance-guided fundus image enhancement via semi-supervised contrastive constraining. In: MICCAI. pp. 87–96. Springer (2021)
[6]
Fu, H., Wang, B., Shen, J., Cui, S., Xu, Y., Liu, J., Shao, L.: Evaluation of retinal image quality assessment networks in different color-spaces. In: MICCAI. pp. 48–56. Springer (2019)
[7]
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks Communications of the ACM 2020 63 11 139-144
[8]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. pp. 770–778 (2016)
[9]
Huang, Y., Lin, L., Li, M., Wu, J., Cheng, P., Wang, K., Yuan, J., Tang, X.: Automated hemorrhage detection from coarsely annotated fundus images in diabetic retinopathy. In: ISBI. pp. 1369–1372. IEEE (2020)
[10]
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR. pp. 1125–1134 (2017)
[11]
Kim, W.H., Ravi, S.N., Johnson, S.C., et al.: On statistical analysis of neuroimages with imperfect registration. In: ICCV. pp. 666–674 (2015)
[12]
Li, H., Liu, H., Fu, H., et al.: Structure-consistent restoration network for cataract fundus image enhancement. In: MICCAI. pp. 487–496. Springer (2022)
[13]
Liu, H., Li, H., Fu, H., et al.: Degradation-invariant enhancement of fundus images via pyramid constraint network. In: MICCAI. pp. 507–516. Springer (2022)
[14]
Odena A, Dumoulin V, and Olah C Deconvolution and checkerboard artifacts. Distill 2016 1 10
[15]
Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired image-to-image translation. In: ECCV. pp. 319–345. Springer (2020)
[16]
Pérez, A.D., Perdomo, O., Rios, H., Rodríguez, F., González, F.A.: A conditional generative adversarial network-based method for eye fundus image quality enhancement. In: Ophthalmic Medical Image Analysis. pp. 185–194. Springer (2020)
[17]
Raj A, Tiwari AK, and Martini MG Fundus image quality assessment: survey, challenges, and future scope IET Image Processing 2019 13 8 1211-1224
[18]
Rim TH, Lee CJ, Tham YC, et al. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs The Lancet Digital Health 2021 3 5 e306-e316
[19]
Rim TH, Lee G, Kim Y, Tham YC, et al. Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms The Lancet Digital Health 2020 2 10 e526-e536
[20]
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI. pp. 234–241. Springer (2015)
[21]
Şevik U, Köse C, Berber T, and Erdöl H Identification of suitable fundus images using automated quality assessment methods Journal of biomedical optics 2014 19 4 046006-046006
[22]
Shen Z, Fu H, Shen J, and Shao L Modeling and enhancing low-quality retinal fundus images IEEE Transactions on Medical Imaging 2020 40 3 996-1006
[23]
Snyder PJ, Alber J, Alt C, et al. Retinal imaging in Alzheimer’s and neurodegenerative diseases Alzheimer’s & dementia 2021 17 1 103-111
[24]
You, Q., Wan, C., Sun, J., Shen, J., Ye, H., Yu, Q.: Fundus image enhancement method based on cyclegan. In: EMBC. pp. 4500–4503. IEEE (2019)
[25]
Zhao, H., Yang, B., Cao, L., Li, H.: Data-driven enhancement of blurry retinal images via generative adversarial networks. In: MICCAI. pp. 75–83. Springer (2019)
[26]
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV. pp. 2223–2232 (2017)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, October 8–12, 2023, Proceedings, Part X
Oct 2023
831 pages
ISBN:978-3-031-43998-8
DOI:10.1007/978-3-031-43999-5
  • Editors:
  • Hayit Greenspan,
  • Anant Madabhushi,
  • Parvin Mousavi,
  • Septimiu Salcudean,
  • James Duncan,
  • Tanveer Syeda-Mahmood,
  • Russell Taylor

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 08 October 2023

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media