Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Kymatio: scattering transforms in Python

Published: 01 January 2020 Publication History

Abstract

The wavelet scattering transform is an invariant and stable signal representation suitable for many signal processing and machine learning applications. We present the Kymatio software package, an easy-to-use, high-performance Python implementation of the scattering transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks, including PyTorch and TensorFlow/Keras. The transforms are implemented on both CPUs and GPUs, the latter offering a significant speedup over the former. The package also has a small memory footprint. Source code, documentation, and examples are available under a BSD license at https://www.kymat.io.

References

[1]
T. Adel, T. Cohen, M. Caan, M. Welling, et al. 3D scattering transforms for disease classification in neuroimaging. NeuroImage: Clinical, 14:506-517, 2017.
[2]
J. Andén et al. Scatnet. Computer Software, 2014. URL http://www.di.ens.fr/data/software/scatnet.
[3]
J. Andén and S. Mallat. Deep scattering spectrum. IEEE Trans. Signal Process., 62(16): 4114-4128, Aug 2014.
[4]
T. Angles and S. Mallat. Generative networks as inverse problems with scattering transforms. In Proc. ICLR, 2018.
[5]
J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1872-1886, 2013.
[6]
J. Bruna, S. Mallat, E. Bacry, and J.-F. Muzy. Intermittent process analysis with scattering moments. Ann. Statist., 43(1):323-351, 02 2015.
[7]
V. Chudáček et al. Scattering transform for intrapartum fetal heart rate variability fractal analysis: A case-control study. IEEE Trans. Biomed. Eng., 61(4):1100-1108, 2014.
[8]
M. Eickenberg et al. Solid harmonic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of 3D electronic densities. In Proc. NIPS, pages 6540-6549, 2017.
[9]
M. Eickenberg et al. Solid harmonic wavelet scattering for predictions of molecule properties. The Journal of Chemical Physics, 148(24):241732, 2018.
[10]
V. Lostanlen and S. Mallat. Wavelet scattering on the pitch spiral. In Proc. DAFx, 2015.
[11]
S. Mallat. Group invariant scattering. Comm. Pure Appl. Math., 65(10):1331-1398, 2012.
[12]
E. Oyallon and S. Mallat. Deep roto-translation scattering for object classification. In Proc. CVPR, June 2015.
[13]
E. Oyallon et al. Scattering networks for hybrid representation learning. IEEE Trans. Pattern Anal. Mach. Intell., 41(9):2208-2221, 2018.
[14]
F. Pedregosa et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12(Oct): 2825-2830, 2011.
[15]
T. N. Sainath et al. Deep scattering spectra with deep neural networks for LVCSR tasks. In Proc. Interspeech, 2014.
[16]
L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture discrimination. In Proc. CVPR, 2013.
[17]
I. Waldspurger. Exponential decay of scattering coefficients. In Proc. SampTA, pages 143-146, 2017.
[18]
N. Zeghidour et al. A deep scattering spectrum-deep siamese network pipeline for unsupervised acoustic modeling. In Proc. ICASSP, pages 4965-4969. IEEE, 2016.

Cited By

View all
  • (2023)RESToring Clarity: Unpaired Retina Image Enhancement Using Scattering TransformMedical Image Computing and Computer Assisted Intervention – MICCAI 202310.1007/978-3-031-43999-5_45(470-480)Online publication date: 8-Oct-2023

Index Terms

  1. Kymatio: scattering transforms in Python
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image The Journal of Machine Learning Research
          The Journal of Machine Learning Research  Volume 21, Issue 1
          January 2020
          10260 pages
          ISSN:1532-4435
          EISSN:1533-7928
          Issue’s Table of Contents
          CC-BY 4.0

          Publisher

          JMLR.org

          Publication History

          Published: 01 January 2020
          Accepted: 01 January 2020
          Revised: 10 January 2019
          Received: 01 January 2019
          Published in JMLR Volume 21, Issue 1

          Author Tags

          1. scattering transform
          2. GPUs
          3. wavelets
          4. convolutional networks
          5. invariance

          Qualifiers

          • Research-article

          Funding Sources

          • Alfred P. Sloan Fellowship
          • DARPA
          • NSF

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)52
          • Downloads (Last 6 weeks)6
          Reflects downloads up to 14 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)RESToring Clarity: Unpaired Retina Image Enhancement Using Scattering TransformMedical Image Computing and Computer Assisted Intervention – MICCAI 202310.1007/978-3-031-43999-5_45(470-480)Online publication date: 8-Oct-2023

          View Options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Login options

          Full Access

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media